1
|
Nie Z, Wang L, Zhao P, Wang Z, Shi Q, Liu H. Metabolomics reveals the impact of nitrogen combined with the zinc supply on zinc availability in calcareous soil via root exudates of winter wheat (Triticum aestivum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108069. [PMID: 37852066 DOI: 10.1016/j.plaphy.2023.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
A possible mechanism for the improved availability of zinc (Zn) in soil by combining nitrogen (N) with Zn supply was investigated based on the root exudates of winter wheat. N, Zn supply as well as their combination significantly regulated nine root exudates in winter wheat; in which, the secretion of cis-aconitic acid involving in the TCA cycle, C5-branched dibasic acid metabolism, glyoxylate and dicarboxylate metabolism and 2-oxocarboxylic acid metabolism was upregulated by N, Zn supply as well as their combination. N-Zn combination induced the activities of citrate synthase and cis-aconitase in roots and shoots of winter wheat thus to increase the concentrations of citric and aconitic acid; the decrease of isocitric acid concentrations in shoots indicated the inhibited conversion of aconitic acid to isocitric acid by N-Zn combination. It revealed a possible reason for the enhanced secretion of cis-aconitic acid by N-Zn combination. Exogenous addition of 10 μ plant-1 cis-aconitate significantly increased available Zn concentrations in soil and Zn concentrations in winter wheat under N-Zn combination. Thus, the N-Zn combination regulated the metabolism of cis-aconitic acid in winter wheat, thus enhancing the secretion of cis-aconitic acid to increase the bioavailability of Zn in soil.
Collapse
Affiliation(s)
- Zhaojun Nie
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| | - Linglu Wang
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| | - Peng Zhao
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| | - Zhenbo Wang
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| | - Qiuzhe Shi
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| | - Hongen Liu
- Resources and Environment College, Henan Agricultural University, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
2
|
Singh S, Singh AL, Pal KK, Reddy KK, Gangadhara K, Dey R, Mahatma MK, Verma A, Kumar N, Patel CB, Thawait LK, Ahmed S, Navapara R, Rani K, Kona P. Accumulation of resveratrol, ferulic acid and iron in seeds confer iron deficiency chlorosis tolerance to a novel genetic stock of peanut ( Arachis hypogaea L.) grown in calcareous soils. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:725-737. [PMID: 37363420 PMCID: PMC10284743 DOI: 10.1007/s12298-023-01321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Peanut is mostly grown in calcareous soils with high pH which are deficient in available iron (Fe2+) for plant uptake causing iron deficiency chlorosis (IDC). The most pertinent solution is to identify efficient genotypes showing tolerance to limited Fe availability in the soil. A field screening of 40 advanced breeding lines of peanut using NRCG 7472 and ICGV 86031 as IDC susceptible and tolerant checks, respectively, was envisaged for four years. PBS 22040 and 29,192 exhibited maximum tolerance while PBS 12215 and 12,185 were most susceptible. PBS 22040 accumulated maximum seed resveratrol (5.8 ± 0.08 ppm), ferulic acid (378.6 ± 0.31 ppm) and Fe (45.59 ± 0.41 ppm) content. Enhanced chlorophyll retention (8.72-9.50 µg ml-1), carotenoid accumulation (1.96-2.08 µg ml-1), and antioxidant enzyme activity (APX: 35.9-103.9%; POX: 51- 145%) reduced the MDA accumulation (5.61-9.11 µM cm-1) in tolerant lines. The overexpression of Fe transporters IRT1, ZIP5, YSL3 was recorded to the tune of 2.3-9.54; 1.45-3.7; 2.20-2.32- folds respectively in PBS 22040 and 29,192, over NRCG 7472. PBS 22040 recorded the maximum pod yield (282 ± 4.6 g/row), hundred kernel weight (55 ± 0.7 g) and number of pods per three plants (54 ± 1.7). The study thus reports new insights into the roles of resveratrol, ferulic acid and differential antioxidant enzyme activities in imparting IDC tolerance. PBS 22040, being the best performing line, can be the potent source of IDC tolerance for introgression in high yielding but susceptible genotypes under similar edaphic conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01321-9.
Collapse
Affiliation(s)
- Sushmita Singh
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Amrit Lal Singh
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Kamal Krishna Pal
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Kiran K. Reddy
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - K. Gangadhara
- ICAR- Central Tobacco Research Institute, Kandukur, AP India
| | - Rinku Dey
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - M. K. Mahatma
- ICAR- National Research Centre On Seed and Spices, Ajmer, Rajasthan India
| | - Aman Verma
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan India
| | - Narendra Kumar
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - C. B. Patel
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Lokesh Kumar Thawait
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Suhail Ahmed
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Radha Navapara
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Kirti Rani
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| | - Praveen Kona
- Plant Physiology, ICAR- Directorate of Groundnut Research, Junagadh, Gujarat India
| |
Collapse
|
3
|
Ghio C, Soukup JM, Dailey LA, Ghio AJ, Schreinemachers DM, Koppes RA, Koppes AN. Lactate Production can Function to Increase Human Epithelial Cell Iron Concentration. Cell Mol Bioeng 2022; 15:571-585. [PMID: 36531860 PMCID: PMC9751240 DOI: 10.1007/s12195-022-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Under conditions of limited iron availability, plants and microbes have evolved mechanisms to acquire iron. For example, metal deficiency stimulates reprogramming of carbon metabolism, increasing activity of enzymes involved in the Krebs cycle and the glycolytic pathway. Resultant carboxylates/hydroxycarboxylates then function as ligands to complex iron and facilitate solubilization and uptake, reversing the metal deficiency. Similarly, human intestinal epithelial cells may produce lactate, a hydroxycarboxylate, during absolute and functional iron deficiency to import metal to reverse limited availability. Methods Here we investigate (1) if lactate can increase cell metal import of epithelial cells in vitro, (2) if lactate dehydrogenase (LDH) activity in and lactate production by epithelial cells correspond to metal availability, and (3) if blood concentrations of LDH in a human cohort correlate with indices of iron homeostasis. Results Results show that exposures of human epithelial cells, Caco-2, to both sodium lactate and ferric ammonium citrate (FAC) increase metal import relative to FAC alone. Similarly, fumaric, isocitric, malic, and succinic acid coincubation with FAC increase iron import relative to FAC alone. Increased iron import following exposures to sodium lactate and FAC elevated both ferritin and metal associated with mitochondria. LDH did not change after exposure to deferoxamine but decreased with 24 h exposure to FAC. Lactate levels revealed decreased levels with FAC incubation. Review of the National Health and Nutrition Examination Survey demonstrated significant negative relationships between LDH concentrations and serum iron in human cohorts. Conclusions Therefore, we conclude that iron import in human epithelial cells can involve lactate, LDH activity can reflect the availability of this metal, and blood LDH concentrations can correlate with indices of iron homeostasis.
Collapse
Affiliation(s)
- Caroline Ghio
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | | | - Lisa A. Dailey
- US Environmental Protection Agency, Chapel Hill, NC 27514 USA
| | - Andrew J. Ghio
- US Environmental Protection Agency, Chapel Hill, NC 27514 USA
| | | | - Ryan A. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
- Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
- Northeastern University, 360 Huntington Ave., 332 Mugar Life Science Building, Boston, MA 02115 USA
| |
Collapse
|
4
|
Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. THE NEW PHYTOLOGIST 2016; 211:1129-41. [PMID: 27111838 DOI: 10.1111/nph.13964] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 05/16/2023]
Abstract
Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum. The procedure is based on direct injection using hydrophilic interaction chromatography with dual detection by elemental (inductively coupled plasma mass spectrometry) and molecular (high-resolution electrospray mass spectrometry) mass spectrometric detection. Numerous and novel complexes of iron(II), iron(III), copper(II), zinc, manganese, cobalt(II), cobalt(III), magnesium, calcium, nickel and molybdenum(IV) with several ligands including nicotianamine, citrate, malate, histidine, glutamine, aspartic acid, asparagine, phenylalanine and others are observed in pea fluids and discussed. This methodology provides a large inventory of various types of metal complexes, which is a significant asset for future biochemical and genetic studies into metal transport/homeostasis.
Collapse
Affiliation(s)
- Paulina Flis
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (UMR5254), Centre National de la Recherche Scientifique, Université de Pau et des Pays de l'Adour, Pau Cedex 9, F-64063, France
| | - Laurent Ouerdane
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (UMR5254), Centre National de la Recherche Scientifique, Université de Pau et des Pays de l'Adour, Pau Cedex 9, F-64063, France
| | - Louis Grillet
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, Montpellier Cedex 2, F-34060, France
| | - Catherine Curie
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, Montpellier Cedex 2, F-34060, France
| | - Stéphane Mari
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut de Biologie Intégrative des Plantes, Centre National de la Recherche Scientifique (UMR5004), Institut National de la Recherche Agronomique, Université Montpellier II, Ecole Nationale Supérieure d'Agronomie, Montpellier Cedex 2, F-34060, France
| | - Ryszard Lobinski
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (UMR5254), Centre National de la Recherche Scientifique, Université de Pau et des Pays de l'Adour, Pau Cedex 9, F-64063, France
| |
Collapse
|
5
|
Adnane B, Mainassara ZA, Mohamed F, Mohamed L, Jean-Jacques D, Rim MT, Georg C. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes. Int J Mol Sci 2015; 16:18976-9008. [PMID: 26287163 PMCID: PMC4581282 DOI: 10.3390/ijms160818976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/04/2022] Open
Abstract
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Collapse
Affiliation(s)
- Bargaz Adnane
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| | - Zaman-Allah Mainassara
- International Maize and Wheat Improvement Center (CIMMYT), Southern Africa Regional Office, MP163 Harare, Zimbabwe.
| | - Farissi Mohamed
- Polyvalent Laboratory for Research & Development, Polydisciplinary Faculty, Sultan Moulay Sliman University, 23000 Beni-Mellal, Morocco.
| | - Lazali Mohamed
- Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, Université de Khemis Miliana, 44225 Ain Defla, Algeria.
| | - Drevon Jean-Jacques
- Unité mixte de recherche, Écologie Fonctionnelle & Biogéochimie des Sols et Agroécosystèmes, Institut National de la Recherche Agronomique, 34060 Montpellier, France.
| | - Maougal T Rim
- Laboratoire de génétique Biochimie et biotechnologies végétales Faculté des Sciences de la Nature et de la Vie, Université des frères Mentouri, 25017 Constantine, Algeria.
| | - Carlsson Georg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Box 103, SE-23053 Alnarp, Sweden.
| |
Collapse
|
6
|
Arias-Baldrich C, Bosch N, Begines D, Feria AB, Monreal JA, García-Mauriño S. Proline synthesis in barley under iron deficiency and salinity. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:121-9. [PMID: 26125122 DOI: 10.1016/j.jplph.2015.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/07/2023]
Abstract
This work investigates proline synthesis in six barley varieties subjected to iron deficiency, salinity or both stresses. The highest growth under Fe sufficiency corresponded to Belgrano and Shakira. A moderate augment of leaf phosphoenolpyruvate carboxylase (PEPC) activity was observed in all six varieties in response to Fe deficiency, consistently in leaves and sporadically in roots. All six varieties accumulated proline under Fe deficiency, to a higher extent in leaves than in roots. The decrease of Fe supply from 100 μM NaFe(III)-EDTA to 0.5 μM NaFe(III)-EDTA reduced growth and photosynthetic pigments similarly in the six barley varieties. On the contrary, differences between varieties could be observed with respect to increased or, conversely, decreased proline content as a function of the amount of NaFe(III)-EDTA supplied. These two opposite types were represented by Belgrano (higher proline under Fe deficiency) and Shakira (higher proline under Fe sufficiency). Time-course experiments suggested that leaf PEPC activity was not directly responsible for supplying C for proline synthesis under Fe deficiency. High proline levels in the leaves of Fe-deficient Belgrano plants in salinity were associated to a better performance of this variety under these combined stresses.
Collapse
Affiliation(s)
- Cirenia Arias-Baldrich
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Nadja Bosch
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Digna Begines
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n6, 41012, Seville, Spain.
| |
Collapse
|
7
|
Higuchi K, Iwase J, Tsukiori Y, Nakura D, Kobayashi N, Ohashi H, Saito A, Miwa E. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots. PHYSIOLOGIA PLANTARUM 2014; 151:313-322. [PMID: 24611482 DOI: 10.1111/ppl.12175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Barley (Hordeum vulgare), which tolerates iron (Fe) deficiency, secretes a large amount of phytosiderophores from its roots. However, how barley is able to allocate resources for phytosiderophore synthesis when the carbon assimilation rate is reduced by Fe deficiency is unknown. We previously suggested that the acceleration of senescence in older leaves triggered by Fe deficiency may allow the recycling of assimilates to contribute to phytosiderophore synthesis. In this work, we show the relationship between an increase in the C/N ratio in older leaves and Fe-deficiency tolerance among three barley cultivars. The increase in the C/N ratio suggests an enhanced capacity for the retranslocation of carbohydrates or amino acids from older leaves to the sink organs. An increase in the sucrose concentration in Fe-deficient barley also suggests active redistribution of assimilates. This metabolic modulation may be supported by accelerated senescence of older leaves, as Fe deficiency increased the expression of senescence-associated genes. The older leaves of Fe-deficient barley maintained CO2 assimilation under Fe deficiency. Barley that had been Fe-deficient for 3 days preferentially allocated newly assimilated (13) C to the roots and nutrient solution. Interestingly, the oldest leaf of Fe-deficient barley released more (13) C into the nutrient solution than the second oldest leaf. Thus, the balance between anabolism and catabolism in older leaves, supported by highly regulated senescence, plays a key role in metabolic adaptation in Fe-deficient barley.
Collapse
Affiliation(s)
- Kyoko Higuchi
- Department of Applied Biology and Chemistry, Laboratory of Plant Production Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Correia PJ, Gama F, Saavedra T, Miguel MGA, Paulo Da Silva J, Abad A AN, de Varennes A, Pestana M. Changes in the concentration of organic acids in roots and leaves of carob-tree under Fe deficiency. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:496-504. [PMID: 32481008 DOI: 10.1071/fp13204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/01/2013] [Indexed: 05/24/2023]
Abstract
Several fruit trees are able to cope with iron (Fe) deficiency when grown in calcareous soils in the Mediterranean region, although information regarding well adapted slow-growing species is scarce, and the mechanisms activated by these species are not described in the literature. A crucial issue related to tolerance is the need to transport Fe over relatively long distances inside the plant. To evaluate the possible role of organic acids in the movement of Fe in tolerant plants, we studied the concentration of low molecular weight organic acids in several organs of 1-year old carob plants grown for 55 days in nutrient solutions without Fe (0µM Fe) or with 1µM Fe and 10µM Fe. Roots, stems and leaves were harvested, and the biomass, Fe and organic acid contents quantified. Total leaf chlorophyll (Chl) was evaluated in young leaves over the experimental period and the activity of root ferric chelate-reductase (FC-R; EC 1.16.1.17) was determined after 35 days, when deficiency symptoms appeared. Iron chlorosis was observed only at the end of the experiment in plants grown in the absence of Fe, and these plants had a smaller DW of leaves and also significant greater activity of root FC-R. Iron deficiency (Fe0 and Fe1 treatments) induced significant changes in the concentrations of succinic, malic, citric and fumaric acids, which increased in roots, or in basal, middle and apical leaves. There were significant correlations between most organic acids (with the exceptions of 2-oxoglutaric and tartaric acids) and leaf Chl. Analysis of each type of leaf showed that more succinic and malic acids were present in young chlorotic leaves while the reverse was true for quinic acid. These changes in organic acids followed a root-to-foliage pathway that was similar in all leaf types and particularly evident in young chlorotic leaves. We hypothesised that it was associated with Fe transport from roots to aboveground tissues, as there were significant differences in Fe contents between treatments with and without Fe.
Collapse
Affiliation(s)
- Pedro Jos Correia
- ICAAM, Universidade do Algarve, Faculdade de Ciências e Tecnologia, de Gambelas, 8005-139 Faro, Portugal
| | - Florinda Gama
- ICAAM, Universidade do Algarve, Faculdade de Ciências e Tecnologia, de Gambelas, 8005-139 Faro, Portugal
| | - Teresa Saavedra
- ICAAM, Universidade do Algarve, Faculdade de Ciências e Tecnologia, de Gambelas, 8005-139 Faro, Portugal
| | - Maria Gra A Miguel
- IBB-CBV, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Departamento de Química e Farmácia, de Gambelas, 8005-139 Faro, Portugal
| | - Jos Paulo Da Silva
- CIQA - Faculdade de Ciências e Tecnologia, Universidade do Algarve, de Gambelas, 8005-139 Faro, Portugal
| | - Anunciaci N Abad A
- Estación Experimental de Aula Dei, CSIC, Departamento de Nutrición Vegetal, 50080 Zaragoza, Spain
| | - Amarilis de Varennes
- CEER, Instituto Superior de Agronomia - ULisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maribela Pestana
- ICAAM, Universidade do Algarve, Faculdade de Ciências e Tecnologia, de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J. Metal species involved in long distance metal transport in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:105. [PMID: 24723928 PMCID: PMC3971170 DOI: 10.3389/fpls.2014.00105] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids.
Collapse
Affiliation(s)
| | | | | | | | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
| |
Collapse
|
10
|
Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. Signals from chloroplasts and mitochondria for iron homeostasis regulation. TRENDS IN PLANT SCIENCE 2013; 18:305-11. [PMID: 23462548 DOI: 10.1016/j.tplants.2013.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential element for human nutrition. Given that plants represent a major dietary source of Fe worldwide, it is crucial to understand plant Fe homeostasis fully. A major breakthrough in the understanding of Fe sensing and signaling was the identification of several transcription factor cascades regulating Fe homeostasis. However, the mechanisms of activation of these cascades still remain to be elucidated. In this opinion, we focus on the possible roles of mitochondria and chloroplasts as cellular Fe sensing and signaling sites, offering a new perspective on the integrated regulation of Fe homeostasis and its interplay with cellular metabolism.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio e Agroenergia, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
11
|
Vigani G, Morandini P, Murgia I. Searching iron sensors in plants by exploring the link among 2'-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:169. [PMID: 23755060 PMCID: PMC3668137 DOI: 10.3389/fpls.2013.00169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/13/2013] [Indexed: 05/18/2023]
Abstract
Knowledge accumulated on the regulation of iron (Fe) homeostasis, its intracellular trafficking and transport across various cellular compartments and organs in plants; storage proteins, transporters and transcription factors involved in Fe metabolism have been analyzed in detail in recent years. However, the key sensor(s) of cellular plant "Fe status" triggering the long-distance shoot-root signaling and leading to the root Fe deficiency responses is (are) still unknown. Local Fe sensing is also a major task for roots, for adjusting the internal Fe requirements to external Fe availability: how such sensing is achieved and how it leads to metabolic adjustments in case of nutrient shortage, is mostly unknown. Two proteins belonging to the 2'-OG-dependent dioxygenases family accumulate several folds in Fe-deficient Arabidopsis roots. Such proteins require Fe(II) as enzymatic cofactor; one of their subgroups, the HIF-P4H (hypoxia-inducible factor-prolyl 4-hydroxylase), is an effective oxygen sensor in animal cells. We envisage here the possibility that some members of the 2'-OG dioxygenase family may be involved in the Fe deficiency response and in the metabolic adjustments to Fe deficiency or even in sensing Fe, in plant cells.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie ed Ambientali-Produzioni, Territorio, Agroenergia, Università degli Studi di MilanoMilano, Italy
| | - Piero Morandini
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Irene Murgia
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
- *Correspondence: Irene Murgia, Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy e-mail:
| |
Collapse
|