1
|
Kaya G, Ergin N. Classification of red beet and sugar beet for drought tolerance using morpho-physiological and stomatal traits. PeerJ 2025; 13:e19133. [PMID: 40130173 PMCID: PMC11932113 DOI: 10.7717/peerj.19133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 03/26/2025] Open
Abstract
Drought is a global phenomenon that endangers agricultural production by creating water scarcity. Selecting drought-tolerant cultivars, varieties, and species is essential for maintaining the food supply and advancing breeding efforts. The study aimed to compare red beet (Beta vulgaris L. var. cruenta) and sugar beet (B. vulgaris L. var. altissima Döll.) for drought tolerance at the early growth stage considering morpho-physiological and stomatal parameters. Three red beet cultivars (Bicores, BT Pancina, and Yakut) and three sugar beet cultivars (Mohican, Orthega KWS, and Valentina) were subjected to various drought stress (Control, 10%, and 20% PEG-6000) for 30 days at the four-leaf stage. Fresh and dry plant weight, leaf area, dry matter, chlorophyll content (SPAD), leaf temperature, relative water content, membrane stability index, stomatal density, and size were investigated. The results revealed that the cultivars exhibited different responses to drought stress, and a greater percentage reduction in morphological parameters was observed in red beet cultivars. Drought markedly reduced the fresh and dry weights, leaf area, relative water content, membrane stability, and stomatal size. Enhanced dry matter and stomatal density were identified. The stomatal density increased from 158 to 215 mm-2 while the stomatal size decreased from 433 to 342 µm2 in the plants subjected to 20% PEG. Moderate drought stress effectively distinguished drought-tolerant sugar beet and red beet genotypes. It was concluded that sugar beet appeared to be more drought-tolerant than red beet and that the membrane stability index, relative water content, and stomatal density could be effectively used for selecting drought-tolerant beet genotypes.
Collapse
Affiliation(s)
- Gamze Kaya
- Department of Horticulture, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Nurgül Ergin
- Department of Field Crops, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
2
|
Li X, Chen L, Li D, You M, Li Y, Yan L, Yan J, Gou W, Chang D, Ma X, Bai S, Peng Y. Integrated comparative physiological and transcriptomic analyses of Elymus sibiricus L. reveal the similarities and differences in the molecular mechanisms in response to drought and cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109459. [PMID: 39736257 DOI: 10.1016/j.plaphy.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses. Analyzing physiological responses and gene expression changes under drought and cold, it reveals the similarities and differences in their molecular mechanisms that underlie these responses. The results indicate that both drought stress and cold stress severely damage the integrity of the cell membrane in Es. Notably, under cold stress, the accumulation of osmotic regulation substances in Es is more significant, which may be related to the regulation of carbohydrate metabolism (CM)-related genes in cold environments. Furthermore, the response to oxidative stress triggered by cold stress in Es is partially inhibited. The enrichment analysis showed that the DEGs responsive to drought stress in Es were mainly related to the pathway of photosynthesis, whereas the DEGs responsive to cold stress were more associated with the protein processing in endoplasmic reticulum (PPER), highlighting distinct molecular responses. In addition, we discovered that the abscisic acid (ABA) signaling transduction plays a dominant role in mediating the drought resistance mechanism of Es. We have identified 86 key candidate genes related to photosynthesis, Phst, CM, and PPER, including 5 genes that can respond to both drought and cold stress. This study provides a foundation for the molecular mechanisms underlying cold and drought resistance in Es, with insight into its future genetic improvement for stress resistance.
Collapse
Affiliation(s)
- Xinrui Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Lili Chen
- Sichuan Provincial Work Station of Grassland, Sichuan Provincial Bureau of Forestry and Grassland, Chengdu, 610081, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Yingzhu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Jiajun Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenlong Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Chang
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Ou X, Hua Q, Dong J, Guo K, Wu M, Deng Y, Wu Z. Functional identification of DNA demethylase gene CaROS1 in pepper ( Capsicum annuum L.) involved in salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1396902. [PMID: 38756961 PMCID: PMC11097670 DOI: 10.3389/fpls.2024.1396902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Pepper, which is a widely cultivated important vegetable, is sensitive to salt stress, and the continuous intensification of soil salinization has affected pepper production worldwide. However, genes confer to salt tolerance are rarely been cloned in pepper. Since the REPRESSOR OF SILENCING 1 (ROS1) is a DNA demethylase that plays a crucial regulatory role in plants in response to various abiotic stresses, including salt stress. We cloned a ROS1 gene in pepper, named CaROS1 (LOC107843637). Bioinformatic analysis showed that the CaROS1 protein contains the HhH-GPD glycosylase and RRM_DME domains. qRT-PCR analyses showed that the CaROS1 was highly expressed in young and mature fruits of pepper and rapidly induced by salt stress. Functional characterization of the CaROS1 was performed by gene silencing in pepper and overexpressing in tobacco, revealed that the CaROS1 positively regulates salt tolerance ability. More detailly, CaROS1-silenced pepper were more sensitive to salt stress, and their ROS levels, relative conductivity, and malondialdehyde content were significantly higher in leaves than those of the control plants. Besides, CaROS1-overexpressing tobacco plants were more tolerant to salt stress, with a higher relative water content, total chlorophyll content, and antioxidant enzyme activity in leaves compared to those of WT plants during salt stress. These results revealed the CaROS1 dose play a role in salt stress response, providing the theoretical basis for salt tolerance genetic engineering breeding in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
4
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
5
|
Zhang J, Xie M, Yu G, Wang D, Xu Z, Liang L, Xiao J, Xie Y, Tang Y, Sun G, Sun B, Huang Z, Lai Y, Li H. CaSPDS, a Spermidine Synthase Gene from Pepper ( Capsicum annuum L.), Plays an Important Role in Response to Cold Stress. Int J Mol Sci 2023; 24:ijms24055013. [PMID: 36902443 PMCID: PMC10003509 DOI: 10.3390/ijms24055013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Spermidine synthase (SPDS) is a key enzyme in the polyamine anabolic pathway. SPDS genes help regulate plant response to environmental stresses, but their roles in pepper remain unclear. In this study, we identified and cloned a SPDS gene from pepper (Capsicum annuum L.), named CaSPDS (LOC107847831). Bioinformatics analysis indicated that CaSPDS contains two highly conserved domains: an SPDS tetramerisation domain and a spermine/SPDS domain. Quantitative reverse-transcription polymerase chain reaction results showed that CaSPDS was highly expressed in the stems, flowers, and mature fruits of pepper and was rapidly induced by cold stress. The function of CaSPDS in cold stress response was studied by silencing and overexpressing it in pepper and Arabidopsis, respectively. Cold injury was more serious and reactive oxygen species levels were greater in the CaSPDS-silenced seedlings than in the wild-type (WT) seedlings after cold treatment. Compared with the WT plants, the CaSPDS-overexpression Arabidopsis plants were more tolerant to cold stress and showed higher antioxidant enzyme activities, spermidine content, and cold-responsive gene (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1) expression. These results indicate that CaSPDS plays important roles in cold stress response and is valuable in molecular breeding to enhance the cold tolerance of pepper.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Minghui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guofeng Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zeping Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
6
|
Characteristic of the Ascorbate Oxidase Gene Family in Beta vulgaris and Analysis of the Role of AAO in Response to Salinity and Drought in Beet. Int J Mol Sci 2022; 23:ijms232112773. [PMID: 36361565 PMCID: PMC9654295 DOI: 10.3390/ijms232112773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Ascorbate oxidase, which is known to play a key role in regulating the redox state in the apoplast, cell wall metabolism, cell expansion and abiotic stress response in plants, oxidizes apo-plastic ascorbic acid (AA) to dehydroascorbic acid (DHA). However, there is little information about the AAO genes and their functions in beets under abiotic stress. The term salt or drought stress refers to the treatment of plants with slow and gradual salinity/drought. Contrastingly, salt shock consists of exposing plants to high salt levels instantaneously and drought shock occurs under fast drought progression. In the present work, we have subjected plants to salinity or drought treatments to elicit either stress or shock and carried out a genome-wide analysis of ascorbate oxidase (AAO) genes in sugar beet (B. vulgaris cv. Huzar) and its halophytic ancestor (B. maritima). Here, conserved domain analyses showed the existence of twelve BvAAO gene family members in the genome of sugar beet. The BvAAO_1-12 genes are located on chromosomes 4, 5, 6, 8 and 9. The phylogenetic tree exhibited the close relationships between BvAAO_1-12 and AAO genes of Spinacia oleracea and Chenopodium quinoa. In both beet genotypes, downregulation of AAO gene expression with the duration of salt stress or drought treatment was observed. This correlated with a decrease in AAO enzyme activity under defined experimental setup. Under salinity, the key downregulated gene was BvAAO_10 in Beta maritima and under drought the BvAAO_3 gene in both beets. This phenomenon may be involved in determining the high tolerance of beet to salinity and drought.
Collapse
|
7
|
Islam MJ, Uddin MJ, Hossain MA, Henry R, Begum MK, Sohel MAT, Mou MA, Ahn J, Cheong EJ, Lim YS. Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS One 2022; 17:e0262099. [PMID: 34995297 PMCID: PMC8741020 DOI: 10.1371/journal.pone.0262099] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research institute, Ishurdi, Pabna, Bangladesh
| | - Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, Tromsø, Norway
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Mst. Kohinoor Begum
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research institute, Ishurdi, Pabna, Bangladesh
| | - Md. Abu Taher Sohel
- Agronomy and Farming System Division, Bangladesh Sugarcrop Research Institute, Ishurdi, Pabna, Bangladesh
| | - Masuma Akter Mou
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Ju Cheong
- Division of Forest Science, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
9
|
Li Y, Li X, Zhang J, Li D, Yan L, You M, Zhang J, Lei X, Chang D, Ji X, An J, Li M, Bai S, Yan J. Physiological and Proteomic Responses of Contrasting Alfalfa ( Medicago sativa L.) Varieties to High Temperature Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:753011. [PMID: 34956258 PMCID: PMC8695758 DOI: 10.3389/fpls.2021.753011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
High temperature (HT) is an important factor for limiting global plant distribution and agricultural production. As the global temperature continues to rise, it is essential to clarify the physiological and molecular mechanisms of alfalfa responding the high temperature, which will contribute to the improvement of heat resistance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in heat tolerance, MS30 (heat-tolerant) and MS37 (heat-sensitive), were comparatively analyzed under the treatments of continuously rising temperatures for 42 days. The results showed that under the HT stress, the chlorophyll content and the chlorophyll fluorescence parameter (Fv/Fm) of alfalfa were significant reduced and some key photosynthesis-related proteins showed a down-regulated trend. Moreover, the content of Malondialdehyde (MDA) and the electrolyte leakage (EL) of alfalfa showed an upward trend, which indicates both alfalfa varieties were damaged under HT stress. However, because the antioxidation-reduction and osmotic adjustment ability of MS30 were significantly stronger than MS37, the damage degree of the photosynthetic system and membrane system of MS30 is significantly lower than that of MS37. On this basis, the global proteomics analysis was undertaken by tandem mass tags (TMT) technique, a total of 6,704 proteins were identified and quantified. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that a series of key pathways including photosynthesis, metabolism, adjustment and repair were affected by HT stress. Through analyzing Venn diagrams of two alfalfa varieties, 160 and 213 differentially expressed proteins (DEPs) that had dynamic changes under HT stress were identified from MS30 and MS37, respectively. Among these DEPs, we screened out some key DEPs, such as ATP-dependent zinc metalloprotease FTSH protein, vitamin K epoxide reductase family protein, ClpB3, etc., which plays important functions in response to HT stress. In conclusion, the stronger heat-tolerance of MS30 was attributed to its higher adjustment and repair ability, which could cause the metabolic process of MS30 is more conducive to maintaining its survival and growth than MS37, especially at the later period of HT stress. This study provides a useful catalog of the Medicago sativa L. proteomes with the insight into its future genetic improvement of heat-resistance.
Collapse
Affiliation(s)
- Yingzhu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xinrui Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Lijun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Minghong You
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jianbo Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiong Lei
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dan Chang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiaofei Ji
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jinchan An
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Mingfeng Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Shiqie Bai
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| |
Collapse
|
10
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
11
|
Islam MJ, Ryu BR, Azad MOK, Rahman MH, Rana MS, Lim JD, Lim YS. Exogenous Putrescine Enhances Salt Tolerance and Ginsenosides Content in Korean Ginseng ( Panax ginseng Meyer) Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1313. [PMID: 34203403 PMCID: PMC8309092 DOI: 10.3390/plants10071313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.
Collapse
Affiliation(s)
- Md. Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Obyedul Kalam Azad
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Hafizur Rahman
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Soyel Rana
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Jung-Dae Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| |
Collapse
|
12
|
Functional Characterization of a Sugar Beet BvbHLH93 Transcription Factor in Salt Stress Tolerance. Int J Mol Sci 2021; 22:ijms22073669. [PMID: 33915978 PMCID: PMC8037259 DOI: 10.3390/ijms22073669] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The basic/helix–loop–helix (bHLH) transcription factor (TF) plays an important role for plant growth, development, and stress responses. Previously, proteomics of NaCl treated sugar beet leaves revealed that a bHLH TF, BvbHLH93, was significantly increased under salt stress. The BvbHLH93 protein localized in the nucleus and exhibited activation activity. The expression of BvbHLH93 was significantly up-regulated in roots and leaves by salt stress, and the highest expression level in roots and leaves was 24 and 48 h after salt stress, respectively. Furthermore, constitutive expression of BvbHLH93 conferred enhanced salt tolerance in Arabidopsis, as indicated by longer roots and higher content of chlorophyll than wild type. Additionally, the ectopic expression lines accumulated less Na+ and MDA, but more K+ than the WT. Overexpression of the BvBHLH93 enhanced the activities of antioxidant enzymes by positively regulating the expression of antioxidant genes SOD and POD. Compared to WT, the overexpression plants also had low expression levels of RbohD and RbohF, which are involved in reactive oxygen species (ROS) production. These results suggest that BvbHLH93 plays a key role in enhancing salt stress tolerance by enhancing antioxidant enzymes and decreasing ROS generation.
Collapse
|
13
|
AlKahtani MDF, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HIM, Abdelaal KAA. Evaluation of Silicon and Proline Application on the Oxidative Machinery in Drought-Stressed Sugar Beet. Antioxidants (Basel) 2021; 10:antiox10030398. [PMID: 33800758 PMCID: PMC8000334 DOI: 10.3390/antiox10030398] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Drought stress deleteriously affects growth, development and productivity in plants. So, we examined the silicon effect (2 mmol) and proline (10 mmol) individually or the combination (Si + proline) in alleviating the harmful effect of drought on total phenolic compounds, reactive oxygen species (ROS), chlorophyll concentration and antioxidant enzymes as well as yield parameters of drought-stressed sugar beet plants during 2018/2019 and 2019/2020 seasons. Our findings indicated that the root diameter and length (cm), root and shoot fresh weights (g plant−1) as well as root and sugar yield significantly decreased in sugar beet plants under drought. Relative water content (RWC), nitrogen (N), phosphorus (P) and potassium (K) contents and chlorophyll (Chl) concentration considerably reduced in stressed sugar beet plants that compared with control in both seasons. Nonetheless, lipid peroxidation (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide (O2●−) considerably elevated as signals of drought. Drought-stressed sugar beet plants showed an increase in proline accumulation, total phenolic compounds and up-regulation of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activity to mitigate drought effects. Si and proline individually or the combination Si + proline considerably increased root and sugar yield, sucrose%, Chl concentration and RWC, MDA and EL were remarkably reduced. The treatments led to adjust proline and total phenolic compounds as well as CAT and SOD activity in stressed sugar beet plants. We concluded that application of Si + proline under drought stress led to improve the resistance of sugar beet by regulating of proline, antioxidant enzymes, phenolic compounds and improving RWC, Chl concentration and Nitrogen, Phosphorus and Potassium (NPK) contents as well as yield parameters.
Collapse
Affiliation(s)
- Muneera D. F. AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 102275-11675, Saudi Arabia; (M.D.F.A.); (L.A.H.); (H.I.M.A.)
| | - Yaser M. Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 2455-11451, Saudi Arabia;
- Rice Research & Training Center, Rice Biotechnology Lab, Field Crops Research Institute, Sakha, Kafr EL-Sheikh 33717, Egypt
| | - Emadeldeen Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Latifa Al Husnain
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 102275-11675, Saudi Arabia; (M.D.F.A.); (L.A.H.); (H.I.M.A.)
| | - Hussah I. M. AlGwaiz
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 102275-11675, Saudi Arabia; (M.D.F.A.); (L.A.H.); (H.I.M.A.)
| | - Khaled A. A. Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
- Correspondence:
| |
Collapse
|
14
|
Geng G, Wang G, Stevanato P, Lv C, Wang Q, Yu L, Wang Y. Physiological and Proteomic Analysis of Different Molecular Mechanisms of Sugar Beet Response to Acidic and Alkaline pH Environment. FRONTIERS IN PLANT SCIENCE 2021; 12:682799. [PMID: 34178001 PMCID: PMC8220161 DOI: 10.3389/fpls.2021.682799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Soil pH is a major constraint to crop plant growth and production. Limited data are available on sugar beet growth status under different pH conditions. In this study, we analyzed the growth status and phenotype of sugar beet under pH 5, pH 7.5, and pH 9.5. It was found that the growth of sugar beet was best at pH 9.5 and worst at pH 5. The activities of superoxide dismutase (SOD) and peroxidase (POD) in leaves and roots increased as pH decreased from 9.5 to 5. Moreover, compared with pH 9.5, the levels of soluble sugar and proline in leaves increased significantly at pH 5. To explore the mechanisms of sugar beet response to different soil pH environments, we hypothesized that proteins play an important role in plant response to acidic and alkaline pH environment. Thus, the proteome changes in sugar beet modulated by pH treatment were accessed by TMT-based quantitative proteomic analysis. A total of three groups of differentially expressed proteins (DEPs) (pH 5 vs. pH 7.5, pH 9.5 vs. pH7.5 and pH 5 vs. pH 9.5) were identified in the leaves and roots of sugar beet. Several key proteins related to the difference of sugar beet response to acid (pH 5) and alkaline (pH 9.5) and involved in response to acid stress were detected and discussed. Moreover, based on proteomics results, QRT-PCR analysis confirmed that expression levels of three N transporters (NTR1, NRT2.1, and NRT2.5) in roots were relatively high under alkaline conditions (pH 9.5) compared with pH 5 or pH 7.5. The total nitrogen content of pH 9.5 in sugar beet was significantly higher than that of pH 7.5 and pH 5. These studies increase our understanding of the molecular mechanism of sugar beet response to different pH environments.
Collapse
Affiliation(s)
- Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Gang Wang
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Padova, Italy
| | - Chunhua Lv
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qiuhong Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang,
| |
Collapse
|
15
|
Islam MJ, Kim JW, Begum MK, Sohel MAT, Lim YS. Physiological and Biochemical Changes in Sugar Beet Seedlings to Confer Stress Adaptability under Drought Condition. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1511. [PMID: 33171867 PMCID: PMC7695173 DOI: 10.3390/plants9111511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
The present study was conducted to examine the adaptability of 11 sugar beet cultivars grown under drought stress in the controlled glasshouse. The treatment was initiated on 30-day-old sugar beet plants where drought stress was made withholding water supply for consecutive 10 days while control was done with providing water as per requirement. It was observed that drought stress expressively reduced plant growth, photosynthetic pigments, and photosynthetic quantum yield in all the cultivars but comparative better results were observed in S1 (MAXIMELLA), S2 (HELENIKA), S6 (RECODDINA), S8 (SV2347), and S11 (BSRI Sugarbeet 2) cultivars. Besides, osmolytes like proline, glycine betaine, total soluble carbohydrate, total soluble sugar, total polyphenol, total flavonoid, and DPPH free radical scavenging activity were remarkably increased under drought condition in MAXIMELLA, HELENIKA, TERRANOVA, GREGOIA, SV2348, and BSRI Sugar beet 2 cultivars. In contrast, activities of enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly decreased in all, while the cultivars SV2347, BSRI Sugar beet 1 and BSRI Sugar beet 2 were found with increased ascorbate peroxidase (APX) activity under drought condition. In parallel, polyphenol oxidase (PPO) was increased in all cultivars except HELENIKA. Overall, the cultivars HELENIKA, RECODDINA, GREGOIA, SV2347, SV2348, BSRI Sugar beet 1, and BSRI Sugar beet 2 were found best fitted to the given drought condition. These findings would help further for the improvement of stress adaptive sugar beet cultivars development in the breeding program for drought-prone regions.
Collapse
Affiliation(s)
- Md. Jahirul Islam
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (J.W.K.)
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh;
| | - Ji Woong Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (J.W.K.)
| | - Mst. Kohinoor Begum
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh;
| | - Md. Abu Taher Sohel
- Agronomy and Farming System Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh;
| | - Young-Seok Lim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (J.W.K.)
| |
Collapse
|
16
|
Wiśniewska A, Andryka-Dudek P, Czerwiński M, Chołuj D. Fodder beet is a reservoir of drought tolerance alleles for sugar beet breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:120-131. [PMID: 31677543 DOI: 10.1016/j.plaphy.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Drought leads to serious yield losses and followed by increasing food prices. Thereby, drought tolerance is one of most important, pivotal issues for plant breeding and is determined by the very complex genetic architecture, which involves a lot of genes engaged in many cell processes. Within genomes of currently cultivated sugar beet forms, the number of favourable allelic variants is limited. However, there is a potential to identify genes related to drought tolerance deposited in genomes of wild or fodder relatives. Therefore, the goal of our study, was to identify the source of allelic variants involved in drought tolerance using a large spectrum of sugar or fodder beets and their wild relatives for analyses. Based on the drought tolerance index, calculated for morphophysiological traits, it was demonstrated that some of selected fodder beets showed the highest level of drought tolerance. The most drought tolerant fodder beet genotype did not show differences in the level of expression of genes engaged in osmoprotection and the antioxidative system, between control and drought condition, compared to sugar and wild beets. The genetic distance between selected beet forms was broad and ranged from 18 to 87%, however the most drought tolerant sugar, fodder and wild beets showed high genetic similarity and formed the common clade. Based on obtained results we propose that an adequate broad source of genes related to drought tolerance occurs in fodder beets, the crossing with which is easier, less time-consuming and more cost-effective than with wild forms of beets.
Collapse
Affiliation(s)
- Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Paulina Andryka-Dudek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mateusz Czerwiński
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Danuta Chołuj
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
17
|
Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. Int J Mol Sci 2019; 20:ijms20153777. [PMID: 31382384 PMCID: PMC6696248 DOI: 10.3390/ijms20153777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.
Collapse
|
18
|
Wang Y, Stevanato P, Lv C, Li R, Geng G. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6056-6073. [PMID: 31070911 DOI: 10.1021/acs.jafc.9b00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the major constraints affecting agricultural production and crop yield. A detailed understanding of the underlying physiological and molecular mechanisms of the different genotypic salt tolerance response in crops under salinity is therefore a prerequisite for enhancing this tolerance. In this study, we explored the changes in physiological and proteome profiles of salt-sensitive (S210) and salt-tolerant (T510) sugar beet cultivars in response to salt stress. T510 showed better growth status, higher antioxidant enzymes activities and proline level, less Na accumulation, and lower P levels after salt-stress treatments. With iTRAQ-based comparative proteomics method, 47 and 56 differentially expressed proteins were identified in the roots and leaves of S210, respectively. In T510, 56 and 50 proteins changed significantly in the roots and leaves of T510, respectively. These proteins were found to be involved in multiple aspects of functions such as photosynthesis, metabolism, stress and defense, protein synthesis, and signal transduction. Our proteome results indicated that sensitive and tolerant sugar beet cultivars respond differently to salt stress. The proteins that were mapped to the protein modification, amino acid metabolism, tricarboxylic acid cycle, cell wall synthesis, and reactive oxygen species scavenging changed differently between the sensitive and tolerant cultivars, suggesting that these pathways may promote salt tolerance in the latter. This work leads to a better understanding of the salinity mechanism in sugar beet and provides a list of potential markers for the further engineering of salt tolerance in crops.
Collapse
Affiliation(s)
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente , Università degli Studi di Padova , Viale dell'Università 16 , Legnaro, Padova 35020 , Italy
| | | | | | | |
Collapse
|
19
|
Tapia G, Méndez J, Inostroza L. Different combinations of morpho-physiological traits are responsible for tolerance to drought in wild tomatoes Solanum chilense and Solanum peruvianum. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:406-16. [PMID: 26499789 DOI: 10.1111/plb.12409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 05/23/2023]
Abstract
Herbaceous species can modify leaf structure during the growing season in response to drought stress and water loss. Evolution can select combinations of traits in plants for efficient water use in restricted environments. We investigated plant traits that mediate adaptation and acclimation to water stress in two herbaceous drought-tolerant species. Anatomical, morphological and physiological traits related to stems and leaves were examined under optimal watering (OW) and a long period of restricted watering (RW) in 11 accessions from three Solanaceae species (Solanum chilense, S. peruvianum and S. lycopersicum). The relationships between these traits were tested using linear regression and PCA. There were significant differences in anatomical traits between the species under both OW and RW, where leaf area correlated with stem diameter. Proline and total carbohydrates accumulated highly in S. chilense and S. peruvianum, respectively, and these osmolytes were strongly correlated with increased osmotic potential. Stomatal density varied between species but not between acclimation treatments, while stomatal rate was significantly higher in wild tomatoes. There was a strong positive relationship between stem growth rate and a group of traits together expressed as total stomatal number. Total stomata is described by integration of leaf area, stomatal density, height and internode length. It is proposed that constitutive adaptations and modifications through acclimation that mediate RW play an important role in tolerance to drought stress in herbaceous plants. The capacity for growth under drought stress was not associated with any single combination of traits in wild tomatoes, since the two species differed in relative levels of expression of various phenotypic traits.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
| | - J Méndez
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
| | - L Inostroza
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
| |
Collapse
|
20
|
Bac-Molenaar JA, Granier C, Keurentjes JJB, Vreugdenhil D. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:88-102. [PMID: 26138664 DOI: 10.1111/pce.12595] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 05/25/2023]
Abstract
Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory networks of flowering time and drought response or correlated responses of these traits to natural selection. In addition, plant size was negatively correlated with relative water content (RWC) independent of the absolute water content (WC), indicating a prominent role for soluble compounds. Growth in control and drought conditions was determined over time and was modelled by an exponential function. Genome-wide association (GWA) mapping of temporal plant size data and of model parameters resulted in the detection of six time-dependent quantitative trait loci (QTLs) strongly associated with drought. Most QTLs would not have been identified if plant size was determined at a single time point. Analysis of earlier reported gene expression changes upon drought enabled us to identify for each QTL the most likely candidates.
Collapse
Affiliation(s)
| | - Christine Granier
- Laboratoire d'Ecop0068ysiologie des Plantes sous Stress Environnementaux, UMR 759, Institut National de la Recherche Agronomique/Ecole Nationale Supérieure d'Agronomie, Place Viala, F-34060, Montpellier, Cedex 1, France
| | | | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
21
|
Fryday S, Tiede K, Stein J. Scientific services to support EFSA systematic reviews: Lot 5 Systematic literature review on the neonicotinoids (namely active substances clothianidin, thiamethoxam and imidacloprid) and the risks to bees (Tender specifications RC/EFSA/PRAS/2013/03). ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|