1
|
Li Y, Liu L, Meng X, Qiu J, Liu Y, Zhao F, Tan H. Microplastics affect the nitrogen nutrition status of soybean by altering the nitrogen cycle in the rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137803. [PMID: 40043389 DOI: 10.1016/j.jhazmat.2025.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) are widely distributed in agricultural systems. However, studies on the comprehensive effects of MPs on nitrogen cycling in crop rhizosphere soil, and the changes this effect causes to crop growth is still limited. In this study, we investigated how three types of 5 % MPs (polystyrene, PS; polyethylene, PE; polyvinyl chloride, PVC) affect soybean growth by altering rhizosphere soil nitrogen cycling. These MPs have no direct toxic effects on soybean under hydroponic conditions. However, under soil cultivation conditions, PE and PS promoted soybean growth and increased soybean roots nitrogen content and nitrogen assimilation enzyme activity, while PVC does the opposite. Further study found that PE and PS increased the inorganic nitrogen content, and the activity of nitrogen cycle-related enzymes and the abundance of genes and microorganism in rhizosphere soil. Meanwhile, PVC significantly reduced the inorganic nitrogen contents, inhibited the activity of nitrogen cycling related enzymes, and destroyed the microbial community structure in rhizosphere soil. More importantly, PVC significantly reduced the abundance of nitrogen cycle-related genes and microorganisms, and increased the abundance of viruses. These results indicated that PE and PS promote soybean growth by activating the nitrogen cycle in the rhizosphere soil and increasing the soil nitrogen content, whereas PVC inhibits soybean growth by disrupting the nitrogen cycle in the rhizosphere soil and reducing its nitrogen content.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi 530004, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, Guangxi 530004, China
| | - Xiaoou Meng
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Riaz M, Kamran M, Hussain S, Yan L. "Nano-calcium L-Aspartate enhances rice tolerance to arsenic toxicity by improving nitrogen metabolism, cell wall sequestration, and antioxidant system". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109862. [PMID: 40194504 DOI: 10.1016/j.plaphy.2025.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Rice is one of the major sources of human exposure to arsenic (As), and its contamination is a critical issue for crop productivity and human health. Herein, we investigated how nano-calcium L-aspartate (nano-Ca) nanoparticles alleviate As-induced toxicity in rice (Oryzae sativa L.) seedlings. The results showed that As stress restricted rice growth and increased the concentration of As in roots and shoots. Application of nano-Ca markedly improved seedling growth, including biomass, photosynthetic pigment content, and antioxidant enzyme activity. As a result, Nano-Ca decreased As concentrations in shoots and roots by 67.04 % and 22.78 %, respectively, primarily due to the increasing accumulation of As in pectin and hemicellulose. Furthermore, nano-Ca elevated the activity of nitrogen-metabolizing enzymes. The treatment also promoted demethylation of pectin, which enhanced its As-binding capability. Additionally, nano-Ca enhanced proline metabolism, also provided antioxidant defenses, and regulated calcium homeostasis, which help mitigate oxidative damage characteristics like malondialdehyde and hydrogen peroxidation. As these findings demonstrated, nano-Ca could be an efficient, friendly means of alleviating As toxicity in rice, offering an environmentally sustainable option for agricultural strategies in the arsenic-contaminated areas.
Collapse
Affiliation(s)
- Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, South Australia, 5005, Australia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Kharbech O, Mahjoubi Y, Boutar M, Djebali W, Chaoui A. Up-regulation of nitrogen metabolism and chlorophyll biosynthesis by hydrogen sulfide improved photosystem photochemistry and gas exchange in chromium-contaminated bean (Phaseolus vulgaris L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109211. [PMID: 39481197 DOI: 10.1016/j.plaphy.2024.109211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Hydrogen sulfide (H₂S) is considered as plant growth promoter under heavy metal stress, though its specific effects on photosynthesis are rarely explored. This study investigates the protective effects of exogenous H2S donor sodium hydrosulfide (NaHS) on chlorophyll metabolism and photosystem II (PSII) function in 24-day-old bean plants exposed to 10 μM chromium (Cr) stress. Sodium hydrosulfide (100 μM) reduced Cr accumulation in both roots and leaves, leading to restored plant growth. Concomitantly, H₂S mitigated Cr-induced oxidative damages by decreasing reactive oxygen species levels and further enhancing antioxidant scavenging activities. This resulted in significant reductions in Cr-elevated leaf pheophytin and chlorophyllide levels by 59% and 67%, respectively. Furthermore, NaHS application increased levels of porphyrin and its precursor, 5-aminolevulinic acid (5-ALA), in Cr-stressed bean. The up-regulation in chlorophyll biosynthesis was associated with enhanced activities of glutamine synthetase and glutamate synthase, essential for glutamate (precursor of 5-ALA) production, as well as nitrate and nitrite reductase, leading to increased nitric oxide generation. Under Cr stress, H₂S significantly improved the electron transport rate, effective quantum yield of PSII, and photochemical quenching by 112%, 53%, and 38%, respectively, while reducing non-photochemical quenching by 50%. Furthermore, H₂S promoted net CO₂ assimilation and photosynthesis at saturating light, respectively, while reducing stomatal conductance and transpiration to maintain water balance. Exogenous H₂S restored respiration, as indicated by increased light saturation and compensation points in Cr-treated plants. Overall, these findings indicate that H₂S regulates photosynthesis in Cr-stressed bean by modulating nitrogen and chlorophyll metabolism, thereby optimizing PSII efficiency and gas exchange.
Collapse
Affiliation(s)
- Oussama Kharbech
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia.
| | - Yathreb Mahjoubi
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia; School of Life Sciences, University of Essex, Colchester, UK
| | - Marwa Boutar
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Application of Chemistry to Natural Resources, Substances and the Environment, 7021, Bizerte, Tunisia
| | - Wahbi Djebali
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia
| | - Abdelilah Chaoui
- University of Carthage, Faculty of Sciences of Bizerte, LR18ES38 Plant Toxicology and Environmental Microbiology, 7021, Bizerte, Tunisia
| |
Collapse
|
4
|
Khalofah A, Bamatov I, Zargar M. Interaction of melatonin and H 2S mitigates NaCl toxicity summer savory (Satureja hortensis L.) through Modulation of biosynthesis of secondary metabolites and physio-biochemical attributes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47757-47770. [PMID: 39007975 DOI: 10.1007/s11356-024-34356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
As versatile signaling molecules, melatonin (ML) and hydrogen sulfide (H2S) are well-known for their roles in response to abiotic stresses. However, their cross-talk to the regulation of biochemical defence responses and secondary metabolite synthesis during salinity has received less attention. Here, the role of ML-H2S interplay in inducing defensive responses and the biosynthesis of essential oil compounds in summer savoury plants under NaCl treatment was investigated. NaCl treatment, by increasing Na accumulation, disrupting nitrogen metabolism, and inducing oxidative stress, lowered photosynthetic pigments and savoury growth. NaCl treatment also resulted in a decrease in γ-terpinene (10.3%), α-terpinene (21.9%), and p-cymene (15.3%), while an increase in carvacrol (9.1%) was observed over the control. ML and ML + H2S increased the activity of antioxidant enzymes and the level of total phenols and flavonoids, resulting in decreased levels of hydrogen peroxide and superoxide anion and alleviation of oxidative damage under salinity. ML and ML + H2S increased K uptake and restored K/Na homeostasis, thus protecting the photosynthetic apparatus against NaCl-induced toxicity. ML and ML + H2S treatments also improved nitrate/ammonium homeostasis and stimulated nitrogen metabolism, leading to improved summer savoury adaptation to NaCl stress. ML and ML + H2S changed the composition of essential oils, leading to an increase in the monoterpene hydrocarbons and oxygenated monoterpenes in plants stressed with NaCl. However, the addition of an H2S scavenger, hypotaurine, inhibited the protective effects of the ML and ML + H2S treatments under NaCl stress, which could confirm the function of H2S as a signaling molecule in the downstream defence pathway induced by ML.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, P.O.Box 9004, Abha, 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ibragim Bamatov
- All-Russian Research Institute of Reclaimed Lands. V. V. Dokuchaev Soil Science Institute, Moscow, Russia
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia.
| |
Collapse
|
5
|
Amir M, Raheem A, Yadav P, Kumar V, Tewari RK, Jalil SU, Danish M, Ansari MI. Phytofabricated gold nanoparticles as modulators of salt stress responses in spinach: implications for redox homeostasis, biochemical and physiological adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1408642. [PMID: 38957605 PMCID: PMC11217327 DOI: 10.3389/fpls.2024.1408642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Introduction The utilization of plant material for synthesizing nanoparticles effectively triggers physiological and biochemical responses in plants to combat abiotic stresses. Salt stress, particularly caused by NaCl, significantly affects plant morphology and physiology, leading to reduced crop yields. Understanding the mechanisms of salt tolerance is crucial for maintaining crop productivity. Methods In this study, we examined the effects of 150 μM spinach-assisted gold nanoparticles (S-AuNPs) on various parameters related to seed germination, growth attributes, photosynthetic pigments, stomatal traits, ion concentrations, stress markers, antioxidants, metabolites, and nutritional contents of spinach plants irrigated with 50 mM NaCl. Results Results showed that S-AuNPs enhanced chlorophyll levels, leading to improved light absorption, increased photosynthates production, higher sugar content, and stimulated plant growth under NaCl stress. Stomatal traits were improved, and partially closed stomata were reopened with S-AuNPs treatment, possibly due to K+/Na+ modulation, resulting in enhanced relative water content and stomatal conductance. ABA content decreased under S-AuNPs application, possibly due to K+ ion accumulation. S-AuNPs supplementation increased proline and flavonoid contents while reducing ROS accumulation and lipid peroxidation via activation of both non-enzymatic and enzymatic antioxidants. S-AuNPs also regulated the ionic ratio of K+/Na+, leading to decreased Na+ accumulation and increased levels of essential ions in spinach plants under NaCl irrigation. Discussion Overall, these findings suggest that S-AuNPs significantly contribute to salt stress endurance in spinach plants by modulating various physiological attributes.
Collapse
Affiliation(s)
- Mohammad Amir
- Department of Botany, University of Lucknow, Lucknow, India
| | - Abdul Raheem
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Syed Uzma Jalil
- Amity Institutes of Biotechnology, Amity University, Lucknow, India
| | - Mohammad Danish
- Botany section, Maulana Azad National Urdu University, Hydrabad, India
| | | |
Collapse
|
6
|
Kaya C, Akin S, Sarioğlu A, Ashraf M, Alyemeni MN, Ahmad P. Enhancement of soybean tolerance to water stress through regulation of nitrogen and antioxidant defence mechanisms mediated by the synergistic role of salicylic acid and thiourea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108320. [PMID: 38183901 DOI: 10.1016/j.plaphy.2023.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.
Collapse
Affiliation(s)
- Cengiz Kaya
- Harran University, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkey.
| | - Sabri Akin
- Harran University, Department of Agricultural Structures and Irrigation, Sanliurfa, Turkey
| | - Ali Sarioğlu
- Harran University, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | | | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Kaya C, Shabala S. Melatonin improves drought stress tolerance of pepper ( Capsicum annuum) plants via upregulating nitrogen metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37263757 DOI: 10.1071/fp23060] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
While ameliorating effects of melatonin (MT) on abiotic stress tolerance in plants are widely reported, the mechanism that underlies this process remains elusive. This work investigated mechanisms by which MT improved drought tolerance in pepper (Capsicum annuum ) plants. A foliar spray of 0.1mM MT treatment was applied to plants grown at 80% and 40% of full field capacity for 3days. Drought stress caused a significant decrease in plant dry weight, relative water content, leaf water potential, PSII efficiency (F v /F m ratio), chlorophyll, soluble protein, leaf and root nitrogen content. Drought increased hydrogen peroxide, malondialdehyde (MDA), nitrate, ammonium, free amino acids, soluble sugars, proline and glycine betaine. Drought also increased peroxidase (POD), glutathione S-transferase (GST) and catalase (CAT) activities, electrolyte leakage (EL) and methylglyoxal (MG). MT pre-treatment reduced oxidative stress and improved nitrogen metabolism by activating various enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamine dehydrogenase (GDH) activities. It also activated enzymes related to the glyoxalase system (Gly I and Gly II) and decreased NO3 - , NH4 + and free amino acid content. Our study suggests a cost-effective and sustainable solution to improve crop productivity in water-limited conditions, by enhancing plant growth, photosynthesis and nitrogen content.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas., Australia; and School of Biological Science, University of Western Australia, Crawley, WA, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
8
|
Song J, Chen Y, Jiang G, Zhao J, Wang W, Hong X. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154120. [PMID: 37935062 DOI: 10.1016/j.jplph.2023.154120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oil-producing crop in China. However, cold stress in winter can adversely affect rapeseed germination and subsequently result in poor seed yield at the mature stage. Studies of differences in the transcriptional and metabolic levels of rapeseed under cold stress can improve our understanding of low-temperature germination (LTG). The current study aimed to identify the cold stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the difference of LTG and tolerance mechanisms in the cold-tolerant (Yueyou1301, YY1301) and cold-normal (Fengyou737, FY737) rapeseed varieties. Compared to FY737, YY1301 had a higher germination rate, indole acetic acid (IAA) and gibberellic acid (GA)/(abscisic acid) ABA levels at 7.5 °C. A total of 951 differentially expressed genes (DEGs) and 86 differentially accumulated metabolites (DAMs) were identified in two rapeseed varieties. Conjoint analysis revealed 12 DAMs and 5 DEGs that were strongly correlated in inducing rapeseed LTG, which were mainly related to carbohydrate and amino acid metabolism, specifically the pathway of glutathione metabolism and starch and sucrose metabolism. These results suggest that the DAMs and DEGs involved in crucial biological pathways may regulate the LTG of rapeseed. It increases the understanding of the molecular mechanisms underlying the adaptation of rapeseed to LTG.
Collapse
Affiliation(s)
- Jiayu Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yutiao Chen
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - GenShui Jiang
- Hangzhou Seed Industry Group Co., Ltd., Hangzhou, Zhejiang 310021, China
| | - Jianyi Zhao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wenjia Wang
- Agricultural Extension Extending Stations, Shaoxing & Zhuji Agricultural Bureau, Shaoxing, Zhejiang 312000, China.
| | - Xiaofu Hong
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
9
|
Liao Q, Ding R, Du T, Kang S, Tong L, Li S. Salinity-specific stomatal conductance model parameters are reduced by stomatal saturation conductance and area via leaf nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162584. [PMID: 36889407 DOI: 10.1016/j.scitotenv.2023.162584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Modeling stomatal behavior is necessary for accurate stomatal simulation and predicting the terrestrial water‑carbon cycle. Although the Ball-Berry and Medlyn stomatal conductance (gs) models have been widely used, variations and the drivers of their key slope parameters (m and g1) remain poorly understood under salinity stress. We measured leaf gas exchange, physiological and biochemical traits, soil water content and electrical conductivity of saturation extract (ECe), and fitted slope parameters of two genotypes of maize growing in two water and two salinity levels. We found m was different between the genotypes, but no difference in g1. Salinity stress reduced m and g1, saturated stomatal conductance (gsat), the fraction of leaf epidermis area allocation to stomata (fs), and leaf nitrogen (N) content, and increased ECe, but no marked decrease in slope parameters under drought. Both m and g1 were positively correlated with gsat, fs, and leaf N content, and negatively correlated with ECe in the same fashion among the two genotypes. Salinity stress altered m and g1 by modulating gsat and fs via leaf N content. The prediction accuracy of gs was improved using salinity-specific slope parameters, with root mean square error (RMSE) being decreased from 0.056 to 0.046 and 0.066 to 0.025 mol m-2 s-1 for the Ball-Berry and Medlyn models, respectively. This study provides a modeling approach to improving the simulation of stomatal conductance under salinity.
Collapse
Affiliation(s)
- Qi Liao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China.
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Shuai Li
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Voutsinos-Frantzis O, Karavidas I, Petropoulos D, Zioviris G, Fortis D, Ntanasi T, Ropokis A, Karkanis A, Sabatino L, Savvas D, Ntatsi G. Effects of NaCl and CaCl 2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. PLANTS (BASEL, SWITZERLAND) 2023; 12:1454. [PMID: 37050080 PMCID: PMC10097257 DOI: 10.3390/plants12071454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Corn salad (Valerianella locusta) is a popular winter salad, cultivated as an ingredient for ready-to-eat salads. The application of mild salinity stress (eustress) can increase the flavor and reduce the nitrate content of certain crops but, at the same time, a wrong choice of the eustress type and dose can negatively affect the overall productivity. In this research, the effects of different isosmotic salt solutions, corresponding to two different electrical conductivity (EC) levels, were investigated on the yield and mineral composition of hydroponically grown Valerianella locusta "Elixir". Five nutrient solutions (NS) were compared, including a basic NS used as the control, and four saline NS were obtained by adding to the basic NS either NaCl or CaCl2 at two rates each, corresponding to two isosmotic salt levels at a low and high EC level. Corn salad proved moderately susceptible to long-term salinity stress, suffering growth losses at both low and high EC levels of saline solution, except from the low NaCl treatment. Hence, it appears that mild salinity stress induced by NaCl could be employed as an eustress solution and corn salad could be cultivated with low-quality irrigation water (20 mM NaCl) in hydroponic systems.
Collapse
Affiliation(s)
- Orfeas Voutsinos-Frantzis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Petropoulos
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios Zioviris
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Fortis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas Ropokis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Anestis Karkanis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
11
|
Ullah A, Ali I, Noor J, Zeng F, Bawazeer S, Eldin SM, Asghar MA, Javed HH, Saleem K, Ullah S, Ali H. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. FRONTIERS IN PLANT SCIENCE 2023; 13:1081188. [PMID: 36743556 PMCID: PMC9897288 DOI: 10.3389/fpls.2022.1081188] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Increasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress. METHODS Thus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]). RESULTS Increased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass. CONCLUSION Exogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Iftikhar Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Pakistan
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sami Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St. Martonvásár, Hungary
| | | | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Haider Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
| |
Collapse
|
12
|
Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. J Fungi (Basel) 2022; 8:jof8101092. [PMID: 36294657 PMCID: PMC9605608 DOI: 10.3390/jof8101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Salinization of soil is a major environmental risk factor to plant functions, leading to a reduction of productivity of crops and forage. Epichloë gansuensis, seed-borne endophytic fungi, establishes a mutualistic symbiotic relationship with Achnatherum inebrians and confers salt tolerance in the host plants. In this study, analysis of transcriptome and metabolome was used to explore the potential molecular mechanism underlying the salt-adaptation of A. inebrians roots mediated by E. gansuensis. We found that E. gansuensis played an important role in the gene expression of the host’s roots and regulated multiple pathways involved in amino acid metabolism, carbohydrate metabolism, TCA cycle, secondary metabolism, and lipid metabolism in the roots of A. inebrians. Importantly, E. gansuensis significantly induced the biological processes, including exocytosis, glycolytic process, fructose metabolic process, and potassium ion transport in roots of host plants at transcriptional levels, and altered the pathways, including inositol phosphate metabolism, galactose metabolism, starch, and sucrose metabolism at metabolite levels under NaCl stress. These findings provided insight into the molecular mechanism of salt resistance in roots of A. inebrians mediated by E. gansuensis and could drive progress in the cultivation of new salt-resistance breeds with endophytes.
Collapse
|
13
|
Ullah A, Tariq A, Sardans J, Peñuelas J, Zeng F, Graciano C, Asghar MA, Raza A, Xiong YC, Chai X, Zhang Z. Alhagi sparsifolia acclimatizes to saline stress by regulating its osmotic, antioxidant, and nitrogen assimilation potential. BMC PLANT BIOLOGY 2022; 22:453. [PMID: 36131250 PMCID: PMC9490911 DOI: 10.1186/s12870-022-03832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/07/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Alhagi sparsifolia (Camelthorn) is a leguminous shrub species that dominates the Taklimakan desert's salty, hyperarid, and infertile landscapes in northwest China. Although this plant can colonize and spread in very saline soils, how it adapts to saline stress in the seedling stage remains unclear so a pot-based experiment was carried out to evaluate the effects of four different saline stress levels (0, 50, 150, and 300 mM) on the morphological and physio-biochemical responses in A. sparsifolia seedlings. RESULTS Our results revealed that N-fixing A. sparsifolia has a variety of physio-biochemical anti-saline stress acclimations, including osmotic adjustments, enzymatic mechanisms, and the allocation of metabolic resources. Shoot-root growth and chlorophyll pigments significantly decreased under intermediate and high saline stress. Additionally, increasing levels of saline stress significantly increased Na+ but decreased K+ concentrations in roots and leaves, resulting in a decreased K+/Na+ ratio and leaves accumulated more Na + and K + ions than roots, highlighting their ability to increase cellular osmolarity, favouring water fluxes from soil to leaves. Salt-induced higher lipid peroxidation significantly triggered antioxidant enzymes, both for mass-scavenging (catalase) and cytosolic fine-regulation (superoxide dismutase and peroxidase) of H2O2. Nitrate reductase and glutamine synthetase/glutamate synthase also increased at low and intermediate saline stress levels but decreased under higher stress levels. Soluble proteins and proline rose at all salt levels, whereas soluble sugars increased only at low and medium stress. The results show that when under low-to-intermediate saline stress, seedlings invest more energy in osmotic adjustments but shift their investment towards antioxidant defense mechanisms under high levels of saline stress. CONCLUSIONS Overall, our results suggest that A. sparsifolia seedlings tolerate low, intermediate, and high salt stress by promoting high antioxidant mechanisms, osmolytes accumulations, and the maintenance of mineral N assimilation. However, a gradual decline in growth with increasing salt levels could be attributed to the diversion of energy from growth to maintain salinity homeostasis and anti-stress oxidative mechanisms.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia Spain
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Ali Raza
- Chengdu Institute of Biology, University of Chinese Academy of Sciences, Beijing, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Xutian Chai
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300 China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Rai P, Pratap Singh V, Sharma S, Tripathi DK, Sharma S. Iron oxide nanoparticles impart cross tolerance to arsenate stress in rice roots through involvement of nitric oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119320. [PMID: 35490999 DOI: 10.1016/j.envpol.2022.119320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The growth and development patterns of crop plants are being seriously threatened by arsenic (As) contamination in the soil, and it also acts as a major hurdle in crop productivity. This study focuses on arsenate As(V) mediated toxicity in rice plants. Further, among the different type of NPs, iron oxide nanoparticles (FeO NPs) display a dose-dependent effect but their potential role in mitigating As(V) stress is still elusive. FeO NPs (500 μM) play a role in imparting cross-tolerance against As(V) induced toxicity in rice. Growth attributes, photosynthetic performance, nutrient contents and biochemical parameters were significantly altered by As(V). But FeO NPs rescued the negative consequences of As(V) by restricting its entry with the possible involvement of NO in rice roots. Moreover, results related with gene expression of NO(OsNoA1 and OsNIA1) and proline metabolism were greatly inhibited by As(V) toxicity. But, FeO NPs reversed the toxic effect of As(V) by improving proline metabolism and stimulating NO mediated up-regulation of antioxidant enzymes particularly glutathione-S-transferase which may be possible reasons for the reduction of As(V) toxicity in rice roots. Overall, it can be stated that FeO NPs may act as an As(V) barrier to restrict the As(V) uptake by roots and have the ability to confer cross tolerance by modulating various morphological, biochemical and molecular characteristics with possible intrinsic involvement of NO.
Collapse
Affiliation(s)
- Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Samarth Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
15
|
Kaya C, Sarıoglu A, Ashraf M, Alyemeni MN, Ahmad P. The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118727. [PMID: 34973379 DOI: 10.1016/j.envpol.2021.118727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The main objective of the study was to assess if joint application of melatonin (MT, 0.1 mM) and salicylic acid (SA 0.5 mM) could improve tolerance of pepper plants to arsenic (As) as sodium hydrogen arsenate heptahydrate (0.05 mM). The imposition of arsenic stress led to accumulation of As in roots and leaves, and increased contents of leaf proline, phytochelatins, malondialdehyde (MDA) and H2O2, but it reduced plant biomass, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm) and leaf water potential. Melatonin and SA applied jointly or alone enhanced nitrogen metabolism by triggering the activities of glutamate synthase, glutamine synthetase, and nitrite reductases and nitrate. In comparison with a single treatment of MT or SA, the joint treatment of MT and SA had better impact on enhancing growth and key biological events and decreasing tissue As content. This clearly shows a cooperative function of both agents in enhancing tolerance to As-toxicity in pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Ali Sarıoglu
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- University of Lahore, Lahore, Pakistan; International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Sousa B, Rodrigues F, Soares C, Martins M, Azenha M, Lino-Neto T, Santos C, Cunha A, Fidalgo F. Impact of Combined Heat and Salt Stresses on Tomato Plants-Insights into Nutrient Uptake and Redox Homeostasis. Antioxidants (Basel) 2022; 11:478. [PMID: 35326127 PMCID: PMC8944476 DOI: 10.3390/antiox11030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, salinity and heat are two critical threats to crop production and food security which are being aggravated by the global climatic instability. In this scenario, it is imperative to understand plant responses to simultaneous exposure to different stressors and the cross-talk between underlying functional mechanisms. Thus, in this study, the physiological and biochemical responses of tomato plants (Solanum lycopersicum L.) to the combination of salinity (100 mM NaCl) and heat (42 °C; 4 h/day) stress were evaluated. After 21 days of co-exposure, the accumulation of Na+ in plant tissues was superior when salt-treated plants were also exposed to high temperatures compared to the individual saline treatment, leading to the depletion of other nutrients and a harsher negative effect on plant growth. Despite that, neither oxidative damage nor a major accumulation of reactive oxygen species took place under stress conditions, mostly due to the accumulation of antioxidant (AOX) metabolites alongside the activation of several AOX enzymes. Nonetheless, the plausible allocation of resources towards the defense pathways related to oxidative and osmotic stress, along with severe Na toxicity, heavily compromised the ability of plants to grow properly when the combination of salinity and heat was imposed.
Collapse
Affiliation(s)
- Bruno Sousa
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| | - Francisca Rodrigues
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
- Biology Department and CBMA-Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.L.-N.); (A.C.)
| | - Cristiano Soares
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| | - Maria Martins
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - Teresa Lino-Neto
- Biology Department and CBMA-Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.L.-N.); (A.C.)
| | - Conceição Santos
- LAQV/REQUIMTE, Laboratory of Integrative Biology and Biotechnology (IB2), Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - Ana Cunha
- Biology Department and CBMA-Centre of Molecular and Environmental Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.L.-N.); (A.C.)
| | - Fernanda Fidalgo
- GreenUPorto-Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.S.); (M.M.); (F.F.)
| |
Collapse
|
17
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
18
|
Habibi G. Changes in crassulacean acid metabolism expression, chloroplast ultrastructure, photochemical and antioxidant activity in the Aloe vera during acclimation to combined drought and salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:40-53. [PMID: 34780703 DOI: 10.1071/fp21008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
We determined time course changes of photochemical and antioxidant activity during the induction of strong crassulacean acid metabolism (CAM) in Aloe vera L. plants grown under salt and drought stress. We found that the strong CAM was induced during 25-30days of drought alone treatment. After 25-30days, we showed the withdrawal of strong CAM back to constitutive CAM background under the combination of simultaneous drought and salt stress, which coincided with the accumulation of malondialdehyde, and the decrease in the contents of endogenous nitric oxide (NO) and non-enzymatic antioxidants. At the same time, the chloroplast ultrastructure was damaged with a parallel accumulation of reactive oxygen species, and the whole photosynthetic electron transport flux was impaired by combined stress treatment. In conclusion, the changes in CAM expression parameters was attended by a similar pattern of antioxidant and photochemical change in Aloe plants subjected to only drought or combined stress.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran
| |
Collapse
|
19
|
Mondal R, Kumar A, Chattopadhyay SK. Structural property, molecular regulation, and functional diversity of glutamine synthetase in higher plants: a data-mining bioinformatics approach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1565-1584. [PMID: 34628690 DOI: 10.1111/tpj.15536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 05/26/2023]
Abstract
Glutamine synthetase (GS; E.C.6.3.1.2) is a key enzyme in higher plants with two isozymes, cytosolic GS1 and plastidic GS2, and involves in the assimilation and recycling of NH4+ ions and maintenance of complex traits such as crop nitrogen-use efficiency and yield. Our present understanding of crop nitrogen-use efficiency and its correlation with the functional role of the GS family genes is inadequate, which delays harnessing the benefit of this key enzyme in crop improvement. In this report, we performed a comprehensive investigation on the phylogenetic relationship, structural properties, complex multilevel gene regulation, and expression patterns of the GS genes to enrich present understanding about the enzyme. Our Gene Ontology and protein-protein interactions analysis revealed the functional aspects of GS isozymes in stress mitigation, aging, nucleotide biosynthesis/transport, DNA repair and response to metals. The insight gained here contributes to the future research strategies in developing climate-smart crops for global sustainability.
Collapse
Affiliation(s)
- Raju Mondal
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, 635109, India
| | - Amit Kumar
- Host Plant Section, Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textile, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | | |
Collapse
|
20
|
Sameeullah M, Yildirim M, Aslam N, Baloğlu MC, Yucesan B, Lössl AG, Saba K, Waheed MT, Gurel E. Plastidial Expression of 3β-Hydroxysteroid Dehydrogenase and Progesterone 5β-Reductase Genes Confer Enhanced Salt Tolerance in Tobacco. Int J Mol Sci 2021; 22:11736. [PMID: 34769166 PMCID: PMC8584194 DOI: 10.3390/ijms222111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
The short-chain dehydrogenase/reductase (SDR) gene family is widely distributed in all kingdoms of life. The SDR genes, 3β-hydroxysteroid dehydrogenase (3β-HSD) and progesterone 5-β-reductases (P5βR1, P5βR2) play a crucial role in cardenolide biosynthesis pathway in the Digitalis species. However, their role in plant stress, especially in salinity stress management, remains unexplored. In the present study, transplastomic tobacco plants were developed by inserting the 3β-HSD, P5βR1 and P5βR2 genes. The integration of transgenes in plastomes, copy number and transgene expression at transcript and protein level in transplastomic plants were confirmed by PCR, end-to-end PCR, qRT-PCR and Western blot analysis, respectively. Subcellular localization analysis showed that 3β-HSD and P5βR1 are cytoplasmic, and P5βR2 is tonoplast-localized. Transplastomic lines showed enhanced growth in terms of biomass and chlorophyll content compared to wild type (WT) under 300 mM salt stress. Under salt stress, transplastomic lines remained greener without negative impact on shoot or root growth compared to the WT. The salt-tolerant transplastomic lines exhibited enhanced levels of a series of metabolites (sucrose, glutamate, glutamine and proline) under control and NaCl stress. Furthermore, a lower Na+/K+ ratio in transplastomic lines was also observed. The salt tolerance, mediated by plastidial expression of the 3β-HSD, P5βR1 and P5βR2 genes, could be due to the involvement in the upregulation of nitrogen assimilation, osmolytes as well as lower Na+/K+ ratio. Taken together, the plastid-based expression of the SDR genes leading to enhanced salt tolerance, which opens a window for developing saline-tolerant plants via plastid genetic engineering.
Collapse
Affiliation(s)
- Muhammad Sameeullah
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.S.); (N.A.)
- Center for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Muhammet Yildirim
- Department of Chemistry, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey;
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.S.); (N.A.)
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 14030, Turkey;
| | - Buhara Yucesan
- Department of Seed Science and Technology, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey;
| | - Andreas G. Lössl
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), 1180 Vienna, Austria;
| | - Kiran Saba
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ekrem Gurel
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey; (M.S.); (N.A.)
| |
Collapse
|
21
|
Parihar P, Singh R, Singh A, Prasad SM. Role of oxylipin on Luffa seedlings exposed to NaCl and UV-B stresses: An insight into mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:691-704. [PMID: 34488154 DOI: 10.1016/j.plaphy.2021.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, among several abiotic stresses, salt, especially NaCl and UV-B are of major concern. They lead to deleterious effects on plant growth and ultimately affect crop productivity. The present study was planned to find out some ameliorative solution against these stresses. Here, the modulatory action of two oxylipins, namely, methyl jasmonate (MeJA) and 12-Oxo-phytodienoic acid (OPDA) on growth, photosynthetic performance, nitrate/ammonia assimilating enzymes, and nutritive values of Luffa Mill. seedlings grown under NaCl (20 and 40 mM) and/or enhanced UV-B stresses (ambient: 8.2 kJ m-2 d-1 + additional: 2.2 kJ m-2 s-1) were analyzed. Both the stresses when given alone, negatively affected the fresh mass, root/shoot ratio, leaf area, photosynthetic pigments content, photosynthetic oxygen yield and, chlorophyll a fluorescence kinetic parameter. This decline was further aggravated upon combined exposure to the stressors. However, supplementation of MeJA/OPDA effectively counteracted the negative impact on important growth-regulating processes. The activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) enzymes, as well as the contents of inorganic nitrogen, protein, and carbohydrate, were increased with the supplementation of MeJA/OPDA. The increase in the Na+ and Cl‾ contents due to NaCl or/and UV-B was depreciated by MeJA or OPDA. Ameliorating behaviour of MeJA or OPDA is correlated with improved photosynthetic activity and nitrogen metabolism. These findings, point out that supplementation of MeJA/OPDA, particularly OPDA more favourably regulated the growth-promoting activities, which can be linked with the mitigation of NaCl and UV-B stress.
Collapse
Affiliation(s)
- Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, U.P, India; School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Jalandhar, India.
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, U.P, India.
| | - Anita Singh
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, U.P, 221005, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, U.P, India.
| |
Collapse
|
22
|
Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Iqbal N, Irfan M, Sehar Z, Khan NA. Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112535. [PMID: 34325203 DOI: 10.1016/j.ecoenv.2021.112535] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 05/25/2023]
Abstract
Salicylic acid (SA) is a well-known plant growth regulator, which participates in many physiological processes of plants under normal and stressful conditions. In this study, we investigated the impact of SA supplementation on the components of ascorbate-glutathione cycle and glyoxalase system, photosynthesis and growth of rice (Oryza sativa) plants subjected to arsenic (As) stress. Plants grown with As exhibited enhanced As uptake, increased oxidative stress, and photosynthesis and growth inhibition. Application of SA promoted photosynthesis and growth in plants with or without As stress by improving plant defense systems and reducing oxidative stress through interaction with ethylene and nitric oxide (NO). SA acted as an ethylene antagonist, reducing stress ethylene formation under As stress, while NO formation was induced. This resulted in coordinated control over the antioxidant defense systems and enhanced As tolerance, protecting photosynthesis and growth from As-induced damage. The study showed that positive responses of SA in promoting photosynthesis and growth under As stress were the result of its interplay with ethylene and NO, enhanced capacity of defense systems to reduce oxidative stress. The crosstalk of SA with ethylene and NO will be useful in augmenting the performance of rice plants under As stress.
Collapse
Affiliation(s)
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zebus Sehar
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
23
|
Alamri S, Alsubaie QD, Al-Amri AA, Al-Munqedi B, Ali HM, Kushwaha BK, Singh VP, Siddiqui MH. Priming of tomato seedlings with 2-oxoglutarate induces arsenic toxicity alleviatory responses by involving endogenous nitric oxide. PHYSIOLOGIA PLANTARUM 2021; 173:45-57. [PMID: 32656764 DOI: 10.1111/ppl.13168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Metal toxicity in crop plants is a matter of scientific concern. Therefore, in recent years efforts have been made to minimize metal toxicity in crop plants. Out of various strategies, priming of seedlings with certain chemicals, like e.g. donors of signaling molecules, nutrients, metabolites or plant hormones has shown encouraging results. However, mechanisms related with the priming-induced mitigation of metal toxicity are still poorly known. Hence, we have tested the potential of 2-oxoglutarate (2-OG) priming in enhancing the arsenate (AsV ) toxicity tolerance in tomato seedlings along with deciphering the probable role of nitric oxide (NO) in accomplishing this task. Arsenate decreased growth, endogenous NO and nitric oxide synthase-like activity but enhanced the accumulation of As, which collectively led to root cell death. Arsenate toxicity also decreased some photosynthetic characteristics (i.e. Fv /Fm, qP, Fv /F0 and Fm /F0 , and total chlorophyll content) but enhanced NPQ. However, priming with 2-OG alleviated the toxic effect of AsV on growth, endogenous NO, cell death and photosynthesis. Moreover, arsenate inhibited the activities of enzymes of nitrogen metabolism (i.e. nitrate reductase, nitrite reductase, glutamine synthetase and glutamine 2-oxoglutarate aminotransferase) but increased the activity of glutamate dehydrogenase and NH4 + content. Superoxide radicals, hydrogen peroxide, lipid peroxidation, protein oxidation and membrane damage increased upon AsV exposure, but the antioxidant enzymes (i.e. superoxide dismutase, catalase and glutathione-S-transferase) showed differential responses. Overall, our results showed that 2-OG is capable of alleviating AsV toxicity in tomato seedlings but the involvement of endogenous NO is probably required.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bandar Al-Munqedi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bishwajit K Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Vijay P Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
24
|
Sathee L, Jha SK, Rajput OS, Singh D, Kumar S, Kumar A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:161-172. [PMID: 34044225 DOI: 10.1016/j.plaphy.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding the reproductive stage salinity stress tolerance is a key target for breeding stress tolerant rice genotypes. Nitrate and ammonium are equally important nitrogen forms utilized by rice. We evaluated nitrate and ammonium assimilation during reproductive stage in control and salinity (10dSm-1 using NaCl) stressed rice plants. Osmotic stress tolerant rice genotype Shabhagidhan (SD) and high yielding yet osmotic and salinity stress sensitive genotype Pusa sugandh-5 (PS5) were evaluated. Salinity stress was given to plants during panicle emergence and flag leaves was collected after 1d, 3d 5d, 7d, 9d,12d and 15d after anthesis. Reproductive stage salinity stress resulted in decrease of membrane stability, relative water content and osmotic potential of rice plants. Reproductive stage salinity stress decreased the expression of nitrate reductase (OsNIA), nitrite reductase (OsNiR), Glutamine synthetase (OsGLN1.1, OsGLN1.2, OsGLN2) and glutamate synthase/GOGAT (OsFd-GOGAT, OsNADH-GOGAT) in flag leaves. In response to stress, SD showed better stress tolerance than PS5 in terms of higher yield stability. Variety SD showed higher leaf nitrate and ammonium content and maintained comparatively higher nitrate and ammonia metabolism enzyme activity than PS5. Salinity stress upregulated the activity of glutamate dehydrogenase enzyme and indirectly contributed to the higher proline content and maintenance of favourable osmotic potential in SD. Expression of GS2 which has role in photo respiratory ammonia assimilation was upregulated by salinity stress in PS5 in comparison to SD. Rice genotype showing better induction of nitrogen assimilatory genes will be more tolerant to reproductive stage salinity stress.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ompal Singh Rajput
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Santosh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Khan MIR, Khan NA, Jahan B, Goyal V, Hamid J, Khan S, Iqbal N, Alamri S, Siddiqui MH. Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:152-161. [PMID: 33176068 DOI: 10.1111/plb.13211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 05/21/2023]
Abstract
The interaction of mineral nutrients with metals/metalloids and signalling molecules is well known. In the present study, we investigated the effect of phosphorus (P) in mitigation of arsenic (As) stress in mustard (Brassica juncea L.). The study was conducted to investigate potential of 30 mg P·kg-1 soil P supplement (diammonium phosphate) to cope up with the adverse effects of As stress (24 mg As·kg-1 soil) in mustard plants Supplementation of P influenced nitric oxide (NO) generation, which up-regulated proline metabolism, ascorbate-glutathione system and glyoxalase system and alleviated the effects of on photosynthesis and growth. Arsenic stress generated ROS and methylglyoxal content was scavenged through P-mediated NO, and reduced As translocation from roots to leaves. The involvement of NO under P-mediated alleviation of As stress was substantiated with the use of cPTIO (NO biosynthesis inhibitor) and SNP (NO inducer). The reversal of P effects on photosynthesis under As stress with the use of cPTIO emphasized the role of P-mediated NO in mitigation of As stress and protection of photosynthesis The results suggested that P reversed As-induced oxidative stress by modulation of NO formation, which regulated antioxidant machinery. Thus, P-induced regulatory interaction between NO and reversal of As-induced oxidative stress for the protection of photosynthesis may be suggested for sustainable crops.
Collapse
Affiliation(s)
- M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - N A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - B Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - V Goyal
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - J Hamid
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - S Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - N Iqbal
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - S Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Conversa G, Bonasia A, Lazzizera C, La Rotonda P, Elia A. Reduction of Nitrate Content in Baby-Leaf Lettuce and Cichorium endivia Through the Soilless Cultivation System, Electrical Conductivity and Management of Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2021; 12:645671. [PMID: 33995445 DOI: 10.3390/agronomy11061220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
Soilless cultivation systems are efficient tools to control nitrates by managing nutrient solution (NS) salinity and nitrogen availability, however, these nitrate-lowering strategies require appropriate calibration based on species/genotype-specific responses interacting with climate and growing conditions. Three experiments were carried out on lettuce and Cichorium endivia grown in ebb-and-flow (EF) and floating (FL) systems at two levels of NS salinity (EC = 2.5 and 3.5 dS m-1) (EC2.5, EC3.5, respectively) under autumn and early-spring (lettuce) and winter and late-spring conditions (C. endivia). Nitrogen deprivation (NS withdrawal a few days before the harvest) was tested at EC2.5, in the autumn and winter cycles. The EF-system caused an increase in salinity in the substrate where roots mainly develop so it mimicked the effect of the EC3.5 treatment. In the winter-grown lettuce, the EF-system or EC3.5 treatment was effective in reducing the nitrate level without effects on yield, with the EF baby-leaf showing an improved quality (color, dry matter, chlorophylls, carotenoid, vitamin C, phenol). In both seasons, the EF/EC3.5 treatment resulted in a decline in productivity, despite a further reduction in nitrate content and a rise in product quality occurring. This response was strictly linked to the increasing salt-stress loaded by the EC3.5/EF as highlighted by the concurrent Cl- accumulation. In early-spring, the FL/EC3.5 combination may represent a trade-off between yield, nitrate content and product quality. In contrast, in winter-grown endive/escarole the EC3.5, EF and EC3.5/EF reduced the nitrate level with no effect on yield, product quality or Cl- uptake, thus proving them to be more salt-tolerant than lettuce. High temperatures during the late-spring cycle promoted nitrate and Cl- uptake, overcoming the nitrate-controlling effect of salinity charged by the EF system or EC3.5. The nitrate level decreased after 3 day-long (lettuce) or 6 day-long (C. endivia) NS withdrawal. In C. endivia and EF-grown lettuce, it provoked a decrease in yield, but a concurrent improvement in baby-leaf appearance and nutritional quality. More insights are needed to fine-tune the duration of the NS removal taking into account the soilless system used and species-specific characteristics.
Collapse
Affiliation(s)
- Giulia Conversa
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Anna Bonasia
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Corrado Lazzizera
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Paolo La Rotonda
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| | - Antonio Elia
- Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
27
|
Kobayashi W, Kobayashi T, Takahashi A, Kumakura K, Matsuoka H. Metabolism of glutamic acid to alanine, proline, and γ-aminobutyric acid during takuan-zuke processing of radish root. J Food Sci 2021; 86:563-570. [PMID: 33438215 DOI: 10.1111/1750-3841.15567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
Takuan-zuke is a traditional Japanese fermented pickle, prepared by dehydration of radish root (daikon) by salt-pressing or sun-drying followed by aging with salt. We previously reported that alanine, proline, and γ-aminobutyric acid (GABA) accumulate during daikon dehydration, whereas the level of glutamic acid, their precursor, decreases. We have also reported that dehydration and salt-aging markedly influence the dynamics of free amino acids. In this study, we quantitatively analyzed free amino acid levels, enzyme activity, and gene expression to characterize takuan-zuke amino acid metabolism. Enzyme activities related to alanine, proline, GABA, and glutamic acid metabolism were sustained during dehydration. Moreover, genes encoding alanine, proline, and GABA synthases (ALT1, P5CS1, and GAD4) were significantly upregulated during dehydration. These effects may represent cellular stress responses to the dehydration process. The biological response of daikon contributes to the healthy functional aspects that characterize takuan-zuke. These findings could guide the selection of suitable vegetable varieties to produce pickled vegetables with health-promoting properties. PRACTICAL APPLICATION: The fermented pickle takuan-zuke, prepared by dehydration of radish root (daikon), accumulates amino acids, such as alanine, proline, and GABA, during preparation that provide taste and health benefits. In this study, the aforementioned amino acids were found to accumulate because of the stress response of daikon during the dehydration process and not because of the action of microorganisms during fermentation. Takuan-zuke processing is a method for improving the nutrition of daikon.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Taito Kobayashi
- Department of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Asaka Takahashi
- Faculty of Nutritional Sciences, Tohto University, 4-2-7 Kamishiba-cho, Fukaya-shi, Saitama, 366-0052, Japan
| | - Kei Kumakura
- Department of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Hiroki Matsuoka
- Department of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| |
Collapse
|
28
|
Conversa G, Bonasia A, Lazzizera C, La Rotonda P, Elia A. Reduction of Nitrate Content in Baby-Leaf Lettuce and Cichorium endivia Through the Soilless Cultivation System, Electrical Conductivity and Management of Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2021; 12:645671. [PMID: 33995445 PMCID: PMC8117335 DOI: 10.3389/fpls.2021.645671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 05/03/2023]
Abstract
Soilless cultivation systems are efficient tools to control nitrates by managing nutrient solution (NS) salinity and nitrogen availability, however, these nitrate-lowering strategies require appropriate calibration based on species/genotype-specific responses interacting with climate and growing conditions. Three experiments were carried out on lettuce and Cichorium endivia grown in ebb-and-flow (EF) and floating (FL) systems at two levels of NS salinity (EC = 2.5 and 3.5 dS m-1) (EC2.5, EC3.5, respectively) under autumn and early-spring (lettuce) and winter and late-spring conditions (C. endivia). Nitrogen deprivation (NS withdrawal a few days before the harvest) was tested at EC2.5, in the autumn and winter cycles. The EF-system caused an increase in salinity in the substrate where roots mainly develop so it mimicked the effect of the EC3.5 treatment. In the winter-grown lettuce, the EF-system or EC3.5 treatment was effective in reducing the nitrate level without effects on yield, with the EF baby-leaf showing an improved quality (color, dry matter, chlorophylls, carotenoid, vitamin C, phenol). In both seasons, the EF/EC3.5 treatment resulted in a decline in productivity, despite a further reduction in nitrate content and a rise in product quality occurring. This response was strictly linked to the increasing salt-stress loaded by the EC3.5/EF as highlighted by the concurrent Cl- accumulation. In early-spring, the FL/EC3.5 combination may represent a trade-off between yield, nitrate content and product quality. In contrast, in winter-grown endive/escarole the EC3.5, EF and EC3.5/EF reduced the nitrate level with no effect on yield, product quality or Cl- uptake, thus proving them to be more salt-tolerant than lettuce. High temperatures during the late-spring cycle promoted nitrate and Cl- uptake, overcoming the nitrate-controlling effect of salinity charged by the EF system or EC3.5. The nitrate level decreased after 3 day-long (lettuce) or 6 day-long (C. endivia) NS withdrawal. In C. endivia and EF-grown lettuce, it provoked a decrease in yield, but a concurrent improvement in baby-leaf appearance and nutritional quality. More insights are needed to fine-tune the duration of the NS removal taking into account the soilless system used and species-specific characteristics.
Collapse
|
29
|
Niron H, Barlas N, Salih B, Türet M. Comparative Transcriptome, Metabolome, and Ionome Analysis of Two Contrasting Common Bean Genotypes in Saline Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:599501. [PMID: 33362832 PMCID: PMC7758407 DOI: 10.3389/fpls.2020.599501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 05/31/2023]
Abstract
Soil salinity is a major abiotic stress factor that limits agricultural productivity worldwide, and this problem is expected to grow in the future. Common bean is an important protein source in developing countries however highly susceptible to salt stress. To understand the underlying mechanism of salt stress responses, transcriptomics, metabolomics, and ion content analysis were performed on both salt-tolerant and susceptible common bean genotypes in saline conditions. Transcriptomics has demonstrated increased photosynthesis in saline conditions for tolerant genotype while the susceptible genotype acted in contrast. Transcriptome also displayed active carbon and amino-acid metabolism for the tolerant genotype. Analysis of metabolites with GC-MS demonstrated the boosted carbohydrate metabolism in the tolerant genotype with increased sugar content as well as better amino-acid metabolism. Accumulation of lysine, valine, and isoleucine in the roots of the susceptible genotype suggested a halted stress response. According to ion content comparison, the tolerant genotype managed to block accumulation of Na+ in the leaves while accumulating significantly less Na+ in the roots compared to susceptible genotype. K+ levels increased in the leaves of both genotype and the roots of the susceptible one but dropped in the roots of the tolerant genotype. Additionally, Zn+2 and Mn+2 levels were dropped in the tolerant roots, while Mo+2 levels were significantly higher in all tissues in both control and saline conditions for tolerant genotype. The results of the presented study have demonstrated the differences in contrasting genotypes and thus provide valuable information on the pivotal molecular mechanisms underlying salt tolerance.
Collapse
Affiliation(s)
- Harun Niron
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Nazire Barlas
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Müge Türet
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| |
Collapse
|
30
|
Singh S, Mohan Prasad S, Pratap Singh V. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122607. [PMID: 32768852 DOI: 10.1016/j.jhazmat.2020.122607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
In recent years, nutrient management has gained much attention for mitigating metal stress. But, role of nutrients like calcium (Ca) and sulfur (S) in mitigating Cr(VI) toxicity along with their mechanism of action are still limited. Therefore, the present study was performed to explore role of Ca and S in ameliorating Cr(VI) toxicity in 21 days old seedlings of Solanum lycopersicum L. and Solanum melongena L. Chromium (VI) reduced tolerance index and altered root traits due to greater Cr accumulation in the cell wall and cellular organelles due to down-regulation in thiols and phytochelatins that lead to alterations in photosynthesis. However, Ca or S stimulated vacuolar sequestration of Cr(VI) and reduced its uptake at the cell wall. This was coincided with up-regulation in glutathione-S-transferase activity, and amounts of thiols and phytochelatins. Cr(VI) caused oxidative stress together with up-regulation in superoxide dismutase and catalase, and proline metabolism while Ca and S reversed these effects. Chromium (VI) inhibited nitrate reductase activity while Ca and S reversed this response. NG-nitro-l-arginine methyl ester augmented Cr(VI) toxicity but sodium nitroprusside (SNP) mitigated Cr(VI) toxicity. Overall results show that Ca and S both are able in ameliorating Cr(VI) toxicity and require nitric oxide for this task.
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
31
|
Miranda-Apodaca J, Agirresarobe A, Martínez-Goñi XS, Yoldi-Achalandabaso A, Pérez-López U. N metabolism performance in Chenopodium quinoa subjected to drought or salt stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:725-734. [PMID: 32862022 DOI: 10.1016/j.plaphy.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 05/23/2023]
Abstract
Currently it is estimated that the 20% of total cultivated land is affected by salt. Besides, drought events will increase worldwide. These factors are affecting plant growth and crop production compromising food security. Within this context, quinoa (Chenopodium quinoa) is becoming an alternative pseudocereal for food supply due to its capacity to grow under harsh environmental conditions. Besides, it is being proposed as key model species to study the physiological processes that permit this tolerance, although how N metabolism responds has been barely studied. This paper addresses, on one hand, the response of quinoa's N metabolism (N uptake, translocation, reduction and assimilation) under the forthcoming climatic conditions and, on the other hand, the comparison of the effects of both stresses when plants have similar relative water content and photosynthetic rates. Under mild salt stress (120 and 240 mM NaCl) N assimilation is not affected, while the N uptake is favored. Under severe salt stress (500 mM NaCl), N uptake is reduced, decreasing leaf nitrate and protein concentration; nevertheless, leaf free amino acids are maintained -to perform osmotic adjustment-. N uptake rate is more affected under drought than under severe salt; furthermore, under severe salt stress, quinoa allocates more nitrogen to roots to finely regulate NO3- and Cl- uptake, while under drought it allocates more to leaves to ensure photosynthesis. These results indicate that quinoa's N metabolism is tolerant to drought and salt stress, although the strategies of this species for coping with the aforementioned stresses are different.
Collapse
Affiliation(s)
- J Miranda-Apodaca
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
| | - A Agirresarobe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
| | - X S Martínez-Goñi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
| | - A Yoldi-Achalandabaso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
| | - U Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
| |
Collapse
|
32
|
Zhang Y, Kaiser E, Marcelis LFM, Yang Q, Li T. Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass. PLANT, CELL & ENVIRONMENT 2020; 43:2192-2206. [PMID: 32463133 DOI: 10.1111/pce.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m-2 s-1 ) or FL (5-650 μmol m-2 s-1 ), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
33
|
Eroğlu ÇG, Cabral C, Ravnskov S, Bak Topbjerg H, Wollenweber B. Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:863-871. [PMID: 32298522 DOI: 10.1111/plb.13123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 05/25/2023]
Abstract
Soil salinity severely affects and constrains crop production worldwide. Salinity causes osmotic and ionic stress, inhibiting gas exchange and photosynthesis, ultimately impairing plant growth and development. Arbuscular mycorrhiza (AM) have been shown to maintain light and carbon use efficiency under stress, possibly providing a tool to improve salinity tolerance of the host plants. Thus, it was hypothesized that AM will contribute to improved growth and yield under stress conditions. Wheat plants (Triticum aestivum L.) were grown with (AMF+) or without (AMF-) arbuscular mycorrhizal fungi (AMF) inoculation. Plants were subjected to salinity stress (200 mm NaCl) either at pre- or post-anthesis or at both stages. Growth and yield components, leaf chlorophyll content as well as gas exchange parameters and AMF colonization were analysed. AM plants exhibited a higher rate of net photosynthesis and stomatal conductance and lower intrinsic water use efficiency. Furthermore, AM wheat plants subjected to salinity stress at both pre-anthesis and post-anthesis maintained higher grain yield than non-AM salinity-stressed plants. These results suggest that AMF inoculation mitigates the negative effects of salinity stress by influencing carbon use efficiency and maintaining higher grain yield under stress.
Collapse
Affiliation(s)
- Ç G Eroğlu
- Department of Agroecology, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
- Department of Genetics and Bioengineering, Yeditepe University, İstanbul, Turkey
| | - C Cabral
- Department of Agroecology, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| | - S Ravnskov
- Department of Agroecology, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| | - H Bak Topbjerg
- Department of Agroecology, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| | - B Wollenweber
- Department of Agroecology, Aarhus University, Research Centre Flakkebjerg, Slagelse, Denmark
| |
Collapse
|
34
|
Meng Y, Yin Q, Yan Z, Wang Y, Niu J, Zhang J, Fan K. Exogenous Silicon Enhanced Salt Resistance by Maintaining K +/Na + Homeostasis and Antioxidant Performance in Alfalfa Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:1183. [PMID: 32983188 PMCID: PMC7479291 DOI: 10.3389/fpls.2020.01183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Silicon (Si) has been known to enhance salt resistance in plants. In this experiment, 4-weeks-old alfalfa seedlings were exposed to different NaCl concentrations (0-200 mM) with or without 2 mM Si for two weeks. The results showed that NaCl-stressed alfalfa seedlings showed a decrease in growth performance, such as stem extension rate, predawn leaf water potential (LWP) and the chlorophyll content, potassium (K+) concentration, as well as the ratio of potassium/sodium ion (K+/Na+). In contrast, NaCl-stressed alfalfa seedlings increased leaf Na+ concentration and the malondialdehyde (MDA) level, as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in alfalfa leaves. Besides, exogenous Si application enhanced photosynthetic parameters of NaCl-stressed alfalfa seedlings, which was accompanied by the improvement in predawn LWP, level of chlorophyll content, and water use efficiency (WUE). The Si-treated plants enhanced salinity tolerance by limiting Na+ accumulation while maintaining K+ concentration in leaves. It also established K+/Na+ homeostasis by increasing K+/Na+ radio to protect the leaves from Na+ toxicity and thereby maintained higher chlorophyll retention. Simultaneously, Si-treated plants showed higher antioxidant activities and decreased MDA content under NaCl stress. Our study concluded that Si application enhanced salt tolerance of alfalfa through improving the leaves photosynthesis, enhancing antioxidant performance and maintaining K+/Na+ homeostasis in leaves. Our data further indicated exogenous Si application could be effectively manipulated for improving salt resistance of alfalfa grown in saline soil.
Collapse
Affiliation(s)
- Yuanfa Meng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qiang Yin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhijian Yan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yuqing Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jianming Niu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Kai Fan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
35
|
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070938] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
Collapse
|
36
|
Fuertes-Mendizábal T, Bastías EI, González-Murua C, González-Moro MB. Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea. PLANTS (BASEL, SWITZERLAND) 2020; 9:E322. [PMID: 32143321 PMCID: PMC7154838 DOI: 10.3390/plants9030322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 01/14/2023]
Abstract
The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. The increment of major amino acids alanine and serine would indicate a photoprotective role of photorespiration under low-salinity conditions, thus the inhibition of nitrogen assimilation pathway (NR and GS activities) occurred only at high salinity. The role of cytosolic GS regarding the proline accumulation is discussed.
Collapse
Affiliation(s)
- Teresa Fuertes-Mendizábal
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; (T.F.-M.); (C.G.-M.)
| | - Elizabeth Irica Bastías
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Carmen González-Murua
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; (T.F.-M.); (C.G.-M.)
| | - Mª Begoña González-Moro
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain; (T.F.-M.); (C.G.-M.)
| |
Collapse
|
37
|
Lopez-Delacalle M, Camejo DM, García-Martí M, Nortes PA, Nieves-Cordones M, Martínez V, Rubio F, Mittler R, Rivero RM. Using Tomato Recombinant Lines to Improve Plant Tolerance to Stress Combination Through a More Efficient Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 10:1702. [PMID: 32038679 PMCID: PMC6983915 DOI: 10.3389/fpls.2019.01702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
The development of plant varieties with a better nitrogen use efficiency (NUE) is a means for modern agriculture to decrease environmental pollution due to an excess of nitrate and to maintain a sufficient net income. However, the optimum environmental conditions for agriculture will tend to be more adverse in the coming years, with increases in temperatures, water scarcity, and salinity being the most important productivity constrains for plants. NUE is inherently a complex trait, as each step, including N uptake, translocation, assimilation, and remobilization, is governed by multiple interacting genetic and environmental factors. In this study, two recombinant inbred lines (RIL-66 and RIL-76) from a cross between Solanum lycopersicum and Solanum pimpinellifoilum with different degree of tolerance to the combination of salinity and heat were subjected to a physiological, ionomic, amino acid profile, and gene expression study to better understand how nitrogen metabolism is affected in tolerant plants as compared to sensitive ones. The ionomics results showed a different profile between the two RILs, with K+ and Mg2+ being significantly lower in RIL-66 (low tolerant) as compared to RIL-76 (high tolerant) under salinity and heat combination. No differences were shown between the two RILs in N total content; however, N-NO3 - was significantly higher in RIL-66, whereas N-Norg was lower as compared to the other genotype, which could be correlated with its tolerance to the combination of salinity and heat. Total proteins and total amino acid concentration were significantly higher in RIL-76 as compared to the sensitive recombinant line under these conditions. Glutamate, but more importantly glutamine, was also highly synthesized and accumulated in RIL-76 under the combination of salinity and heat, which was in agreement with the upregulation of the nitrogen metabolism related transcripts studied (SlNR, SlNiR, SlGDH, SlGLT1, SlNRT1.2, SlAMT1, and SlAMT2). This study emphasized the importance of studying abiotic stress in combination and how recombinant material with different degrees of tolerance can be highly important for the improvement of nitrogen use efficiency in horticultural plants through the targeting of N-related markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron Mittler
- The Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Rosa M. Rivero
- Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
38
|
Ullah A, Li M, Noor J, Tariq A, Liu Y, Shi L. Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ 2019; 7:e8191. [PMID: 31844583 PMCID: PMC6907091 DOI: 10.7717/peerj.8191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Carbon and nitrogen metabolism need to be highly regulated to achieve cell acclimation to changing environmental conditions. The understanding of physio-biochemical responses of crops to salinity stress could help to stabilize their performance and yield. In this study we have analyzed the roles of photosynthesis, ion physiology and nitrate assimilation toward saline/alkaline stress acclimation in wild and cultivated soybean seedlings. METHODS Growth and photosynthetic parameters, ion concentrations and the activity of enzymes involved in nitrogen assimilation were determined in seedlings of one wild and one cultivated soybean accession subjected to saline or alkaline stresses. RESULTS Both saline and alkaline stresses had a negative impact on the growth and metabolism of both wild and cultivated soybean.The growth, photosynthesis, and gas exchange parameters showed a significant decrease in response to increasing salt concentration. Additionally, a significant increase in root Na+ and Cl- concentration was observed. However, photosynthetic performance and ion regulation were higher in wild than in cultivated soybean under saline and alkaline stresses. Nitrate reductase (NR) and the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle showed a significant decrease in leaves of both genotypes. The reduction in the GS/GOGAT cycle was accompanied by high aminating glutamate dehydrogenase (NADH-glutamate dehydrogenase) activity, indicating the assimilation of high levels of NH4 +. A significant increase in the activities of aminating and deaminating enzymes, including glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT), was observed, probably due to the high glutamate demand and maintenance of the Krebs cycle to correct the C: N status. CONCLUSIONS Cultivated soybean was much more stress sensitive than was the wild soybean. The decrease in growth, photosynthesis, ion regulation and nitrogen assimilation enzymes was greater in cultivated soybean than in wild soybean. The impact of alkaline stress was more pronounced than that of saline stress. Wild soybean regulated the physiological mechanisms of photosynthesis and nitrate assimilation more effectively than did cultivated soybean. The present findings provide a theoretical basis with which to screen and utilize wild and cultivated soybean germplasm for breeding new stress-tolerant soybean.
Collapse
Affiliation(s)
- Abd Ullah
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Mingxia Li
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
39
|
Sarabi B, Fresneau C, Ghaderi N, Bolandnazar S, Streb P, Badeck FW, Citerne S, Tangama M, David A, Ghashghaie J. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:1-19. [PMID: 31125807 DOI: 10.1016/j.plaphy.2019.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 05/11/2023]
Abstract
Salinity is one of the most severe environmental stresses limiting agricultural crop production worldwide. Photosynthesis is one of the main biochemical processes getting affected by such stress conditions. Here we investigated the stomatal and non-stomatal factors during photosynthesis in two Iranian melon genotypes "Ghobadlu" and "Suski-e-Sabz", as well as the "Galia" F1 cultivar, with an insight into better understanding the physiological mechanisms involved in the response of melon plants to increasing salinity. After plants were established in the greenhouse, they were supplied with nutrient solutions containing three salinity levels (0, 50, or 100 mM NaCl) for 15 and 30 days. With increasing salinity, almost all of the measured traits (e.g. stomatal conductance, transpiration rate, internal to ambient CO2 concentration ratio (Ci/Ca), Rubisco and nitrate reductase activity, carbon isotope discrimination (Δ13C), chlorophyll content, relative water content (RWC), etc.) significantly decreased after 15 and 30 days of treatments. In contrast, the overall mean of water use efficiency (intrinsic and instantaneous WUE), leaf abscisic acid (ABA) and flavonol contents, as well as osmotic potential (ΨS), all increased remarkably with increasing stress, across all genotypes. In addition, notable correlations were found between Δ13C and leaf gas exchange parameters as well as most of the measured traits (e.g. leaf area, biomass, RWC, ΨS, etc.), encouraging the possibility of using Δ13C as an important proxy for indirect selection of melon genotypes with higher photosynthetic capacity and higher salinity tolerance. The overall results suggest that both stomatal and non-stomatal limitations play an important role in reduced photosynthesis rate in melon genotypes studied under NaCl stress. This conclusion is supported by the concurrently increased resistance to CO2 diffusion, and lower Rubisco activity under NaCl treatments at the two sampling dates, and this was revealed by the appearance of lower Ci/Ca ratios and lower Δ13C in the leaves of salt-treated plants.
Collapse
Affiliation(s)
- Behrooz Sarabi
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Chantal Fresneau
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Nasser Ghaderi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Sahebali Bolandnazar
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Peter Streb
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Franz-Werner Badeck
- CREA-GPG, Consiglio per La Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA), Genomics Research Centre (GPG), Fiorenzuola D'Arda, Italy
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Maëva Tangama
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Andoniaina David
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Jaleh Ghashghaie
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
40
|
Liu X, Zhu H, Wang L, Bi S, Zhang Z, Meng S, Zhang Y, Wang H, Song C, Ma F. The effects of magnetic treatment on nitrogen absorption and distribution in seedlings of Populus × euramericana 'Neva' under NaCl stress. Sci Rep 2019; 9:10025. [PMID: 31296890 PMCID: PMC6624201 DOI: 10.1038/s41598-019-45719-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
A potted experiment with Populus × euramericana ‘Neva’ was carried out to assess whether there are positive effects of magnetic treatment of saline water (MTSW) on nitrogen metabolism under controlled conditions in a greenhouse. Growth properties, nitrogen contents, enzyme activities and metabolite concentrations were determined based on field experiments and laboratory analysis after a 30-day treatment. The results were as follows: (1) Biomass accumulation, root morphological properties and total nitrogen content were improved by MTSW. (2) Magnetization led to a greater increase in nitrate-nitrogen (NO3−-N) content in roots than in leaves, accompanied by greater NO3− efflux and activated nitrate reductase. (3) MTSW led to a higher ammonium-nitrogen (NH4+-N) content and greater uptake of net NH4+ in the leaves than that in the roots. (4) Magnetization stimulated glutamine synthase, glutamate dehydrogenase and glutamate synthase activities, whereas the concentrations of glutathione and oxidized glutathione were increased in leaves but decreased in roots, and the total glutathione content was increased. Overall, these results indicated some beneficial impacts of MTSW on nitrogen translocation under field conditions, especially for equilibrating the distribution of NO3−-N and NH4+-N. Moreover, these findings confirmed the potential of using low-quality water for agriculture.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hong Zhu
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Lu Wang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Yichun Research Institute of Forestry Science, Yichun, 153000, Heilongjiang, China
| | - Sisheng Bi
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhihao Zhang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shiyuan Meng
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying Zhang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Huatian Wang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chengdong Song
- Taishan Research Institute of Forestry Science, Taian, 271000, Shandong, China
| | - Fengyun Ma
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China. .,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
41
|
Lv R, Han L, Xiao B, Xiao C, Yang Z, Wang H, Wang H, Liu B, Yang C. An extracted tetraploid wheat harbouring the BBAA component of common wheat shows anomalous shikimate and sucrose metabolism. BMC PLANT BIOLOGY 2019; 19:188. [PMID: 31064324 PMCID: PMC6505309 DOI: 10.1186/s12870-019-1796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/23/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND The BBAA subgenomes of hexaploid common wheat are structurally intact, which makes it possible to extract the BBAA subgenomes to constitute a novel plant type, namely, extracted tetraploid wheat (ETW). ETW displays multiple abnormal phenotypes such as massively reduced biomass and abnormal spike development, compared to extant tetraploid wheat with a BBAA genome. The genetic, biochemical and physiological basis underlying the phenotypic abnormality of ETW remains unknown. RESULTS To explore the biochemical basis of these phenotypic abnormalities, we analysed the metabolomic and proteomic profiles and quantified 46 physiological traits of ETW in comparison with its common wheat donor (genome BBAADD), and a durum tetraploid wheat cultivar (genome BBAA). Among these three types of wheat, ETW showed a saliently different pattern of nutrient accumulation and seed quality, markedly lower concentrations of many metabolites involved in carbohydrate metabolism, and higher concentrations of many metabolites related to amino acids. Among the metabolites, changes in shikimate and sucrose were the most conspicuous. Higher levels of shikimate and lower levels of sucrose influence many metabolic processes including carbohydrate and amino acid metabolism, which may contribute to the phenotypic abnormalities. Gene expression assay showed downregulation of a shikimate degradation enzyme (5-enolpyruvylshikimate-3-phosphate synthase) coding gene and upregulation of several genes coding for the sucrose hydrolysis enzyme, which could explain the higher levels of shikimate and lower levels of sucrose, respectively. CONCLUSIONS Our results suggest that significant and irreversible biochemical changes have occurred in the BBAA subgenomes of common wheat during the course of its co-evolution with the DD subgenome at the hexaploid level.
Collapse
Affiliation(s)
- Ruili Lv
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Lei Han
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Binbin Xiao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Chaoxia Xiao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Zongze Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Hao Wang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Huan Wang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Bao Liu
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Chunwu Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
42
|
Ji Y, Li Q, Liu G, Selvaraj G, Zheng Z, Zou J, Wei Y. Roles of Cytosolic Glutamine Synthetases in Arabidopsis Development and Stress Responses. PLANT & CELL PHYSIOLOGY 2019; 60:657-671. [PMID: 30649517 DOI: 10.1093/pcp/pcy235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/05/2018] [Indexed: 05/14/2023]
Abstract
Glutamine (Gln) has as a central role in nitrogen (N) and carbon (C) metabolism. It is synthesized during assimilation of ammonium by cytosolic and plastidial glutamine synthetases (GS; EC 6.1.1.3). Arabidopsis thaliana has five cytosolic GS (GS1) encoding genes designated as GLN1;1-GLN1;5 and one plastidial GS (GS2) gene. In this report that concerns cytosolic GS, we show by analyzing single, double and triple mutants that single genes were dispensable for growth under laboratory conditions. However, loss of two or three GS1 isoforms impacted plant form, function and the capacity to tolerate abiotic stresses. The loss of GLN1;1, GLN1;2 and GLN1;3 resulted in a significant reduction of vegetative growth and seed size. In addition, we infer that GLN1;4 is essential for pollen viability but only in the absence of GLN1;1 and GLN1;3. Transcript profiling revealed that expression of GLN1;1, GLN1;2, GLN1;3 and GLN1;4 was repressed by salinity and cold stresses. Among all single gln1 mutants, growth of gln1;1 seedlings showed an enhanced sensitivity to the GS inhibitor phosphinothricin (PPT), as well as to cold and salinity treatments, suggesting a non-redundant role for GLN1;1. Furthermore, the increased sensitivity of gln1;1 mutants to methyl viologen was associated with an accelerated accumulation of reactive oxygen species (ROS) in the thylakoid of chloroplasts. Our data demonstrate, for the first time, an involvement of the cytosolic GS1 in modulating ROS homeostasis in chloroplasts. Collectively, the current study establishes a link between cytosolic Gln production and plant development, ROS production and stress tolerance.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Qiang Li
- College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Guosheng Liu
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Gopalan Selvaraj
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Zhifu Zheng
- College of Agricultural and Food Sciences, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Jitao Zou
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| |
Collapse
|
43
|
Naliwajski MR, Skłodowska M. The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress. PeerJ 2018; 6:e6043. [PMID: 30581664 PMCID: PMC6292378 DOI: 10.7717/peerj.6043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
The study examines the effect of acclimation on carbon and nitrogen metabolism in cucumber leaves subjected to moderate and severe NaCl stress. The levels of glucose, sucrose, NADH/NAD+-GDH, AspAT, AlaAT, NADP+-ICDH, G6PDH and 6GPDH activity were determined after 24 and 72 hour periods of salt stress in acclimated and non-acclimated plants. Although both groups of plants showed high Glc and Suc accumulation, they differed with regard to the range and time of accumulation. Acclimation to salinity decreased the activities of NADP+-ICDH and deaminating NAD+-GDH compared to controls; however, these enzymes, together with the other examined parameters, showed elevated values in the stressed plants. The acclimated plants showed higher G6PDH activity than the non-acclimated plants, whereas both groups demonstrated similar 6PGDH activity. The high activities of NADH-GDH, AlaAT and AspAT observed in the examined plants could be attributed to a high demand for glutamate. The observed changes may be required for the maintenance of correct TCA cycle activity, and acclimation appeared to positively influence these adaptive processes.
Collapse
Affiliation(s)
- Marcin Robert Naliwajski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maria Skłodowska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Singh R, Parihar P, Prasad SM. Sulfur and Calcium Simultaneously Regulate Photosynthetic Performance and Nitrogen Metabolism Status in As-Challenged Brassica juncea L. Seedlings. FRONTIERS IN PLANT SCIENCE 2018; 9:772. [PMID: 29971072 PMCID: PMC6018418 DOI: 10.3389/fpls.2018.00772] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 05/25/2023]
Abstract
In the present study, the role of sulfur (K2SO4: S; 60 mg S kg-1 sand) and/or calcium (CaCl2: Ca; 250 mg Ca kg-1 sand) applied alone as well as in combination on growth, photosynthetic performance, indices of chlorophyll a fluorescence, nitrogen metabolism, and protein and carbohydrate contents of Indian mustard (Brassica juncea L.) seedlings in the absence and presence of arsenic (Na2HAsO4.7H2O: As1; 15 mg As kg-1 sand and As2; 30 mg As kg-1 sand) stress was analyzed. Arsenic with its rising concentration negatively affected the fresh weight, root/shoot ratio, leaf area, photosynthetic pigments content, photosynthetic oxygen yield, and chlorophyll a fluorescence parameters: the O-J, J-I and I-P rise, QA- kinetic parameters, i.e., ΦP0, Ψ0, ΦE0, and PIABS, along with Fv/F0 and Area while increased the energy flux parameters, i.e., ABS/RC, TR0/RC, ET0/RC, and DI0/RC along with F0/Fv and Sm due to higher As/S and As/Ca ratio in test seedlings; however, exogenous application of S and Ca and their combined effect notably counteracted on As induced toxicity on growth and other important growth regulating processes. Moreover, inorganic nitrogen contents, i.e., nitrate (NO3-) and nitrite (NO2-) and the activities of nitrate assimilating enzymes, viz., nitrate reductase (NR) and nitrite reductase (NiR) and ammonia assimilating enzymes, viz., glutamine synthetase (GS) and glutamate synthase (GOGAT) along with protein and carbohydrate contents were severely affected with As toxicity; while under similar condition, ammonium (NH4+) content and glutamate dehydrogenase (GDH) activity in both root and leaves showed reverse trend. Furthermore, S and Ca supplementation alone and also in combination to As stressed seedlings ameliorated these parameters except NH4+ content and GDH activity, which showed an obvious reduction under similar conditions. These findings point out that exogenous application of S and/or Ca particularly S+Ca more favorably regulated the photosynthesis, contents of protein, carbohydrate and inorganic nitrogen, and the activities of nitrate and ammonia assimilating enzymes, which might be linked with the mitigation of As stress. Our results suggest that exogenous application of S+Ca more efficiently defends Brassica seedlings by declining As accumulation in root and shoot tissues and by maintaining the photosynthesis and nitrogen metabolism as well.
Collapse
Affiliation(s)
| | | | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| |
Collapse
|
45
|
Yang C, Yang Z, Zhao L, Sun F, Liu B. A newly formed hexaploid wheat exhibits immediate higher tolerance to nitrogen-deficiency than its parental lines. BMC PLANT BIOLOGY 2018; 18:113. [PMID: 29879900 PMCID: PMC5992729 DOI: 10.1186/s12870-018-1334-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/28/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND It is known that hexaploid common wheat (Triticum aestivum L.) has stronger adaptability to many stressful environments than its tetraploid wheat progenitor. However, the physiological basis and evolutionary course to acquire these enhanced adaptabilities by common wheat remain understudied. Here, we aimed to investigate whether and by what means tolerance to low-nitrogen manifested by common wheat may emerge immediately following allohexaploidization. RESULTS We compared traits related to nitrogen (N) metabolism in a synthetic allohexaploid wheat (neo-6×, BBAADD) mimicking natural common wheat, together with its tetraploid (BBAA, 4×) and diploid (DD, 2×) parents. We found that, under low nitrogen condition, neo-6× maintained largely normal photosynthesis, higher shoot N accumulation, and better N assimilation than its 4× and 2× parents. We showed that multiple mechanisms underlie the enhanced tolerance to N-deficiency in neo-6×. At morphological level, neo-6× has higher root/shoot ratio of biomass than its parents, which might be an adaptive growth strategy as more roots feed less shoots with N, thereby enabling higher N accumulation in the shoots. At electrophysiological level, H+ efflux in neo-6× is higher than in its 4× parent. A stronger H+ efflux may enable a higher N uptake capacity of neo-6×. At gene expression level, neo-6× displayed markedly higher expression levels of critical genes involved in N uptake than both of its 4× and 2× parents. CONCLUSIONS This study documents that allohexaploid wheat can attain immediate higher tolerance to N-deficiency compared with both of its 4× and 2× parents, and which was accomplished via multiple mechanisms.
Collapse
Affiliation(s)
- Chunwu Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Zongze Yang
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Long Zhao
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Fasheng Sun
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| | - Bao Liu
- Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
46
|
Qiao F, Zhang XM, Liu X, Chen J, Hu WJ, Liu TW, Liu JY, Zhu CQ, Ghoto K, Zhu XY, Zheng HL. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:238-247. [PMID: 29621720 DOI: 10.1016/j.plaphy.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 05/16/2023]
Abstract
Acid rain (AR) can induce great damages to plants and could be classified into different types according to the different SO42-/NO3- ratio. However, the mechanism of plants' responding to different types of AR has not been elucidated clearly. Here, we found that nitric-rich simulated AR (N-SiAR) induced less leaves injury as lower necrosis percentage, better physiological parameters and reduced oxidative damage in the leaves of N-SiAR treated Arabidopsis thaliana compared with sulfate and nitrate mixed (SN-SiAR) or sulfuric-rich (S-SiAR) simulated AR treated ones. Of these three types of SiAR, N-SiAR treated Arabidopsis maintained the highest of nitrogen (N) content, nitrate reductase (NR) and nitrite reductase (NiR) activity as well as N metabolism related genes expression level. Nitric oxide (NO) content showed that N-SiAR treated seedlings had a higher NO level compared to SN-SiAR or S-SiAR treated ones. A series of NO production and elimination related reagents and three NO production-related mutants were used to further confirm the role of NO in regulating acid rain resistance in N-SiAR treated Arabidopsis seedlings. Taken together, we concluded that an elevated N metabolism and enhanced NO production are involved in the tolerance to different types of AR in Arabidopsis.
Collapse
Affiliation(s)
- Fang Qiao
- School of Life Sciences, East China Normal University, Shanghai, 200241, PR China; Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xi-Min Zhang
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China; Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou 550001, PR China
| | - Xiang Liu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Juan Chen
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Jun Hu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ting-Wu Liu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ji-Yun Liu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chun-Quan Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Kabir Ghoto
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
47
|
Zhang F, Cheng M, Sun Z, Wang L, Zhou Q, Huang X. Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:524-532. [PMID: 28841504 DOI: 10.1016/j.envpol.2017.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Rare earth elements (REEs) are used in various fields, resulting in their accumulation in the environment. This accumulation has affected the survival and distribution of crops in various ways. Acid rain is a serious global environmental problem. The combined effects on crops from these two types of pollution have been reported, but the effects on crop root nitrogen assimilation are rarely known. To explore the impact of combined contamination from these two pollutants on crop nitrogen assimilation, the soybean seedlings were treated with simulated environmental pollution from acid rain and a representative rare earth ion, lanthanum ion (La3+), then the indexes related to plant nitrogen assimilation process in roots were determined. The results showed that combined treatment with pH 4.5 acid rain and 0.08 mM La3+ promoted nitrogen assimilation synergistically, while the other combined treatments all showed inhibitory effects. Moreover, acid rain aggravated the inhibitory effect of 1.20 or 0.40 mM La3+ on nitrogen assimilation in soybean seedling roots. Thus, the effects of acid rain and La3+ on crops depended on the combination levels of acid rain intensity and La3+ concentration. Acid rain increases the bioavailability of La3+, and the combined effects of these two pollutants were more serious than that of either pollutant alone. These results provide new evidence in favor of limiting overuse of REEs in agriculture. This work also provides a new framework for ecological risk assessment of combined acid rain and REEs pollution on soybean crops.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengzhu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Zhaoguo Sun
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
48
|
Liang Y, Zhu H, Bañuelos G, Yan B, Shutes B, Cheng X, Chen X. Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors. CHEMOSPHERE 2017; 187:52-61. [PMID: 28837857 DOI: 10.1016/j.chemosphere.2017.08.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
This study aims to evaluate how plant species, influent loads and salinity levels affect the removal of nutrients from saline wastewater using constructed wetlands (CWs). CWs planted with Canna indica showed the greatest removal percentages among the four tested species for nitrogen (N) (∼100%) at both low and high influent loads, and ∼100% and 93.8% for phosphorus (P) at low and high influent loads, respectively at an electrical conductivity (EC) of 7 mS/cm (25 °C). The influence of different salinity levels on plant assimilation of N and P varied with their respective concentrations; salinity (e.g., EC at 7, 10 and 15 mS/cm) even enhanced plant absorption of N and P under specific conditions. In conclusion, CWs planted with selected species can be used for the removal of N and P under a range of different salinity levels (e.g., EC at 7, 10 and 15 mS/cm, 25 °C).
Collapse
Affiliation(s)
- Yinxiu Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China.
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Science Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Brian Shutes
- Urban Pollution Research Centre, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Xianwei Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Xin Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| |
Collapse
|
49
|
Bonasia A, Lazzizera C, Elia A, Conversa G. Nutritional, Biophysical and Physiological Characteristics of Wild Rocket Genotypes As Affected by Soilless Cultivation System, Salinity Level of Nutrient Solution and Growing Period. FRONTIERS IN PLANT SCIENCE 2017; 8:300. [PMID: 28337211 PMCID: PMC5343037 DOI: 10.3389/fpls.2017.00300] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/20/2017] [Indexed: 05/20/2023]
Abstract
With the aim of defining the best management of nutrient solution (NS) in a soilless system for obtaining high quality baby-leaf rocket, the present study focuses on two wild rocket genotypes ("Nature" and "Naturelle"), grown in a greenhouse under two Southern Italy growing conditions-autumn-winter (AW) and winter-spring (WS)-using two soilless cultivation systems (SCS)-at two electrical conductivity values (EC) of NS. The SCSs used were the Floating System (FS) and Ebb and Flow System (EFS) and the EC values were 2.5 and 3.5 dS m-1 (EC2.5; EC3.5) for the AW cycle and 3.5 and 4.5 dS m-1 (EC3.5; EC4.5) for the WS cycle. The yield, bio-physical, physiological and nutritional characteristics were evaluated. Higher fresh (FY) (2.25 vs. 1.50 kg m-2) and dry (DY) (230.6 vs. 106.1 g m-2) weight yield, leaf firmness (dry matter, 104.3 vs. 83.2 g kg-1 FW; specific leaf area, 34.8 vs. 24.2 g cm-2) and antioxidant compounds (vitamin C, 239.0 vs. 152.7 mg kg-1 FW; total phenols, 997 vs. 450 mg GAE mg kg-1 FW; total glucosinulates-GLSs, 1,078.8 vs. 405.7 mg kg-1 DW; total antioxidant capacity-TAC, 11,534 vs. 8,637 μmol eq trolox kg-1 FW) and lower nitrates (1,470 vs. 3,460 mg kg-1 FW) were obtained under WS conditions. The seasonal differences were evident on the GLS profile: some aliphatic GLSs (gluconapoleiferin, glucobrassicanapin) and indolic 4-OH-glucobrassicin were only expressed in WS conditions, while indolic glucobrassicin was only detected in the AW period. Compared with EFS, FS improved leaf firmness, visual quality, antioxidant content (TAC, +11.6%) and reduced nitrate leaf accumulation (-37%). "Naturelle" performed better than "Nature" in terms of yield, visual quality and nutritional profile, with differences more evident under less favorable climatic conditions and when the cultivars were grown in FS. Compared to EC2.5, the EC3.5 treatment did not affect DY while enhancing firmness, visual quality, and antioxidant compounds (TAC, +8%), and reducing the nitrate content (-47%). The EC4.5 treatment reduced FY and DY and the antioxidant content. Despite seasonal climatic condition variability, FS and the moderate salinity level of NS (3.5 dS m-1) can be suggested as optimum.
Collapse
Affiliation(s)
| | | | - Antonio Elia
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | | |
Collapse
|
50
|
Ren B, Dong S, Zhao B, Liu P, Zhang J. Responses of Nitrogen Metabolism, Uptake and Translocation of Maize to Waterlogging at Different Growth Stages. FRONTIERS IN PLANT SCIENCE 2017; 8:1216. [PMID: 28744299 PMCID: PMC5504228 DOI: 10.3389/fpls.2017.01216] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/27/2017] [Indexed: 05/21/2023]
Abstract
We performed a field experiment using the maize hybrids DengHai605 (DH605) and ZhengDan958 (ZD958) to study nitrogen uptake and translocation, key enzyme activities of nitrogen metabolism in response to waterlogging at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Results showed that N accumulation amount was significantly reduced after waterlogging, most greatly in the V3 waterlogging treatment (V3-W), with decreases of 41 and 37% in DH605 and ZD958, respectively. N accumulation in each organ and N allocation proportions in grains decreased significantly after waterlogging, whereas N allocation proportions increased in stem and leaf. The reduction in stem and leaf N accumulation after waterlogging was mainly caused by a decrease in dry matter accumulation, and a reduction in N translocation from stems and leaves to grains after waterlogging. Additionally, waterlogging decreased the activity of key N metabolism enzymes (nitrate reductase, glutamine, glutamate synthase, and glutamate dehydrogenase), and the most significant reduction in V3-W with a decrease of 59, 46, 35, and 26% for DH605, and 60, 53, 31, and 25 for ZD958, respectively. Waterlogging disrupted N metabolism, hindered N absorption and transportation, and decreased maize yield.
Collapse
|