1
|
Durand TC, Cueff G, Godin B, Valot B, Clément G, Gaude T, Rajjou L. Combined Proteomic and Metabolomic Profiling of the Arabidopsis thaliana vps29 Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. Int J Mol Sci 2019; 20:E362. [PMID: 30654520 PMCID: PMC6359594 DOI: 10.3390/ijms20020362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/25/2022] Open
Abstract
The retromer is a multiprotein complex conserved from yeast to humans, which is involved in intracellular protein trafficking and protein recycling. Selection of cargo proteins transported by the retromer depends on the core retromer subunit composed of the three vacuolar protein sorting (VPS) proteins, namely VPS26, VPS29, and VPS35. To gain a better knowledge of the importance of the plant retromer in protein sorting, we carried out a comparative proteomic and metabolomic analysis of Arabidopsis thaliana seeds from the wild-type and the null-retromer mutant vps29. Here, we report that the retromer mutant displays major alterations in the maturation of seed storage proteins and synthesis of lipid reserves, which are accompanied by severely impaired seed vigor and longevity. We also show that the lack of retromer components is counterbalanced by an increase in proteins involved in intracellular trafficking, notably members of the Ras-related proteins in brain (RAB) family proteins. Our study suggests that loss of the retromer stimulates energy metabolism, affects many metabolic pathways, including that of cell wall biogenesis, and triggers an osmotic stress response, underlining the importance of retromer function in seed biology.
Collapse
Affiliation(s)
- Thomas C Durand
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon I, CNRS, INRA, 69342 Lyon, France.
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Benoît Valot
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon I, CNRS, INRA, 69342 Lyon, France.
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles cedex, France.
| |
Collapse
|
2
|
Liu J, Sui Y, Chen H, Liu Y, Liu Y. Proteomic Analysis of Kiwifruit in Response to the Postharvest Pathogen, Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2018; 9:158. [PMID: 29497428 PMCID: PMC5818428 DOI: 10.3389/fpls.2018.00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Gray mold, caused by the fungus Botrytis cinerea, is the most significant postharvest disease of kiwifruit. In the present study, iTRAQ with LC-ESI-MS/MS was used to identify the kiwifruit proteins associated with the response to B. cinerea. A total of 2,487 proteins in kiwifruit were identified. Among them, 292 represented differentially accumulated proteins (DAPs), with 196 DAPs having increased, and 96 DAPs having decreased in accumulation in B. cinerea-inoculated vs. water-inoculated, control kiwifruits. DAPs were associated with penetration site reorganization, cell wall degradation, MAPK cascades, ROS signaling, and PR proteins. In order to examine the corresponding transcriptional levels of the DAPs, RT-qPCR was conducted on a subset of 9 DAPs. In addition, virus-induced gene silencing was used to examine the role of myosin 10 in kiwifruit, a gene modulating host penetration resistance to fungal infection, in response to B. cinerea infection. The present study provides new insight on the understanding of the interaction between kiwifruit and B. cinerea.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Huizhen Chen
- College of Food Science and Engineering, Hefei University of Technology, Hefei, China
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Yiqing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yongsheng Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM. Sugar Transporters in Plants: New Insights and Discoveries. PLANT & CELL PHYSIOLOGY 2017; 58:1442-1460. [PMID: 28922744 DOI: 10.1093/pcp/pcx090] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Carbohydrate partitioning is the process of carbon assimilation and distribution from source tissues, such as leaves, to sink tissues, such as stems, roots and seeds. Sucrose, the primary carbohydrate transported long distance in many plant species, is loaded into the phloem and unloaded into distal sink tissues. However, many factors, both genetic and environmental, influence sucrose metabolism and transport. Therefore, understanding the function and regulation of sugar transporters and sucrose metabolic enzymes is key to improving agriculture. In this review, we highlight recent findings that (i) address the path of phloem loading of sucrose in rice and maize leaves; (ii) discuss the phloem unloading pathways in stems and roots and the sugar transporters putatively involved; (iii) describe how heat and drought stress impact carbohydrate partitioning and phloem transport; (iv) shed light on how plant pathogens hijack sugar transporters to obtain carbohydrates for pathogen survival, and how the plant employs sugar transporters to defend against pathogens; and (v) discuss novel roles for sugar transporters in plant biology. These exciting discoveries and insights provide valuable knowledge that will ultimately help mitigate the impending societal challenges due to global climate change and a growing population by improving crop yield and enhancing renewable energy production.
Collapse
Affiliation(s)
- Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Kristen A Leach
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Thu M Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| | - Rachel A Mertz
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
- Plant Imaging Consortium, USA
| |
Collapse
|
4
|
Zadražnik T, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:42-50. [PMID: 28013170 DOI: 10.1016/j.jplph.2016.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 05/10/2023]
Abstract
Drought is an abiotic stress that strongly influences plant growth, development and productivity. Proteome changes in the stem of the drought-tolerant common bean (Phaseolus vulgaris L.) cultivar Tiber have were when the plants were exposed to drought. Five-week-old plants were subjected to water deficit by withholding irrigation for 7, 12 and 17days, whereas control plants were regularly irrigated. Relative water content (RWC) of leaves, as an indicator of the degree of cell and tissue hydration, showed the highest statistically significant differences between control and drought-stressed plants after 17days of treatment, where RWC remained at 90% for control and declined to 45% for stressed plants. Plants exposed to drought for 17days and control plants at the same developmental stage were included in quantitative proteomic analysis using in-gel stable isotope labeling of proteins in combination with mass spectrometry. The quantified proteins were grouped into several functional groups, mainly into energy metabolism, photosynthesis, proteolysis, protein synthesis and proteins related to defense and stress. 70kDa heat shock protein showed the greatest increase in abundance under drought of all the proteins, suggesting its role in protecting plants against stress by re-establishing normal protein conformations and thus cellular homeostasis. The abundance of proteins involved in protein synthesis also increased under drought stress, important for recovery of damaged proteins involved in the plant cell's metabolic activities. Other important proteins in this study were related to proteolysis and folding, which are necessary for maintaining proper cellular protein homeostasis. Taken together, these results reveal the complexity of pathways involved in the drought stress response in common bean stems and enable comparison with the results of proteomic analysis of leaves, thus providing important information to further understand the biochemical and molecular mechanisms of drought response in this important legume.
Collapse
Affiliation(s)
- Tanja Zadražnik
- Agricultural Institute of Slovenia, 1000, Ljubljana, Slovenia.
| | | | - Vladimir Meglič
- Agricultural Institute of Slovenia, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
5
|
Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. PLANTA 2016; 243:43-63. [PMID: 26335855 DOI: 10.1007/s00425-015-2394-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/25/2015] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION Heat stress changes isoform content and distribution of cytoskeletal subunits in pollen tubes affecting accumulation of secretory vesicles and distribution of sucrose synthase, an enzyme involved in cell wall synthesis. Plants are sessile organisms and are therefore exposed to damages caused by the predictable increase in temperature. We have analyzed the effects of temperatures on the development of pollen tubes by focusing on the cytoskeleton and related processes, such as vesicular transport and cell wall synthesis. First, we show that heat stress affects pollen germination and, to a lesser extent, pollen tube growth. Both, microtubules and actin filaments, are damaged by heat treatment and changes of actin and tubulin isoforms were observed in both cases. Damages to actin filaments mainly concern the actin array present in the subapex, a region critical for determining organelle and vesicle content in the pollen tube apex. In support of this, green fluorescent protein-labeled vesicles are arranged differently between heat-stressed and control samples. In addition, newly secreted cell wall material (labeled by propidium iodide) shows an altered distribution. Damage induced by heat stress also extends to proteins that bind actin and participate in cell wall synthesis, such as sucrose synthase. Ultimately, heat stress affects the cytoskeleton thereby causing alterations in the process of vesicular transport and cell wall deposition.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Claudia Faleri
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Mauro Cresti
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy.
| |
Collapse
|
6
|
Li YF, Wang Y, Tang Y, Kakani VG, Mahalingam R. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2013; 13:153. [PMID: 24093800 PMCID: PMC3851271 DOI: 10.1186/1471-2229-13-153] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/03/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Global warming predictions indicate that temperatures will increase by another 2-6°C by the end of this century. High temperature is a major abiotic stress limiting plant growth and productivity in many areas of the world. Switchgrass (Panicum virgatum L.) is a model herbaceous bioenergy crop, due to its rapid growth rate, reliable biomass yield, minimal requirements of water and nutrients, adaptability to grow on marginal lands and widespread distribution throughout North America. The effect of high temperature on switchgrass physiology, cell wall composition and biomass yields has been reported. However, there is void in the knowledge of the molecular responses to heat stress in switchgrass. RESULTS We conducted long-term heat stress treatment (38°/30°C, day/night, for 50 days) in the switchgrass cultivar Alamo. A significant decrease in the plant height and total biomass was evident in the heat stressed plants compared to controls. Total RNA from control and heat stress samples were used for transcriptome analysis with switchgrass Affymetrix genechips. Following normalization and pre-processing, 5365 probesets were identified as differentially expressed using a 2-fold cutoff. Of these, 2233 probesets (2000 switchgrass unigenes) were up-regulated, and 3132 probesets (2809 unigenes) were down-regulated. Differential expression of 42 randomly selected genes from this list was validated using RT-PCR. Rice orthologs were retrieved for 78.7% of the heat stress responsive switchgrass probesets. Gene ontology (GOs) enrichment analysis using AgriGO program showed that genes related to ATPase regulator, chaperone binding, and protein folding was significantly up-regulated. GOs associated with protein modification, transcription, phosphorus and nitrogen metabolic processes, were significantly down-regulated by heat stress. CONCLUSIONS Plausible connections were identified between the identified GOs, physiological responses and heat response phenotype observed in switchgrass plants. Comparative transcriptome analysis in response to heat stress among four monocots - switchgrass, rice, wheat and maize identified 16 common genes, most of which were associated with protein refolding processes. These core genes will be valuable biomarkers for identifying heat sensitive plant germplasm since they are responsive to both short duration as well as chronic heat stress treatments, and are also expressed in different plant growth stages and tissue types.
Collapse
Affiliation(s)
- Yong-Fang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yixing Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yuhong Tang
- Samuel Roberts Noble Foundation, Genomics Core Facility, Ardmore, OK 73401, USA
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|