1
|
Sarrette B, Luu TB, Johansson A, Fliegmann J, Pouzet C, Pichereaux C, Remblière C, Sauviac L, Carles N, Amblard E, Guyot V, Bonhomme M, Cullimore J, Gough C, Jacquet C, Pauly N. Medicago truncatula SOBIR1 controls pathogen immunity and specificity in the Rhizobium-legume symbiosis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39225339 DOI: 10.1111/pce.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Medicago truncatula Nod Factor Perception (MtNFP) plays a role in both the Rhizobium-Legume (RL) symbiosis and plant immunity, and evidence suggests that the immune-related function of MtNFP is relevant for symbiosis. To better understand these roles of MtNFP, we sought to identify new interacting partners. We screened a yeast-2-hybrid cDNA library from Aphanomyces euteiches infected and noninfected M. truncatula roots. The M. truncatula leucine-rich repeat (LRR) receptor-like kinase SUPPRESSOR OF BIR1 (MtSOBIR1) was identified as an interactor of MtNFP and was characterised for kinase activity, and potential roles in symbiosis and plant immunity. We showed that the kinase domain of MtSOBIR1 is active and can transphosphorylate the pseudo-kinase domain of MtNFP. MtSOBIR1 could functionally complement Atsobir1 and Nbsobir1/sobir1-like mutants for defence activation, and Mtsobir1 mutants were defective in immune responses to A. euteiches. For symbiosis, we showed that Mtsobir1 mutant plants had both a strong, early infection defect and defects in the defence suppression in nodules, and both effects were plant genotype- and rhizobial strain-specific. This work highlights a conserved function for MtSOBIR1 in activating defence responses to pathogen attack, and potentially novel symbiotic functions of downregulating defence in association with the control of symbiotic specificity.
Collapse
Affiliation(s)
- Baptiste Sarrette
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Thi-Bich Luu
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Alexander Johansson
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Judith Fliegmann
- Centre for Plant Molecular Biology (ZMBP) - Plant Biochemistry, University of Tübingen, Tübingen, Germany
| | - Cécile Pouzet
- Fédération de Recherche Agrobiosciences, Interactions and Biodiversity Research (FR AIB) Imaging and Proteomics platforms, University of Toulouse III, CNRS, Auzeville-Tolosan, France
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions and Biodiversity Research (FR AIB) Imaging and Proteomics platforms, University of Toulouse III, CNRS, Auzeville-Tolosan, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, Toulouse, France
| | - Céline Remblière
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Laurent Sauviac
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Noémie Carles
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, University of Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Valentin Guyot
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, University of Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, University of Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan Cedex, France
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, Sophia Antipolis Cedex, France
| |
Collapse
|
2
|
Roman A, Montenegro J, Fraile L, Urra M, Buezo J, Cornejo A, Moran JF, Gogorcena Y. Indole-3-acetaldoxime delays root iron-deficiency responses and modify auxin homeostasis in Medicago truncatula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111718. [PMID: 37105378 DOI: 10.1016/j.plantsci.2023.111718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/18/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Iron (Fe) is an essential plant micronutrient, being a major limiting growth factor in calcareous soils. To increase Fe uptake, plants induce lateral roots growth, the expression of a Fe(III)-chelate reductase (FCR), a Fe(II)-transporter and a H+-ATPase and the secretion of flavins. Furthermore, auxin hormone family is involved in the Fe-deficiency responses but the action mechanism remains elusive. In this work, we evaluated the effect of the auxin-precursor indole-3-acetaldoxime (IAOx) on hydroponically grown Medicago truncatula plants under different Fe conditions. Upon 4-days of Fe starvation, the pH of the nutrient solution decreased, while both the FCR activity and the presence of flavins increased. Exogenous IAOx increased lateral roots growth contributing to superroot phenotype, decreased chlorosis, and delayed up to 3-days the pH-decrease, the FCR-activity increase, and the presence of flavins, compared to Fe-deficient plants. Gene expression levels were in concordance with the physiological responses. RESULTS: showed that IAOx was immediately transformed to IAN in roots and shoots to maintain auxin homeostasis. IAOx plays an active role in iron homeostasis delaying symptoms and responses in Fe-deficient plants. We may speculate that IAOx or its derivatives remobilize Fe from root cells to alleviate Fe-deficiency. Overall, these results point out that the IAOx-derived phenotype may have advantages to overcome nutritional stresses.
Collapse
Affiliation(s)
- Angela Roman
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Joaquín Montenegro
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Laura Fraile
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain
| | - Marina Urra
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Javier Buezo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT2), Department of Sciences, Public University of Navarre (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Jose Fernando Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Department of Sciences, Public University of Navarre (UPNA), Avda. de Pamplona 123, E-31192 Mutilva, Spain
| | - Yolanda Gogorcena
- Department of Pomology, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Montañana 1005, E-50059 Zaragoza, Spain.
| |
Collapse
|
3
|
Li S, Song Z, Liu X, Zhou X, Yang W, Chen J, Chen R. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter. PLANT & CELL PHYSIOLOGY 2022; 63:521-534. [PMID: 35137187 DOI: 10.1093/pcp/pcab177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/21/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth. Iron-regulated transporters (IRTs) play important roles in Fe2+ uptake and transport in strategy I plants. Maize (Zea mays) belongs to a strategy II plant, in which mugineic acid (MA)-Fe3+ uptake is mainly carried out by Yellow Stripe 1 (YS1). However, ZmIRT1 was previously identified by our laboratory. In this study, we isolated a novel gene from maize (ZmIRT2), which is highly homologous to OsIRT2 and ZmIRT1. ZmIRT2 was expressed in roots and anther and was induced by Fe and zinc (Zn) deficiencies. ZmIRT2-GFP fusion protein localized to the plasma membrane and endoplasmic reticulum. ZmIRT2 reversed growth defects involving Zn and Fe uptake in mutant yeast. ZmIRT2 overexpression in maize led to elevated Zn and Fe levels in roots, shoots and seeds of transgenic plants. Transcript levels of ZmIRT1 were elevated in roots, while levels of YS1 were reduced in shoots of ZmIRT2 transgenic plants. Our results imply that ZmIRT2 may function solely with ZmIRT1 to mediate Fe uptake in roots. ZmIRT1, ZmIRT2 and ZmYS1 may function in a cooperative manner to maintain Zn and Fe homeostasis in ZmIRT2 overexpressing plants. Furthermore, ZmIRT2 could be used in fortification efforts to elevate Zn and Fe levels in crop plants.
Collapse
Affiliation(s)
- Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12# Zhongguancun South Street, Beijing 100081, China
| | - Zizhao Song
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12# Zhongguancun South Street, Beijing 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12# Zhongguancun South Street, Beijing 100081, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12# Zhongguancun South Street, Beijing 100081, China
| | - Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12# Zhongguancun South Street, Beijing 100081, China
| | - Jingtang Chen
- Department of Agronomy, Agricultural University of Hebei/Hebei Sub-center of Chinese National Maize Improvement Center, 289# Lingyusi Street, Baoding 071001, China
- College of Agronomy, Qingdao Agricultural University, 700# Changcheng Road, Qingdao 266109, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12# Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
4
|
Li A, Liu A, Wu S, Qu K, Hu H, Yang J, Shrestha N, Liu J, Ren G. Comparison of structural variants in the whole genome sequences of two Medicago truncatula ecotypes: Jemalong A17 and R108. BMC PLANT BIOLOGY 2022; 22:77. [PMID: 35193491 PMCID: PMC8862580 DOI: 10.1186/s12870-022-03469-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Structural variants (SVs) constitute a large proportion of the genomic variation that results in phenotypic variation in plants. However, they are still a largely unexplored feature in most plant genomes. Here, we present the whole-genome landscape of SVs between two model legume Medicago truncatula ecotypes-Jemalong A17 and R108- that have been extensively used in various legume biology studies. RESULTS To catalogue SVs, we first resolved the previously published R108 genome assembly (R108 v1.0) to chromosome-scale using 124 × Hi-C data, resulting in a high-quality genome assembly. The inter-chromosomal reciprocal translocations between chromosomes 4 and 8 were confirmed by performing syntenic analysis between the two genomes. Combined with the Hi-C data, it appears that these translocation events had a significant effect on chromatin organization. Using both whole-genome and short-read alignments, we identified the genomic landscape of SVs between the two genomes, some of which may account for several phenotypic differences, including their differential responses to aluminum toxicity and iron deficiency, and the development of different anthocyanin leaf markings. We also found extensive SVs within the nodule-specific cysteine-rich gene family which encodes antimicrobial peptides essential for terminal bacteroid differentiation during nitrogen-fixing symbiosis. CONCLUSIONS Our results provide a near-complete R108 genome assembly and the first genomic landscape of SVs obtained by comparing two M. truncatula ecotypes. This may provide valuable genomic resources for the functional and molecular research of legume biology in the future.
Collapse
Affiliation(s)
- Ao Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ai Liu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shuang Wu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Kunjing Qu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jinli Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Ben Abdallah H, Mai HJ, Slatni T, Fink-Straube C, Abdelly C, Bauer P. Natural Variation in Physiological Responses of Tunisian Hedysarum carnosum Under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:1383. [PMID: 30333841 PMCID: PMC6176081 DOI: 10.3389/fpls.2018.01383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/30/2018] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. The cultivation of leguminous plants has generated strong interest because of their growth even on poor soils. Calcareous and saline soils with poor mineral availability are wide-spread in Tunisia. In an attempt to select better forage crops adapted to Tunisian soils, we characterized Fe deficiency responses of three different isolates of Hedysarum carnosum, an endemic Tunisian extremophile species growing in native stands in salt and calcareous soil conditions. H. carnosum is a non-model crop. The three isolates, named according to their habitats Karkar, Thelja, and Douiret, differed in the expression of Fe deficiency symptoms like morphology, leaf chlorosis with compromised leaf chlorophyll content and photosynthetic capacity and leaf metal contents. Across these parameters Thelja was found to be tolerant, while Karkar and Douiret were susceptible to Fe deficiency stress. The three physiological and molecular indicators of the iron deficiency response in roots, Fe reductase activity, growth medium acidification and induction of the IRON-REGULATED TRANSPORTER1 homolog, indicated that all lines responded to -Fe, however, varied in the strength of the different responses. We conclude that the individual lines have distinct adaptation capacities to react to iron deficiency, presumably involving mechanisms of whole-plant iron homeostasis and internal metal distribution. The Fe deficiency tolerance of Thelja might be linked with adaptation to its natural habitat on calcareous soil.
Collapse
Affiliation(s)
| | - Hans Jörg Mai
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tarek Slatni
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | | | - Chedly Abdelly
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Sci Rep 2018; 8:1068. [PMID: 29348657 PMCID: PMC5773544 DOI: 10.1038/s41598-018-19518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Iron (Fe) is an essential element for plants; however, its availability is limited as it forms insoluble complexes in the soil. Consequently, plants have developed mechanisms to adapt to low Fe conditions. We demonstrate that ethylene is involved in Fe deficiency-induced physiological responses in Malus xiaojinensis, and describe the identification of MxERF4 as a protein-protein interaction partner with the MxFIT transcription factor, which is involved in the iron deficiency response. Furthermore, we demonstrate that MxERF4 acts as an MxFIT interaction partner to suppresses the expression of the Fe transporter MxIRT1, by binding directly to its promoter, requiring the EAR motif of the MxERF4 protein. Suppression of MxERF4 expression in M. xiaojinensis, using virus induced gene silencing resulted in an increase in MxIRT1 expression. Taken together, the results suggest a repression mechanism, where ethylene initiates the Fe deficiency response, and the response is then dampened, which may require a transient inhibition of Fe acquisition via the action of MxERF4.
Collapse
|
7
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
8
|
Luo SS, Sun YN, Zhou X, Zhu T, Zhu LS, Arfan M, Zou LJ, Lin HH. Medicago truncatula genotypes Jemalong A17 and R108 show contrasting variations under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:190-198. [PMID: 27721134 DOI: 10.1016/j.plaphy.2016.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Drought is one of the most significant abiotic stresses that restrict crop productivity. Medicago truncatula is a model legume species with a wide genetic diversity. We compared the differential physiological and molecular changes of two genotypes of M. truncatula (Jemalong A17 and R108) in response to progressive drought stress and rewatering. The MtNCED and MtZEP activation and higher abscisic acid (ABA) content was observed in Jemalong A17 plants under normal conditions. Additionally, a greater increase in ABA content and expression of MtNCED and MtZEP in Jemalong A17 plants than that of R108 plants were observed under drought conditions. A more ABA-sensitive stomatal closure and a slower water loss was found in excised leaves of Jemalong A17 plants. Meanwhile, Jemalong A17 plants alleviated leaf wilting and maintained higher relative water content under drought conditions. Exposed to drought stress, Jemalong A17 plants exhibited milder oxidative damage which has less H2O2 and MDA accumulation, lower electrolyte leakage and higher chlorophyll content and PSII activity. Furthermore, Jemalong A17 plants enhanced expression of stress-upregulated genes under drought conditions. These results suggest that genotypes Jemalong A17 and R108 differed in their response and adaptation to drought stress. Given the relationship between ABA and these physiological responses, the MtNCED and MtZEP activation under normal conditions may play an important role in regulation of greater tolerance of Jemalong A17 plants to drought stress. The activation of MtNCED and MtZEP may lead to the increase of ABA content which may activate expression of drought-stress-regulated genes and cause a series of physiological resistant responses.
Collapse
Affiliation(s)
- Shi-Shuai Luo
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Yan-Ni Sun
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Xue Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Li-Sha Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Muhammad Arfan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China
| | - Li-Juan Zou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China; Life Science and Technology College and Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu 610064, China.
| |
Collapse
|
9
|
Navarro-León E, Albacete A, Torre-González ADL, Ruiz JM, Blasco B. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. PHYTOCHEMISTRY 2016; 130:85-9. [PMID: 27543253 DOI: 10.1016/j.phytochem.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants.
Collapse
Affiliation(s)
- Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, E-30100, Espinardo, Murcia, Spain
| | | | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| |
Collapse
|
10
|
Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1056. [PMID: 26640474 PMCID: PMC4661236 DOI: 10.3389/fpls.2015.01056] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Agronomy, University of CórdobaCórdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| | | | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| |
Collapse
|
11
|
Huang D, Dai W. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:59-67. [PMID: 26373309 DOI: 10.1016/j.jplph.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 05/20/2023]
Abstract
Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species.
Collapse
Affiliation(s)
- Danqiong Huang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Wenhao Dai
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
12
|
Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH. Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. BMC PLANT BIOLOGY 2014; 14:122. [PMID: 24885873 PMCID: PMC4031900 DOI: 10.1186/1471-2229-14-122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/30/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Resequencing can be used to identify genome variations underpinning many morphological and physiological phenotypes. Legume model plant Medicago truncatula ecotypes Jemalong A17 (J. A17) and R108 differ in their responses to mineral toxicity of aluminum and sodium, and mineral deficiency of iron in growth medium. The difference may result from their genome variations, but no experimental evidence supports this hypothesis. RESULTS A total of 12,750 structure variations, 135,045 short insertions/deletions and 764,154 single nucleotide polymorphisms were identified by resequencing the genome of R108. The suppressed expression of MtAACT that encodes a putative aluminum-induced citrate efflux transporter by deletion of partial sequence of the second intron may account for the less aluminum-induced citrate exudation and greater accumulation of aluminum in roots of R108 than in roots of J. A17, thus rendering R108 more sensitive to aluminum toxicity. The higher expression-level of MtZpt2-1 encoding a TFIIIA-related transcription factor in J. A17 than R108 under conditions of salt stress can be explained by the greater number of stress-responsive elements in its promoter sequence, thus conferring J. A17 more tolerant to salt stress than R108 plants by activating the expression of downstream stress-responsive genes. YSLs (Yellow Stripe-Likes) are involved in long-distance transport of iron in plants. We found that an YSL gene was deleted in the genome of R108 plants, thus rendering R108 less tolerance to iron deficiency than J. A17 plants. CONCLUSIONS The deletion or change in several genes may account for the different responses of M. truncatula ecotypes J. A17 and R108 to mineral toxicity of aluminum and sodium as well as iron deficiency. Uncovering genome variations by resequencing is an effective method to identify different traits between species/ecotypes that are genetically related. These findings demonstrate that analyses of genome variations by resequencing can shed important light on differences in responses of M. truncatula ecotypes to abiotic stress in general and mineral stress in particular.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiu-Ying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Bao-Lan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Min-Gui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, P. R. China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|