1
|
Tritean N, Trică B, Dima ŞO, Capră L, Gabor RA, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. FRONTIERS IN PLANT SCIENCE 2024; 15:1349573. [PMID: 38835865 PMCID: PMC11148368 DOI: 10.3389/fpls.2024.1349573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.
Collapse
Affiliation(s)
- Naomi Tritean
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Ştefan-Ovidiu Dima
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Luiza Capră
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Raluca-Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | | |
Collapse
|
2
|
Sha S, Wang G, Liu J, Wang M, Wang L, Liu Y, Geng G, Liu J, Wang Y. Regulation of photosynthetic function and reactive oxygen species metabolism in sugar beet (Beta vulgaris L.) cultivars under waterlogging stress and associated tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108651. [PMID: 38653098 DOI: 10.1016/j.plaphy.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Sugar beet (Beta vulgaris L.) is an economically important sugar crop worldwide that is susceptible to sudden waterlogging stress during seedling cultivation, which poses a major threat to sugar beet development and production. Our understanding of the physiological basis of waterlogging tolerance in sugar beet is limited. To investigate the photosynthetic adaptation strategies of sugar beet to waterlogging stress conditions, the tolerant cultivar KUHN1260 (KU) and sensitive cultivar SV1433 (SV) were grown under waterlogging stress, and their photosynthetic function and reactive oxygen species (ROS) metabolism were assessed. Our results showed that waterlogging stress significantly reduced the photosynthetic pigment content, rubisco activity, and expression level of the photosynthetic enzyme genes SvRuBP, SvGAPDH, and SvPRK, gas exchange parameters, and chlorophyll fluorescence parameters, induced damage to the ultrastructure of the chloroplast of the two sugar beet cultivars, inhibited the photosynthetic carbon assimilation capacity of sugar beet leaves, damaged the structural stability of photosystem II (PSII), and disturbed the equilibrium between electrons at the acceptor and donor sides of PSII, which was the result of stomatal and non-stomatal limiting factors. Moreover, the level of ROS, H2O2, and O2▪-, antioxidant enzyme activity, and gene expression levels in the leaves of the two sugar beet cultivars increased over time under waterlogging stress; ROS accumulation was lower and antioxidant enzyme activities and gene expression levels were higher in the waterlogging-tolerant cultivar (KU) than the waterlogging-sensitive cultivar (SV). In sum, these responses in the more tolerant cultivars are associated with their resistance to waterlogging stress. Our findings will aid the breeding of waterlogging-tolerant sugar beet cultivars.
Collapse
Affiliation(s)
- Shanshan Sha
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; School of Food Engineering, Harbin University, Harbin, 150000, China
| | - Gang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jinling Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Meihui Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Lihua Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yonglong Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Gui Geng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Jiahui Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Zhou S, Wang P, Ding Y, Xie L, Li A. Modification of plasma membrane H+-ATPase in Masson pine (Pinus massoniana Lamb.) seedling roots adapting to acid deposition. TREE PHYSIOLOGY 2022; 42:1432-1449. [PMID: 35137231 DOI: 10.1093/treephys/tpac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
To understand the regulation of roots plasma membrane H+-ATPase in Masson pine responding to acid deposition, the changes in biomass, plant morphology, intracellular H+, enzyme activity and H+-ATPase genes expression in Masson pine seedlings exposed to simulated acid rain (SAR, pH 5.6 and 4.6) with and without vanadate were studied. Simulated acid rain exposure for 60 days increased the intracellular H+ in pine roots whether added with 0.1 mM Na3VO4 or not. The growth of seedlings treated with SAR was maintained well, even the primary lateral root length, root dry weight and number of root tips in seedlings exposed to SAR at pH 4.6 were higher than that of the control (pH 6.6). However, the addition of vanadate resulted in severe growth inhibition and obvious decline in morphological parameters. Similarly, ATP hydrolytic activity and H+ transport activity of roots plasma membrane H+-ATPase, both were stimulated by SAR whereas they were inhibited by vanadate, and the highest activity stimulation was observed in pine roots subjected to SAR at pH 4.6. In addition, SAR also induced the expression of the investigated H+-ATPase subunits (atpB, atpE, atpF, atpH and atpI). Therefore, the roots plasma membrane H+-ATPase is instrumental in the growth of Masson pine seedlings adapting to acid rain by a manner of pumping more protons across the membrane through enhancing its activity, and which involves the upregulated gene expression of roots H+-ATPase subunits at transcriptional level.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
| | - Ping Wang
- Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
| | - Yi Ding
- Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
| | - Linbei Xie
- Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
| | - Ao Li
- Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China
| |
Collapse
|
4
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
5
|
Pitann B, Bakhat HF, Fatima A, Hanstein S, Schubert S. Silicon-mediated growth promotion in maize (Zea mays L.) occurs via a mechanism that does not involve activation of the plasma membrane H +-ATPase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1121-1130. [PMID: 34328870 DOI: 10.1016/j.plaphy.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si)-mediated growth promotion of various grasses is well documented. In the present study, Si-induced changes in maize shoot growth and its underlying mechanisms were studied. Maize plants were grown with various concentrations of Si (0-3 mM) in the nutrient solution. Silicon nutrition improved plant expansion growth. Silicon-supplied maize plants (0.8 and 1.2 mM) showed higher plant height and leaf area compared to no-Si amended plants. It was assumed that Si-induced expansion growth was due to positive Si effects on plasma membrane (PM) H+-ATPase. In this context, western blot analysis revealed an increase in PM H+-ATPase abundance by 77% under Si nutrition. However, in vitro measurements of enzyme activities showed no significant effect on apoplast pH, proton pumping, passive H+ efflux and enzyme kinetics such as Km, Vmax, and activation energy. Further, these results were confirmed by in vivo ratiometric analysis of apoplastic pH, which showed non-significant changes upon Si supply. In contrast, 1 mM Si altered the relative transcripts of specific PM H+-ATPase isoforms. Silicon application resulted in a significant decrease of MHA3, and this decrease in transcription seems to be compensated by an increased concentration of H+-ATPase protein. From these results, it can be concluded that changes in cell wall composition and PM H+-ATPase may be responsible for Si-mediated growth improvement in maize.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Hafiz Faiq Bakhat
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Ammara Fatima
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Stefan Hanstein
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sven Schubert
- Institute of Plant Nutrition (iFZ) Justus Liebig University Giessen, Heinrich Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
6
|
Leitão I, Leclercq CC, Ribeiro DM, Renaut J, Almeida AM, Martins LL, Mourato MP. Stress response of lettuce (Lactuca sativa) to environmental contamination with selected pharmaceuticals: A proteomic study. J Proteomics 2021; 245:104291. [PMID: 34089899 DOI: 10.1016/j.jprot.2021.104291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Pharmaceutical compounds have been found in rivers and treated wastewaters. They often contaminate irrigation waters and consequently accumulate in edible vegetables, causing changes in plants metabolism. The main objective of this work is to understand how lettuce plants cope with the contamination from three selected pharmaceuticals using a label free proteomic analysis. A lettuce hydroponic culture, grown for 36 days, was exposed to metformin, acetaminophen and carbamazepine (at 1 mg/L), during 8 days, after which roots and leaves were sampled and analysed using a liquid chromatography-mass spectrometry proteomics-based approach. In roots, a total of 612 proteins showed differentially accumulation while in leaves 237 proteins were identified with significant differences over controls. Carbamazepine was the contaminant that most affected protein abundance in roots, while in leaves the highest number of differentially accumulated proteins was observed for acetaminophen. In roots under carbamazepine, stress related protein species such as catalase, superoxide dismutase and peroxidases presented higher abundance. Ascorbate peroxidase increased in roots under metformin. Cell respiration protein species were affected by the presence of the three pharmaceuticals suggesting possible dysregulation of the Krebs cycle. Acetaminophen caused the main differences in respiration pathways, with more emphasis in leaves. Lettuce plants revealed different tolerance levels when contaminants were compared, being more tolerant to metformin presence and less tolerant to carbamazepine. SIGNIFICANCE: The significant increase of emerging contaminants in ecosystems makes essential to understand how these compounds may affect the metabolism of different organisms. Our study contributes with a detailed approach of the main interactions that may occur in plant metabolism when subjected to the stress induced by three different pharmaceuticals (acetaminophen, carbamazepine and metformin).
Collapse
Affiliation(s)
- Inês Leitão
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - André M Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luisa L Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel P Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
7
|
Zou C, Liu D, Wu P, Wang Y, Gai Z, Liu L, Yang F, Li C, Guo G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. PLANT MOLECULAR BIOLOGY 2020; 102:645-657. [PMID: 32040759 DOI: 10.1007/s11103-020-00971-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2020] [Indexed: 05/20/2023]
Abstract
RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance. Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT). The clean reads were obtained and assembled into 25,507 unigenes. Among them, 975 and 383 differentially expressed genes (DEGs) were identified in the comparison groups ST_vs_C and LT_vs_C, respectively. Gene ontology (GO) analysis revealed that oxidation-reduction process and lipid metabolic process were the most enriched GO term among the DEGs in ST_vs_C and LT_vs_C, respectively. According to Kyoto Encyclopedia of Genes and Genomes pathway, carbon fixation in photosynthetic organisms pathway were significantly enriched under alkaline stress. Besides, expression level of genes encoding D-3-phosphoglycerate dehydrogenase 1, glutamyl-tRNA reductase 1, fatty acid hydroperoxide lyase, ethylene-insensitive protein 2, metal tolerance protein 11 and magnesium-chelatase subunit ChlI, etc., were significantly altered under alkaline stress. Additionally, among the DEGs, 136 were non-annotated genes and 24 occurred with differential alternative splicing. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in sugar beet.
Collapse
Affiliation(s)
- Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Peiran Wu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Fangfang Yang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, China.
| | - Guanghao Guo
- College of Agronomy, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Lv X, Chen S, Wang Y. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1431. [PMID: 31781145 PMCID: PMC6851198 DOI: 10.3389/fpls.2019.01431] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/15/2019] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress on crop growth and productivity. A better understanding of the molecular and physiological mechanisms underlying salt tolerance will facilitate efforts to improve crop performance under salinity. Sugar beet is considered to be a salt-tolerant crop, and it is therefore a good model for studying salt acclimation in crops. Recently, many determinants of salt tolerance and regulatory mechanisms have been studied by using physiological and 'omics approaches. This review provides an overview of recent research advances regarding sugar beet response and tolerance to salt stress. We summarize the physiological and molecular mechanisms involved, including maintenance of ion homeostasis, accumulation of osmotic-adjustment substances, and antioxidant regulation. We focus on progress in deciphering the mechanisms using 'omic technologies and describe the key candidate genes involved in sugar beet salt tolerance. Understanding the response and tolerance of sugar beet to salt stress will enable translational application to other crops and thus will have significant impacts on agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Xiaoyan Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang;
| |
Collapse
|
9
|
Liu H, Ren X, Zhu J, Wu X, Liang C. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress. PLANTA 2018; 248:647-659. [PMID: 29855701 DOI: 10.1007/s00425-018-2922-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
Collapse
Affiliation(s)
- Hongyue Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqian Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiuzheng Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Han N, Ji XL, Du YP, He X, Zhao XJ, Zhai H. Identification of a Novel Alternative Splicing Variant of VvPMA1 in Grape Root under Salinity. FRONTIERS IN PLANT SCIENCE 2017; 8:605. [PMID: 28484478 PMCID: PMC5399082 DOI: 10.3389/fpls.2017.00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
It has been well-demonstrated that the control of plasma membrane H+-ATPase (PM H+-ATPase) activity is important to plant salt tolerance. This study found a significant increase in PM H+-ATPase (PMA) activity in grape root exposed to NaCl. Furthermore, 7 Vitis vinifera PM H+-ATPase genes (VvPMAs) were identified within the grape genome and the expression response of these VvPMAs in grape root under salinity was analyzed. Two VvPMAs (VvPMA1 and VvPMA3) were expressed more strongly in roots than the other five VvPMAs. Moreover, roots exhibited diverse patterns of gene expression of VvPMA1 and VvPMA3 responses to salt stress. Interestingly, two transcripts of VvPMA1, which were created through alternative splicing (AS), were discovered and isolated from salt stressed root. Comparing the two VvPMA1 cDNA sequences (designated VvPMA1α and VvPMA1β) with the genomic sequence revealed that the second intron was retained in the VvPMA1β cDNA. This intron retention was predicted to generate a novel VvPMA1 through N-terminal truncation because of a 5'- terminal frame shift. Yeast complementation assays of the two splice variants showed that VvPMA1β could enhance the ability to complement Saccharomyces cerevisiae deficient in PM H+-ATPase activity. In addition, the expression profiles of VvPMA1α and VvPMA1β differed under salinity. Our data suggests that through AS, the N-terminal length of VvPMA1 may be regulated to accurately modulate PM H+-ATPase activity of grape root in salt stress.
Collapse
Affiliation(s)
- Ning Han
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Xing-Long Ji
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| | - Yuan-Peng Du
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| | - Xi He
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Xin-Jie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Heng Zhai
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| |
Collapse
|
11
|
Muzi C, Camoni L, Visconti S, Aducci P. Cold stress affects H +-ATPase and phospholipase D activity in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:328-336. [PMID: 27497302 DOI: 10.1016/j.plaphy.2016.07.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Low temperature is an environmental stress that greatly influences plant performance and distribution. Plants exposed to cold stress exhibit modifications of plasma membrane physical properties that can affect their functionality. Here it is reported the effect of low temperature exposure of Arabidopsis plants on the activity of phospholipase D and H+-ATPase, the master enzyme located at the plasma membrane. The H+-ATPase activity was differently affected, depending on the length of cold stress imposed. In particular, an exposure to 4 °C for 6 h determined the strong inhibition of the H+-ATPase activity, that correlates with a reduced association with the regulatory 14-3-3 proteins. A longer exposure first caused the full recovery of the enzymatic activity followed by a significant activation, in accordance with both the increased association with 14-3-3 proteins and induction of H+-ATPase gene transcription. Different time lengths of cold stress treatment were also shown to strongly stimulate the phospholipase D activity and affect the phosphatidic acid levels of the plasma membranes. Our results suggest a functional correlation between the activity of phospholipase D and H+-ATPase mediated by phosphatidic acid release during the cold stress response.
Collapse
Affiliation(s)
- Carlo Muzi
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133, Rome, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133, Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133, Rome, Italy.
| | - Patrizia Aducci
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
12
|
|
13
|
Liang C, Ge Y, Su L, Bu J. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:535-45. [PMID: 25087500 DOI: 10.1007/s11356-014-3389-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/24/2014] [Indexed: 05/15/2023]
Abstract
Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China,
| | | | | | | |
Collapse
|
14
|
|
15
|
Mansour MMF. The plasma membrane transport systems and adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1787-800. [PMID: 25262536 DOI: 10.1016/j.jplph.2014.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.
Collapse
|
16
|
Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:915-22. [PMID: 23499455 DOI: 10.1016/j.jplph.2013.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 05/13/2023]
Abstract
The effect of salt stress (50mM NaCl) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. Plants were grown under salt stress for 1, 3 or 6 days. In salt-stressed plants, weak stimulation of ATP hydrolytic activity of PM H(+)-ATPase and significant stimulation of proton transport through the plasma membrane were observed. The H(+)/ATP coupling ratio in the plasma membrane of plants subjected to salt stress significantly increased. The greatest stimulation of PM H(+)-ATPase was in 6-day stressed plants. Increased H2O2 accumulation under salt stress conditions in cucumber roots was also observed, with the greatest accumulation observed in 6-day stressed plants. Additionally, during the sixth day of salinity, there appeared heat shock proteins (HSPs) 17.7 and 101, suggesting that repair processes and adaptation to stress occurred in plants. Under salt stress conditions, fast post-translational modifications took place. Protein blot analysis with antibody against phosphothreonine and 14-3-3 proteins showed that, under salinity, the level of those elements increased. Additionally, under salt stress, activity changes of PM H(+)-ATPase can partly result from changes in the pattern of expression of PM H(+)-ATPase genes. In cucumber seedlings, there was increased expression of CsHA10 under salt stress and the transcript of a new PM H(+)-ATPase gene isoform, CsHA1, also appeared. Accumulation of the CsHA1 transcript was induced by NaCl exposure, and was not expressed at detectable levels in roots of control plants. The appearance of a new PM H(+)-ATPase transcript, in addition to the increase in enzyme activity, indicates the important role of the enzyme in maintaining ion homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Małgorzata Janicka-Russak
- Department of Plant Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland.
| | | | | | | |
Collapse
|
17
|
Kim HS, Oh JM, Luan S, Carlson JE, Ahn SJ. Cold stress causes rapid but differential changes in properties of plasma membrane H(+)-ATPase of camelina and rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:828-37. [PMID: 23399403 DOI: 10.1016/j.jplph.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 05/09/2023]
Abstract
Camelina (Camelina sativa) and rapeseed (Brassica napus) are well-established oil-seed crops with great promise also for biofuels. Both are cold-tolerant, and camelina is regarded to be especially appropriate for production on marginal lands. We examined physiological and biochemical alterations in both species during cold stress treatment for 3 days and subsequent recovery at the temperature of 25°C for 0, 0.25, 0.5, 1, 2, 6, and 24h, with particular emphasis on the post-translational regulation of the plasma membrane (PM) H(+)-ATPase (EC3.6.3.14). The activity and translation of the PM H(+)-ATPase, as well as 14-3-3 proteins, increased after 3 days of cold stress in both species but recovery under normal conditions proceeded differently. The increase in H(+)-ATPase activity was the most dramatic in camelina roots after recovery for 2h at 25°C, followed by decay to background levels within 24h. In rapeseed, the change in H(+)-ATPase activity during the recovery period was less pronounced. Furthermore, H(+)-pumping increased in both species after 15min recovery, but to twice the level in camelina roots compared to rapeseed. Protein gel blot analysis with phospho-threonine anti-bodies showed that an increase in phosphorylation levels paralleled the increase in H(+)-transport rate. Thus our results suggest that cold stress and recovery in camelina and rapeseed are associated with PM H(+)-fluxes that may be regulated by specific translational and post-translational modifications.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Department of Bioenergy Science and Technology, Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Wongchai C, Chaidee A, Pfeiffer W. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:129-141. [PMID: 21974771 DOI: 10.1111/j.1438-8677.2011.00487.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory.
Collapse
Affiliation(s)
- C Wongchai
- Fachbereich Zellbiologie, Abteilung Pflanzenphysiologie, Universität Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
19
|
Wakeel A, Asif AR, Pitann B, Schubert S. Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:519-26. [PMID: 20980072 DOI: 10.1016/j.jplph.2010.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
Salinity is one of the major stress factors responsible for growth reduction of most of the higher plants. In this study, the effect of salt stress on protein pattern in shoots and roots of sugar beet (Beta vulgaris L.) was examined. Sugar beet plants were grown in hydroponics under control and 125 mM salt treatments. A significant growth reduction of shoots and roots was observed. The changes in protein expression, caused by salinity, were monitored using two-dimensional gel-electrophoresis. Most of the detected proteins in sugar beet showed stability under salt stress. The statistical analysis of detected proteins showed that the expression of only six proteins from shoots and three proteins from roots were significantly altered. At this stage, the significantly changed protein expressions we detected could not be attributed to sugar beet adaptation under salt stress. However, unchanged membrane bound proteins under salt stress did reveal the constitutive adaptation of sugar beet to salt stress at the plasma membrane level.
Collapse
Affiliation(s)
- Abdul Wakeel
- Institute of Plant Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
20
|
Wakeel A, Sümer A, Hanstein S, Yan F, Schubert S. In vitro effect of different Na+/K+ ratios on plasma membrane H+ -ATPase activity in maize and sugar beet shoot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:341-5. [PMID: 21282062 DOI: 10.1016/j.plaphy.2011.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/03/2010] [Accepted: 11/05/2011] [Indexed: 05/07/2023]
Abstract
Plant growth is impaired primarily by osmotic stress in the first phase of salt stress, whereas Na+ toxicity affects the plant growth mainly in the second phase. Salinity leads to increased Na+/K+ ratio and thus displacement of K+ by Na+ in the plant cell. Relatively higher cytosolic Na+ concentrations may have an effect on the activity of plasma membrane (PM) H+ -ATPase. A decreased PM-H+ -ATPase activity could increase the apoplastic pH. This process could limit the cell-wall extensibility and thus reduce growth according to the acid growth theory. To compare the effect of Na+ on PM H+ -ATPase activity in salt-sensitive maize (Zea mays L.) and salt-resistant sugar beet (Beta vulgaris L.) shoot, PM vesicles were isolated from growing shoots of both species and ATPase activity was determined by assaying the P(i) released by hydrolysis of ATP. The H+ pumping activity was measured as the quenching of acridine-orange absorbance. An increased Na+/K+ ratio decreased the PM H+ -ATPase activity in vesicles of maize as well as of sugar beet shoots. Nevertheless, the detrimental effect of increased Na+/K+ ratio was more severe in salt-sensitive maize compared to salt-resistant sugar beet. At 25 mM Na+ concentration, hydrolytic activity was not affected in sugar beet. However, a significant decrease in hydrolytic activity was observed in maize at pH 7. In maize and sugar beet, reduction in active H+ flux was 20% and 5% at 25 mM Na+ concentration in the assay, respectively. The active H+ flux was decreased to 80% and 60%, when 100 mM K+ were substituted by 100mM Na+. We conclude that PM H+ -ATPases of salt-resistant sugar beet and maize shoot are sensitive to higher concentration of Na+. However, sugar beet PM-H+ -ATPases are relatively efficient and may have constitutive resistance against lower concentration (25 mM) of Na+ as compared to that of salt-sensitive maize.
Collapse
Affiliation(s)
- Abdul Wakeel
- Institute of Plant Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, Germany.
| | | | | | | | | |
Collapse
|