1
|
Krysa M, Susniak K, Kubas A, Kidaj D, Sroka-Bartnicka A. MALDI MSI and Raman Spectroscopy Application in the Analysis of the Structural Components and Flavonoids in Brassica napus Stem. Metabolites 2023; 13:687. [PMID: 37367844 DOI: 10.3390/metabo13060687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Nod factors among the signaling molecules produced by rhizobia in response to flavonoids to induce root nodule formation in the legumes. It is, however, hypothesized that they might increase the yield and positively impact the growth of non-legumes. To evaluate this statement, rapeseed treated with Nod factor-based biofertilizers were cultivated, their stems was collected, and the metabolic changes were investigated using Raman spectroscopy and MALDI mass spectrometry imaging. Biofertilizer proved to increase the concentration of lignin in the cortex, as well as hemicellulose, pectin, and cellulose in the pith. Moreover, the concentration of quercetin derivatives and kaempferol derivatives increased, while the concentration of isorhamnetin dihexoside decreased. The increase in the concentration of the structural components in the stem might therefore increase the lodging resistance, while the increase in concentration of the flavonoids might increase their resistance to fungal infection and herbivorous insects.
Collapse
Affiliation(s)
- Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedicine, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Katarzyna Susniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrianna Kubas
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedicine, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| | - Dominika Kidaj
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedicine, Medical University of Lublin, Chodźki 4a Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Lucas JA, García-Villaraco A, Ramos-Solano B, Akdi K, Gutierrez-Mañero FJ. Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. PLANTS 2022; 11:plants11091246. [PMID: 35567247 PMCID: PMC9101198 DOI: 10.3390/plants11091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022]
Abstract
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants, increasing reactive oxygen species (ROS) production. To overcome ROS burst, plants have antioxidant mechanisms related to ROS scavenging which can be improved by elicitation with biological agents or derived molecules (elicitors), as they can trigger a physiological alert state called “priming”. This work describes the effects of lipo-chitooligosaccharides (LCOs) treatment applied to tomato plants under UV-B stress. The LCOs used in the study are produced by three species of the genus Ensifer (formerly Sinorhizobium) (SinCEU-1, SinCEU-2, and SinCEU-3) were assayed on tomato plants under UV-B stress. LCOs were able to significantly increase most of the enzymatic activities related to ROS scavenging while non-enzymatic antioxidants were not modified. This response was associated with a lower oxidative stress, according to malondialdehyde (MDA) levels and the higher antioxidant capacity of the plants. Furthermore, the photosynthetic efficiency of LCOs-treated plants indicated a better physiological state than the control plants. Therefore, although more studies and deepening of certain aspects are necessary, LCOs have shown great potential to protect plants from high UV-B radiation conditions.
Collapse
Affiliation(s)
- José A. Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
- Correspondence:
| | - Ana García-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Khalid Akdi
- Trichodex S.A., Polígono Industrial La Isla, Rio Viejo 57-59, 41703 Sevilla, Spain;
| | - Francisco Javier Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| |
Collapse
|
3
|
Bomfim CA, Coelho LGF, do Vale HMM, de Carvalho Mendes I, Megías M, Ollero FJ, dos Reis Junior FB. Brief history of biofertilizers in Brazil: from conventional approaches to new biotechnological solutions. Braz J Microbiol 2021; 52:2215-2232. [PMID: 34590295 PMCID: PMC8578473 DOI: 10.1007/s42770-021-00618-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022] Open
Abstract
Brazil has a long history of research with rhizobia and plant growth-promoting rhizobacteria (PGPR). Currently, the use of bio-based products in Brazil, containing microorganisms that are effective in promoting plant growth through various mechanisms, is already a consolidated reality for the cultivation of several crops of agricultural interest. This is due to the excellent results obtained over many years of research, which contributed to reinforce the use of rhizobia and PGPR by farmers. The high quality of the products offered, containing elite strains, allows the reduction and prevention in the use of mineral fertilization, contributing to low-cost and sustainable agriculture. Currently, research has turned its efforts in the search for new products that further increase the efficiency of those already available on the market and for new formulations or inoculation strategies that contribute to greater productivity and efficiency of these products. In this review, the history of biological products for main crops of agricultural interest and the new biotechnologies and research available in the agricultural market are discussed.
Collapse
Affiliation(s)
- Catharine Abreu Bomfim
- Embrapa Cerrados, Planaltina, Distrito Federal Brazil
- Microbial Biology, University of Brasilia, Brasilia, Distrito Federal Brazil
| | - Lucas Gabriel Ferreira Coelho
- Embrapa Cerrados, Planaltina, Distrito Federal Brazil
- Microbial Biology, University of Brasilia, Brasilia, Distrito Federal Brazil
| | | | | | - Manuel Megías
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
4
|
Naamala J, Smith DL. Microbial Derived Compounds, a Step Toward Enhancing Microbial Inoculants Technology for Sustainable Agriculture. Front Microbiol 2021; 12:634807. [PMID: 33679668 PMCID: PMC7930237 DOI: 10.3389/fmicb.2021.634807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Sustainable agriculture remains a focus for many researchers, in an effort to minimize environmental degradation and climate change. The use of plant growth promoting microorganisms (PGPM) is a hopeful approach for enhancing plant growth and yield. However, the technology faces a number of challenges, especially inconsistencies in the field. The discovery, that microbial derived compounds can independently enhance plant growth, could be a step toward minimizing shortfalls related to PGPM technology. This has led many researchers to engage in research activities involving such compounds. So far, the findings are promising as compounds have been reported to enhance plant growth under stressed and non-stressed conditions in a wide range of plant species. This review compiles current knowledge on microbial derived compounds, taking a reader through a summarized protocol of their isolation and identification, their relevance in present agricultural trends, current use and limitations, with a view to giving the reader a picture of where the technology has come from, and an insight into where it could head, with some suggestions regarding the probable best ways forward.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| |
Collapse
|
5
|
Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.619676] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The symbiotic interaction between rhizobia and legumes that leads to nodule formation is a complex chemical conversation involving plant release of nod-gene inducing signal molecules and bacterial secretion of lipo-chito-oligossacharide nodulation factors. During this process, the rhizobia and their legume hosts can synthesize and release various phytohormones, such as IAA, lumichrome, riboflavin, lipo-chito-oligossacharide Nod factors, rhizobitoxine, gibberellins, jasmonates, brassinosteroids, ethylene, cytokinins and the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that can directly or indirectly stimulate plant growth. Whereas these attributes may promote plant adaptation to various edapho-climatic stresses including the limitations in nutrient elements required for plant growth promotion, tapping their full potential requires understanding of the mechanisms involved in their action. In this regard, several N2-fixing rhizobia have been cited for plant growth promotion by solubilizing soil-bound P in the rhizosphere via the synthesis of gluconic acid under the control of pyrroloquinoline quinone (PQQ) genes, just as others are known for the synthesis and release of siderophores for enhanced Fe nutrition in plants, the chelation of heavy metals in the reclamation of contaminated soils, and as biocontrol agents against diseases. Some of these metabolites can enhance plant growth via the suppression of the deleterious effects of other antagonistic molecules, as exemplified by the reduction in the deleterious effect of ethylene by ACC deaminase synthesized by rhizobia. Although symbiotic rhizobia are capable of triggering biological outcomes with direct and indirect effects on plant mineral nutrition, insect pest and disease resistance, a greater understanding of the mechanisms involved remains a challenge in tapping the maximum benefits of the molecules involved. Rather than the effects of individual rhizobial or plant metabolites however, a deeper understanding of their synergistic interactions may be useful in alleviating the effects of multiple plant stress factors for increased growth and productivity.
Collapse
|
6
|
Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management. SUSTAINABILITY 2020. [DOI: 10.3390/su12135446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent crop production studies have aimed at an increase in the biotic and abiotic tolerance of plant communities, along with increased nutrient availability and crop yields. This can be achieved in various ways, but one of the emerging approaches is to understand the phytomicrobiome structure and associated chemical communications. The phytomicrobiome was characterized with the advent of high-throughput techniques. Its composition and chemical signaling phenomena have been revealed, leading the way for “rhizosphere engineering”. In addition to the above, phytomicrobiome studies have paved the way to best tackling soil contamination with various anthropogenic activities. Agricultural lands have been found to be unbalanced for crop production. Due to the intense application of agricultural chemicals such as herbicides, fungicides, insecticides, fertilizers, etc., which can only be rejuvenated efficiently through detailed studies on the phytomicrobiome component, the phytomicrobiome has recently emerged as a primary plant trait that affects crop production. The phytomicrobiome also acts as an essential modifying factor in plant root exudation and vice versa, resulting in better plant health and crop yield both in terms of quantity and quality. Not only supporting better plant growth, phytomicrobiome members are involved in the degradation of toxic materials, alleviating the stress conditions that adversely affect plant development. Thus, the present review compiles the progress in understanding phytomicrobiome relationships and their application in achieving the goal of sustainable agriculture.
Collapse
|
7
|
Lyu D, Backer R, Subramanian S, Smith DL. Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:634. [PMID: 32523595 PMCID: PMC7261841 DOI: 10.3389/fpls.2020.00634] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 05/20/2023]
Abstract
A plant growing under natural conditions is always associated with a substantial, diverse, and well-orchestrated community of microbes-the phytomicrobiome. The phytomicrobiome genome is larger and more fluid than that of the plant. The microbes of the phytomicrobiome assist the plant in nutrient uptake, pathogen control, stress management, and overall growth and development. At least some of this is facilitated by the production of signal compounds, both plant-to-microbe and microbe back to the plant. This is best characterized in the legume nitrogen fixing and mycorrhizal symbioses. More recently lipo-chitooligosaccharide (LCO) and thuricin 17, two microbe-to-plant signals, have been shown to regulate stress responses in a wide range of plant species. While thuricin 17 production is constitutive, LCO signals are only produced in response to a signal from the plant. We discuss how some signal compounds will only be discovered when root-associated microbes are exposed to appropriate plant-to-microbe signals (positive regulation), and this might only happen under specific conditions, such as abiotic stress, while others may only be produced in the absence of a particular plant-to-microbe signal molecule (negative regulation). Some phytomicrobiome members only elicit effects in a specific crop species (specialists), while other phytomicrobiome members elicit effects in a wide range of crop species (generalists). We propose that some specialists could exhibit generalist activity when exposed to signals from the correct plant species. The use of microbe-to-plant signals can enhance crop stress tolerance and could result in more climate change resilient agricultural systems.
Collapse
|
8
|
Lopez BR, Palacios OA, Bashan Y, Hernández-Sandoval FE, de-Bashan LE. Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101696 10.1016/j.algal.2019.101696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lopez BR, Palacios OA, Bashan Y, Hernández-Sandoval FE, de-Bashan LE. Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110712] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abiotic stresses arising from climate change negates crop growth and yield, leading to food insecurity. Drought causes oxidative stress on plants, arising from excessive production of reactive oxygen species (ROS) due to inadequate CO2, which disrupts the photosynthetic machinery of plants. The use of conventional methods for the development of drought-tolerant crops is time-consuming, and the full adoption of modern biotechnology for crop enhancement is still regarded with prudence. Plant growth-promoting rhizobacteria (PGPR) could be used as an inexpensive and environmentally friendly approach for enhancing crop growth under environmental stress. The various direct and indirect mechanisms used for plant growth enhancement by PGPR were discussed. Synthesis of 1-aminocyclopropane−1-carboxylate (ACC) deaminase enhances plant nutrient uptake by breaking down plant ACC, thereby preventing ethylene accumulation, and enable plants to tolerate water stress. The exopolysaccharides produced also improves the ability of the soil to withhold water. PGPR enhances osmolyte production, which is effective in reducing the detrimental effects of ROS. Multifaceted PGPRs are potential candidates for biofertilizer production to lessen the detrimental effects of drought stress on crops cultivated in arid regions. This review proffered ways of augmenting their efficacy as bio-inoculants under field conditions and highlighted future prospects for sustainable agricultural productivity.
Collapse
|
11
|
Harman GE, Uphoff N. Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits. SCIENTIFICA 2019; 2019:9106395. [PMID: 31065398 PMCID: PMC6466867 DOI: 10.1155/2019/9106395] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 05/02/2023]
Abstract
Plants should not be regarded as entities unto themselves, but as the visible part of plant-microbe complexes which are best understood as "holobiomes." Some microorganisms when given the opportunity to inhabit plant roots become root symbionts. Such root colonization by symbiotic microbes can raise crop yields by promoting the growth of both shoots and roots, by enhancing uptake, fixation, and/or more efficient use of nutrients, by improving plants' resistance to pests, diseases, and abiotic stresses that include drought, salt, and other environmental conditions, and by enhancing plants' capacity for photosynthesis. We refer plant-microbe associations with these capabilities that have been purposefully established as enhanced plant holobiomes (EPHs). Here, we consider four groups of phylogenetically distinct and distant symbiotic endophytes: (1) Rhizobiaceae bacteria; (2) plant-obligate arbuscular mycorrhizal fungi (AMF); (3) selected endophytic strains of fungi in the genus Trichoderma; and (4) fungi in the Sebicales order, specifically Piriformospora indica. Although these exhibit quite different "lifestyles" when inhabiting plants, all induce beneficial systemic changes in plants' gene expression that are surprisingly similar. For example, all induce gene expression that produces proteins which detoxify reactive oxygen species (ROS). ROS are increased by environmental stresses on plants or by overexcitation of photosynthetic pigments. Gene overexpression results in a cellular environment where ROS levels are controlled and made more compatible with plants' metabolic processes. EPHs also frequently exhibit increased rates of photosynthesis that contribute to greater plant growth and other capabilities. Soil organic matter (SOM) is augmented when plant root growth is increased and roots remain in the soil. The combination of enhanced photosynthesis, increasing sequestration of CO2 from the air, and elevation of SOM removes C from the atmosphere and stores it in the soil. Reductions in global greenhouse gas levels can be accelerated by incentives for carbon farming and carbon cap-and-trade programs that reward such climate-friendly agriculture. The development and spread of EPHs as part of such initiatives has potential both to enhance farm productivity and incomes and to decelerate global warming.
Collapse
|
12
|
|
13
|
Pholo M, Coetzee B, Maree HJ, Young PR, Lloyd JR, Kossmann J, Hills PN. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome. PLANTA 2018; 248:477-488. [PMID: 29777364 DOI: 10.1007/s00425-018-2916-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.
Collapse
Affiliation(s)
- Motlalepula Pholo
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Beatrix Coetzee
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Philip R Young
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Paul N Hills
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
14
|
Gautam K, Schwinghamer TD, Smith DL. The response of soybean to nod factors and a bacteriocin. PLANT SIGNALING & BEHAVIOR 2016; 11:e1241934. [PMID: 27700227 PMCID: PMC5117092 DOI: 10.1080/15592324.2016.1241934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Microbe-to-plant signals can enhance the growth of a wide range of crops. The responses by soybean (Glycine max var. 91M01) to 2 signal molecules were investigated: Bradyrhizobium japonicum 532C lipo-chitooligosaccharide (Nod Bj V [C:18, MeFuc]) (LCO); and Bacillus thuringiensis strain NEB17 bacteriocin thuricin 17 (Th17). The objective was to assess and quantify the response by soybean, in terms of factors that contribute to yield, to the experimental signal molecules in germination experiments and field experiments. Soybean germination was stimulated by the experimental concentrations of Th17 under controlled 15°C and 22°C conditions, and 10-6 M LCO under 15°C. There were negative relationships between Th17 concentration and both the number of trifoliate leaves and the dry weight of nodules: lower concentrations resulted in plants with more leaves and nodules while higher concentrations resulted in plants with fewer leaves and nodules. The 10-8 M LCO treatment had a significant effect on the dry weight of nodules at the flowering stage of plant development (F4,21 = 6.06, p = 0.0019). Considering the harvest stage data from both field trials of 2011, the lower experimental concentrations of Th17 resulted in taller plants. The study of Th17 has the potential to expand our understanding of this relatively recent and unexpected finding; and to understand how best to apply this finding, to allow increased production of soybean. Collectively, these results indicate that Th17 has potential in this regard.
Collapse
Affiliation(s)
- Kaberi Gautam
- Department of Plant Science, McGill University, Ste Anne de Bellevue, QC, Canada
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Ste Anne de Bellevue, QC, Canada
| |
Collapse
|
15
|
Marks BB, Megías M, Ollero FJ, Nogueira MA, Araujo RS, Hungria M. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express 2015; 5:71. [PMID: 26567001 PMCID: PMC4644132 DOI: 10.1186/s13568-015-0154-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/17/2015] [Indexed: 01/22/2023] Open
Abstract
There is an increasing interest in the development and use of inoculants carrying plant growth-promoting bacteria (PGPB) in crops of agronomic interest. The great majority of the inoculants commercialized worldwide contain rhizobia for legume crops, but the use of PGPB as Azospirillum spp. for non-legume is expanding, as well as of inoculants combining microorganisms and microbial metabolites. In this study we evaluated the effects of inoculants containing Azospirillum brasilense with or without metabolites of Rhizobium tropici strain CIAT 899 highly enriched in lipo-chitooligosaccharides (LCOs) in six field experiments performed for three summer crop seasons in Brazil with maize (Zea mays L.). Inoculants and metabolites were applied either at sowing by seed inoculation, or by leaf spray at the V3 stage of plant growth. Improvement in shoot dry weight (SDW) and total N accumulated in shoots (TNS) by single, but especially by dual inoculation was observed in some of the experiments. Statistically significant increases in grain yield in relation to the non-inoculated control were observed in five out of six experiments when maize was inoculated with Azospirillum supplied with enriched metabolites of R. tropici applied by seed or leaf spray inoculation. The results give strength to the development of a new generation of inoculants carrying microorganisms and microbial molecules.
Collapse
|
16
|
Dakora FD, Matiru VN, Kanu AS. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:700. [PMID: 26442016 PMCID: PMC4568397 DOI: 10.3389/fpls.2015.00700] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lumichrome and riboflavin are novel molecules from rhizobial exudates that stimulate plant growth. Reported studies have revealed major developmental changes elicited by lumichrome at very low nanomolar concentrations (5 nM) in plants, which include early initiation of trifoliate leaves, expansion of unifoliate and trifoliate leaves, increased stem elongation and leaf area, and consequently greater biomass accumulation in monocots and dicots. But higher lumichrome concentration (50 nM) depressed root development and reduced growth of unifoliate and second trifoliate leaves. While the mechanisms remain unknown, it is possible that lumichrome released by rhizobia induced the biosynthesis of classical phytohormones that caused the observed developmental changes in plants. We also showed in earlier studies that applying either 10 nM lumichrome, 10 nM ABA, or 10 ml of infective rhizobial cells (0.2 OD600) to roots of monocots and dicots for 44 h produced identical effects, which included decreased stomatal conductance and leaf transpiration in Bambara groundnut, soybean, and maize, increased stomatal conductance and transpiration in cowpea and lupin, and elevated root respiration in maize (19% by rhizobia and 20% by lumichrome). Greater extracellular exudation of lumichrome, riboflavin and indole acetic acid by N2-fixing rhizobia over non-fixing bacteria is perceived to be an indication of their role as symbiotic signals. This is evidenced by the increased concentration of lumichrome and riboflavin in the xylem sap of cowpea and soybean plants inoculated with infective rhizobia. In fact, greater xylem concentration of lumichrome in soybean and its correspondingly increased accumulation in leaves was found to result in dramatic developmental changes than in cowpea. Furthermore, lumichrome and riboflavin secreted by soil rhizobia are also known to function as (i) ecological cues for sensing environmental stress, (ii) growth factors for microbes, plants, and humans, (iii) signals for stomatal functioning in land plants, and (iv) protectants/elicitors of plant defense. The fact that exogenous application of ABA to plant roots caused the same effect as lumichrome on leaf stomatal functioning suggests molecular cross-talk in plant response to environmental stimuli.
Collapse
Affiliation(s)
- Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Viviene N. Matiru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Alfred S. Kanu
- Department of Agriculture and Animal Health, School of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|
17
|
Smith DL, Subramanian S, Lamont JR, Bywater-Ekegärd M. Signaling in the phytomicrobiome: breadth and potential. FRONTIERS IN PLANT SCIENCE 2015; 6:709. [PMID: 26442023 PMCID: PMC4563166 DOI: 10.3389/fpls.2015.00709] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/24/2015] [Indexed: 05/18/2023]
Abstract
Higher plants have evolved intimate, complex, subtle, and relatively constant relationships with a suite of microbes, the phytomicrobiome. Over the last few decades we have learned that plants and microbes can use molecular signals to communicate. This is well-established for the legume-rhizobia nitrogen-fixing symbiosis, and reasonably elucidated for mycorrhizal associations. Bacteria within the phytomircobiome communicate among themselves through quorum sensing and other mechanisms. Plants also detect materials produced by potential pathogens and activate pathogen-response systems. This intercommunication dictates aspects of plant development, architecture, and productivity. Understanding this signaling via biochemical, genomics, proteomics, and metabolomic studies has added valuable knowledge regarding development of effective, low-cost, eco-friendly crop inputs that reduce fossil fuel intense inputs. This knowledge underpins phytomicrobiome engineering: manipulating the beneficial consortia that manufacture signals/products that improve the ability of the plant-phytomicrobiome community to deal with various soil and climatic conditions, leading to enhanced overall crop plant productivity.
Collapse
Affiliation(s)
- Donald L. Smith
- Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QCCanada
| | | | - John R. Lamont
- Plant Science Department, McGill University/Macdonald Campus, Sainte-Anne-de-Bellevue, QCCanada
| | | |
Collapse
|
18
|
Tanaka K, Cho SH, Lee H, Pham AQ, Batek JM, Cui S, Qiu J, Khan SM, Joshi T, Zhang ZJ, Xu D, Stacey G. Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5727-38. [PMID: 26049159 PMCID: PMC4566972 DOI: 10.1093/jxb/erv260] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although lipo-chitooligosaccharides (LCOs) are important signal molecules for plant-symbiont interactions, a number of reports suggest that LCOs can directly impact plant growth and development, separate from any role in plant symbioses. In order to investigate this more closely, maize and Setaria seedlings were treated with LCO and their growth was evaluated. The data indicate that LCO treatment significantly enhanced root growth. RNA-seq transcriptomic analysis of LCO-treated maize roots identified a number of genes whose expression was significantly affected by the treatment. Among these genes, some LCO-up-regulated genes are likely involved in root growth promotion. Interestingly, some stress-related genes were down-regulated after LCO treatment, which might indicate reallocation of resources from defense responses to plant growth. The promoter activity of several LCO-up-regulated genes using a β-glucuronidase reporter system was further analysed. The results showed that the promoters were activated by LCO treatment. The data indicate that LCO can directly impact maize root growth and gene expression.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Divisions of Plant Science and Biochemistry University of Missouri, Columbia, MO 65211, USA Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sung-Hwan Cho
- Divisions of Plant Science and Biochemistry University of Missouri, Columbia, MO 65211, USA Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Hyeyoung Lee
- Plant Transformation Core Facility,Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - An Q Pham
- Divisions of Plant Science and Biochemistry University of Missouri, Columbia, MO 65211, USA Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Josef M Batek
- Divisions of Plant Science and Biochemistry University of Missouri, Columbia, MO 65211, USA Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Shiqi Cui
- Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Jing Qiu
- Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Saad M Khan
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA Informatics Institute, Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA Informatics Institute, Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Zhanyuan J Zhang
- Plant Transformation Core Facility,Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA Informatics Institute, Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry University of Missouri, Columbia, MO 65211, USA Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-Carvajal MÁ, Nakatani AS, Gil-Serrano A, Megías M, Ollero FJ, Hungria M. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genomics 2015; 16:251. [PMID: 25880529 PMCID: PMC4393855 DOI: 10.1186/s12864-015-1458-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis.
Collapse
Affiliation(s)
- Pablo del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | | | | | | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | | | | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apdo Postal 553, 41071, Sevilla, Spain.
| | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | |
Collapse
|
20
|
Yurgel SN, Rice J, Domreis E, Lynch J, Sa N, Qamar Z, Rajamani S, Gao M, Roje S, Bauer WD. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:437-445. [PMID: 24405035 DOI: 10.1094/mpmi-11-13-0338-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.
Collapse
|
21
|
Siczek A, Lipiec J, Wielbo J, Kidaj D, Szarlip P. Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions. Int J Mol Sci 2014; 15:7344-51. [PMID: 24786094 PMCID: PMC4057676 DOI: 10.3390/ijms15057344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/29/2023] Open
Abstract
Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10⁻¹¹ M) or water (control) before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay), nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.
Collapse
Affiliation(s)
- Anna Siczek
- Institute of Agrophysics, Polish Academy of Sciences, P.O. Box 201, 20-290 Lublin, Poland.
| | - Jerzy Lipiec
- Institute of Agrophysics, Polish Academy of Sciences, P.O. Box 201, 20-290 Lublin, Poland.
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 st, 20-033 Lublin, Poland.
| | - Dominika Kidaj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 st, 20-033 Lublin, Poland.
| | - Paweł Szarlip
- Institute of Agrophysics, Polish Academy of Sciences, P.O. Box 201, 20-290 Lublin, Poland.
| |
Collapse
|
22
|
The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Open Life Sci 2014. [DOI: 10.2478/s11535-013-0277-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRhizobial lipochitooligosacharides (Nod factors) influence the development of legume roots, including growth stimulation, nodule induction and root hair curling. However, their effect on the green parts of plants is less known, therefore we evaluated seed and foliar application of an extract containing Nod factors on pea growth and yield. Pea plants were examined from emergence to full maturity, including growth dynamics and morphological (nodule number and weight, the quantity and surface area of leaves) or physiological (photosynthesis and transpiration intensity, chlorophyll and nitrogen content) parameters. The foliar application Nod factor extract, or seed dressing followed by foliar application, resulted in the best outcomes. The number and weight of root nodules, the chlorophyll content in leaves, and the intensity of net photosynthesis were all elevated. As a consequence of Nod factor treatment, the dynamics of dry mass accumulation of pea organs were improved and the pod number was increased. A significant increase in pea yield was observed after Nod factor application. Increase of nodule and pod numbers and improved growth of roots appear to be amongst the beneficial effects of Nod factor extract on the activation of secondary plant meristems.
Collapse
|
23
|
Kuś PM, Jerković I, Tuberoso CIG, Marijanović Z, Congiu F. Cornflower (Centaurea cyanus L.) honey quality parameters: chromatographic fingerprints, chemical biomarkers, antioxidant capacity and others. Food Chem 2013; 142:12-8. [PMID: 24001807 DOI: 10.1016/j.foodchem.2013.07.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/02/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
The samples of cornflower (Centaurea cyanus L.) honey from Poland were subjected to ultrasonic solvent extraction applying the mixture of pentane and diethyl ether 1:2v/v (solvent A) as well as dichloromethane (solvent B). The major compounds of the extracts (analysed by GC-MS/GC-FID) were C13 and C9 norisoprenoids. Among them, (E)-3-oxo-retro-α-ionol (2.4-23.9% (solvent A); 3.9-14.4% (solvent B)) and (Z)-3-oxo-retro-α-ionol (3.7-29.9% (solvent A); 8.4-20.4% (solvent B)) were found to be useful as chemical biomarkers of this honey. Other abundant compounds were: methyl syringate (0.0-31.4% (solvent A); 0.0-25.4% (solvent B)) and 3-hydroxy-4-phenylbutan-2-one (1.6-15.8% (solvent A); 5.1-15.1% (solvent B)). HPLC-DAD analysis of the samples revealed lumichrome (4.7-10.0mg/kg), riboflavin (1.9-2.7mg/kg) and phenyllactic acid (112.1-250.5mg/kg) as typical compounds for this honey type. Antioxidant and antiradical properties as well as total phenolic content of the samples were found to be rather moderate by FRAP (ferric reducing antioxidant power), DPPH (1,1-diphenyl-2-picrylhydrazyl radical) and Folin-Ciocalteu assays, respectively. Additionally, CIE L(∗)a(∗)b(∗)C(∗)h chromatic coordinates were evaluated. Colour attributes of cornflower honey were characterised by elevated values of L(∗) and particularly high values of b(∗) and h coordinates, which correspond to medium bright honey with intense yellow colour.
Collapse
Affiliation(s)
- Piotr Marek Kuś
- Department of Pharmacognosy, Wrocław Medical University, pl. Nankiera 1, 50-140 Wrocław, Poland
| | | | | | | | | |
Collapse
|
24
|
Tolin S, Arrigoni G, Moscatiello R, Masi A, Navazio L, Sablok G, Squartini A. Quantitative analysis of the naringenin-inducible proteome in Rhizobium leguminosarum by isobaric tagging and mass spectrometry. Proteomics 2013; 13:1961-72. [PMID: 23580418 DOI: 10.1002/pmic.201200472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/17/2013] [Accepted: 03/12/2013] [Indexed: 11/05/2022]
Abstract
The rhizobium-legume interaction is a critical cornerstone of crop productivity and environmental sustainability. Its potential improvement relies on elucidation of the complex molecular dialogue between its two partners. In the present study, the proteomic patterns of gnotobiotic cultures of Rhizobium leguminosarum bv. viciae 3841 grown for 6 h in presence or absence of the nod gene-inducing plant flavonoid naringenin (10 μM) were analyzed using the iTRAQ approach. A total of 1334 proteins were identified corresponding to 18.67% of the protein-coding genes annotated in the sequenced genome of bv. viciae 3841. The abundance levels of 47 proteins were increased upon naringenin treatment showing fold change ratios ranging from 1.5 to 25 in two biological replicates. Besides the nod units, naringenin enhanced the expression of a number of other genes, many of which organized in operons, including β(1-2) glucan production and secretion, succinoglycan export, the RopA outer membrane protein with homology to an oligogalacturonide-specific porin motif, other enzymes for carbohydrate and amino acid metabolism, and proteins involved in the translation machinery. Data were validated at the transcriptional and phenotypic levels by RT-PCR and an assay of secreted sugars in culture supernatants, respectively. The current approach provides not only a high-resolution analysis of the prokaryotic proteome but also unravels the rhizobium molecular dialogue with legumes by detecting the enhanced expression of several symbiosis-associated proteins, whose flavonoid-dependency had not yet been reported.
Collapse
Affiliation(s)
- Serena Tolin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, Legnaro, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Marks BB, Megías M, Nogueira MA, Hungria M. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 2013; 3:21. [PMID: 23594921 PMCID: PMC3642020 DOI: 10.1186/2191-0855-3-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/06/2013] [Indexed: 02/04/2023] Open
Abstract
Agricultural sustainability may represent the greatest encumbrance to increasing food production. On the other hand, as a component of sustainability, replacement of chemical fertilizers by bio-fertilizers has the potential to lower costs for farmers, to increase yields, and to mitigate greenhouse-gas emissions and pollution of water and soil. Rhizobia and plant-growth-promoting rhizobacteria (PGPR) have been broadly used in agriculture, and advances in our understanding of plant-bacteria interactions have been achieved; however, the use of signaling molecules to enhance crop performance is still modest. In this study, we evaluated the effects of concentrated metabolites (CM) from two strains of rhizobia-Bradyrhizobium diazoefficiens USDA 110(T) (BD1) and Rhizobium tropici CIAT 899(T) (RT1)-at two concentrations of active compounds (10(-8) and 10(-9) M)-on the performances of two major plant-microbe interactions, of Bradyrhizobium spp.-soybean (Glycine max (L.) Merr.) and Azospirillum brasilense-maize (Zea mays L.). For soybean, one greenhouse and two field experiments were performed and effects of addition of CM from the homologous and heterologous strains, and of the flavonoid genistein were investigated. For maize, three field experiments were performed to examine the effects of CM from RT1. For soybean, compared to the treatment inoculated exclusively with Bradyrhizobium, benefits were achieved with the addition of CM-BD1; at 10(-9) M, grain yield was increased by an average of 4.8%. For maize, the best result was obtained with the addition of CM-RT1, also at 10(-9) M, increasing grain yield by an average of 11.4%. These benefits might be related to a combination of effects attributed to secondary compounds produced by the rhizobial strains, including exopolysaccharides (EPSs), plant hormones and lipo-chitooligosaccharides (LCOs). The results emphasize the biotechnological potential of using secondary metabolites of rhizobia together with inoculants containing both rhizobia and PGPR to improve the growth and yield of grain crops.
Collapse
Affiliation(s)
- Bettina Berquó Marks
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, Cx. Postal 60001, 86051-990, Londrina, Paraná, Brazil
| | - Manuel Megías
- Universidad de Sevilla, Departamento de Microbiología y Parasitología, Apdo Postal 874, 41080, Sevilla, Spain
| | - Marco Antonio Nogueira
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, Cx. Postal 60001, 86051-990, Londrina, Paraná, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, Cx. Postal 60001, 86051-990, Londrina, Paraná, Brazil
| |
Collapse
|
26
|
Oelschlaegel S, Gruner M, Wang PN, Boettcher A, Koelling-Speer I, Speer K. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7229-7237. [PMID: 22676798 DOI: 10.1021/jf300888q] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Manuka honey from New Zealand is often considered to be a medicinal product of special value due to its high level of antimicrobial activity. Therefore, the distinct authentication of its botanical origin is of great importance. Aside from the common pollen analysis, it is in this respect particularly the analysis of the phenolic acids, flavonoids, and norisoprenoids that is described as useful. In the present study, numerous manuka honeys were analyzed by UPLC-PDA-MS/MS after solid-phase extraction and compared to other kinds of honey to define marker substances characteristic for manuka honeys. The PDA profiles obtained differed markedly from each other so that the individual honey samples could be assigned to three groups. For the honeys of group 1 the comparably high concentrations of 4-hydroxybenzoic acid, dehydrovomifoliol, and benzoic acid proved to be typical, whereas the profiles of group 2 showed high kojic acid and 2-methoxybenzoic acid intensities. The manuka honeys of group 3, on the other hand, yielded high amounts of syringic acid, 4-methoxyphenyllactic acid, and methyl syringate. Furthermore, the comprehensive comparison of manuka honeys to other unifloral honeys revealed that especially kojic acid, 5-methyl-3-furancarboxylic acid, leptosin, unedone, 2-methoxybenzoic acid, 4-methoxyphenyllactic acid, 3-hydroxy-1-(2-methoxyphenyl)penta-1,4-dione, and methyl syringate were useful for distinguishing manuka honeys from the other kinds of investigated honeys. Moreover, kojic acid, unedone, 5-methyl-3-furancarboxylic acid, 3-hydroxy-1-(2-methoxyphenyl)penta-1,4-dione, and lumichrome were identified in manuka honey for the first time.
Collapse
Affiliation(s)
- Stefanie Oelschlaegel
- Food Chemistry Department, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Gouws LM, Botes E, Wiese AJ, Trenkamp S, Torres-Jerez I, Tang Y, Hills PN, Usadel B, Lloyd JR, Fernie AR, Kossmann J, van der Merwe MJ. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. FRONTIERS IN PLANT SCIENCE 2012; 3:120. [PMID: 22701462 PMCID: PMC3371600 DOI: 10.3389/fpls.2012.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/18/2012] [Indexed: 05/08/2023]
Abstract
Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.
Collapse
Affiliation(s)
- Liezel M. Gouws
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Eileen Botes
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Anna J. Wiese
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Sandra Trenkamp
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Yuhong Tang
- The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Paul N. Hills
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Björn Usadel
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - James R. Lloyd
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | | | - Jens Kossmann
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Margaretha J. van der Merwe
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| |
Collapse
|
28
|
Effect of N and P nutrition on extracellular secretion of lumichrome, riboflavin and indole acetic acid by N2-fixing bacteria and endophytes isolated from Psoralea nodules. Symbiosis 2012. [DOI: 10.1007/s13199-012-0171-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wang N, Khan W, Smith DL. Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS One 2012; 7:e31571. [PMID: 22348109 PMCID: PMC3278468 DOI: 10.1371/journal.pone.0031571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/13/2012] [Indexed: 11/18/2022] Open
Abstract
Lipo-chitooligosaccharides (LCOs), signal compounds produced by N(2)-fixing rhizobacteria after isoflavone induction, initiate nodule formation in host legumes. Given LCOs' structural similarity to pathogen-response-eliciting chitin oligomers, foliar application of LCOs was tested for ability to induce stress-related genes under optimal growth conditions. In order to study the effects of LCO foliar spray under stressed conditions, soybean (Glycine max) seedlings grown at optimal temperature were transferred to sub-optimal temperature. After a 5-day acclimation period, the first trifoliate leaves were sprayed with 10(-7) M LCO (NodBj-V (C(18:1), MeFuc)) purified from genistein-induced Bradyrhizobium japonicum culture, and harvested at 0 and 48 h following treatment. Microarray analysis was performed using Affymetrix GeneChip® Soybean Genome Arrays. Compared to the control at 48 h after LCO treatment, a total of 147 genes were differentially expressed as a result of LCO treatment, including a number of stress-related genes and transcription factors. In addition, during the 48 h time period following foliar spray application, over a thousand genes exhibited differential expression, including hundreds of those specific to the LCO-treated plants. Our results indicated that the dynamic soybean foliar transcriptome was highly responsive to LCO treatment. Quantitative real-time PCR (qPCR) validated the microarray data.
Collapse
Affiliation(s)
- Nan Wang
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Wajahatullah Khan
- Genome Research Chair Unit, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Donald L. Smith
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
30
|
Tuberoso CIG, Bifulco E, Caboni P, Sarais G, Cottiglia F, Floris I. Lumichrome and phenyllactic acid as chemical markers of thistle (Galactites tomentosa Moench) honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:364-369. [PMID: 21126007 DOI: 10.1021/jf1039074] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
HPLC-DAD-MS/MS chromatograms of thistle (Galactites tomentosa Moench) unifloral honeys, previously selected by sensory evaluation and melissopalynological analysis, showed high levels of two compounds. One was characterized as phenyllactic acid, a common acid found in honeys, but the other compound was very unusual for honeys. This compound was extracted from honey with ethyl acetate and purified by SPE using C(18), SiOH, and NH(2) phases. Its structure was elucidated on the basis of extensive 1D and 2D NMR experiments as well as HPLC-MS/MS and Q-TOF analysis, and it was identified as lumichrome (7,8-dimethylalloxazine). Lumichrome is known to be the main product of degradation obtained in acid medium from riboflavin (vitamin B(2)), and this is the first report of the presence of lumichrome in honeys. Analysis of the G. tomentosa raw honey and flowers extracts confirmed the floral origin of this compound. The average amount of lumichrome in thistle honey was 29.4 ± 14.9 mg/kg, while phenyllactic acid was 418.6 ± 168.9 mg/kg. Lumichrome, along with the unusual high level of phenyllactic acid, could be used as a marker for the botanical classification of unifloral thistle (G. tomentosa) honey.
Collapse
|
31
|
Rhizosphere Signals for Plant–Microbe Interactions: Implications for Field-Grown Plants. PROGRESS IN BOTANY 72 2010. [DOI: 10.1007/978-3-642-13145-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Vieira Ferreira LF, Costa AI, Ferreira Machado I, Botelho do Rego AM, Sikorska E, Sikorski M. Surface photochemistry: alloxazine within nanochannels of Na+ and H+ ZSM-5 zeolites. Phys Chem Chem Phys 2009; 11:5762-72. [DOI: 10.1039/b903013a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|