1
|
Moreira JDR, Quiñones A, Lira BS, Robledo JM, Curtin SJ, Vicente MH, Ribeiro DM, Ryngajllo M, Jiménez-Gómez JM, Peres LEP, Rossi M, Zsögön A. SELF PRUNING 3C is a flowering repressor that modulates seed germination, root architecture, and drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6226-6240. [PMID: 35710302 DOI: 10.1093/jxb/erac265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.
Collapse
Affiliation(s)
| | - Alejandra Quiñones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Jessenia M Robledo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
| | - Mateus H Vicente
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
2
|
Pino LE, Lima JE, Vicente MH, de Sá AFL, Pérez-Alfocea F, Albacete A, Costa JL, Werner T, Schmülling T, Freschi L, Figueira A, Zsögön A, Peres LEP. Increased branching independent of strigolactone in cytokinin oxidase 2-overexpressing tomato is mediated by reduced auxin transport. MOLECULAR HORTICULTURE 2022; 2:12. [PMID: 37789497 PMCID: PMC10514996 DOI: 10.1186/s43897-022-00032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/11/2022] [Indexed: 10/05/2023]
Abstract
Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.
Collapse
Affiliation(s)
- Lilian Ellen Pino
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil
| | - Joni E Lima
- Botany Department, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil
| | - Ariadne F L de Sá
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil
| | | | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus Univ. Espinardo, Murcia, Spain
| | - Juliana L Costa
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura, University of Sao Paulo, São Paulo, Brazil
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Institute of Biology, University of Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Luciano Freschi
- Biosciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Antonio Figueira
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura, University of Sao Paulo, São Paulo, Brazil
| | - Agustin Zsögön
- Plant Sciences Department, Federal University of Viçosa, Viçosa, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil.
| |
Collapse
|
3
|
Zhang X, Yang H, Schaufelberger M, Li X, Cao Q, Xiao H, Ren Z. Role of Flavonol Synthesized by Nucleus FLS1 in Arabidopsis Resistance to Pb Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9646-9653. [PMID: 32786845 DOI: 10.1021/acs.jafc.0c02848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an important pollutant of worldwide concern with respect to extensive pollution sources and highly toxic effect. Flavonol can improve plant resistance to abiotic stress and is also responsible for the alleviating effect under Pb stress. The relationship between Pb stress and flavonol and the knowledge about the mechanisms of flavonol function are very limited. Pb affected the energy metabolism process and, thus, inhibited plant growth and development. Flavonol accumulation controlled by FLS1 (flavonol synthase) could alleviate the toxic effect. Importantly, nes (mutant of NES that allows FLS1 to enter the nucleus expression) showed better growth status and lighter oxidative damage than NES (N-terminal nucleus exclusion signal peptide prevents FLS1 from entering the nucleus expression), which indicated that nucleus flavonol synthesized by nucleus FLS1 plays a key role in plant resistance to Pb stress. Although FLS1 signals were detected in the cell membrane, cytoplasm, and nucleus, membrane flavonol, cytoplasm flavonol, and nucleus flavonol were not exercising their function in the corresponding position. The expression of nucleus FLS1 intervened in the total content and composition of flavonol. The results also revealed that nucleus flavonol could regulate the ascorbate metabolism for alleviating the damage on the chloroplast, thus maintaining the photophosphorylation pathway. Our findings provided new insights for the molecular basis of Pb tolerance and response mechanism of the plant.
Collapse
Affiliation(s)
- Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Huanhuan Yang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Myriam Schaufelberger
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zürich, Switzerland
| | - Xinxin Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Qingqing Cao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Huabin Xiao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Zhen Ren
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| |
Collapse
|
4
|
Zhang D, Wang X, Li S, Wang C, Gosney MJ, Mickelbart MV, Ma J. A Post-domestication Mutation, Dt2, Triggers Systemic Modification of Divergent and Convergent Pathways Modulating Multiple Agronomic Traits in Soybean. MOLECULAR PLANT 2019; 12:1366-1382. [PMID: 31152912 DOI: 10.1016/j.molp.2019.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 05/28/2023]
Abstract
The semi-determinate stem growth habit in leguminous crops, similar to the "green revolution" semi-dwarf trait in cereals, is a key plant architecture trait that affects several other traits determining grain yield. In soybean semi-determinacy is modulated by a post-domestication gain-of-function mutation in the gene, Dt2, which encodes an MADS-box transcription factor. However, its role in systemic modification of stem growth and other traits is unknown. In this study, we show that Dt2 functions not only as a direct repressor of Dt1, which prevents terminal flowering, but also as a direct activator of putative floral integrator/identity genes including GmSOC1, GmAP1, and GmFUL, which likely promote flowering. We also demonstrate that Dt2 functions as a direct repressor of the putative drought-responsive transcription factor gene GmDREB1D, and as a direct activator of GmSPCH and GmGRP7, which are potentially associated with asymmetric division of young epidermal cells and stomatal opening, respectively, and may affect the plant's water-use efficiency (WUE). Intriguingly, Dt2 was found to be a direct activator or repressor of the precursors of eight microRNAs targeting genes potentially associated with meristem maintenance, flowering time, stomatal density, WUE, and/or stress responses. This study thus reveals the molecular basis of pleiotropy associated with plant productivity, adaptability, and environmental resilience.
Collapse
Affiliation(s)
- Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Shuo Li
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chaofan Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Michael J Gosney
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Michael V Mickelbart
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Gasparini K, Costa LC, Brito FAL, Pimenta TM, Cardoso FB, Araújo WL, Zsögön A, Ribeiro DM. Elevated CO 2 induces age-dependent restoration of growth and metabolism in gibberellin-deficient plants. PLANTA 2019; 250:1147-1161. [PMID: 31175419 DOI: 10.1007/s00425-019-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The effect of elevated [CO2] on the growth of tomato plants with reduced gibberellin content is influenced by developmental stage. The impact of increased atmospheric carbon dioxide (CO2) on plants has aroused interest in the last decades. Signaling molecules known as plant hormones are fundamental controllers of plant growth and development. Elevated CO2 concentration ([CO2]) increases plant growth; however, whether plant hormones act as mediators of this effect is still an open question. Here, we show the response to elevated [CO2] in tomato does not require a functional gibberellin (GA) biosynthesis pathway. We compared growth and primary metabolism between wild-type (WT) and GA-deficient mutant (gib-1) plants transferred from ambient (400 ppm) to elevated (750 ppm) [CO2] at two different growth stages (either 21 or 35 days after germination, DAG). Growth, photosynthetic parameters and primary metabolism in the stunted gib-1 plants were restored when they were transferred to elevated [CO2] at 21 DAG. Elevated [CO2] also stimulated growth and photosynthetic parameters in WT plants at 21 DAG; however, only minor changes were observed in the level of primary metabolites. At 35 DAG, on the other hand, elevated [CO2] did not stimulate growth in WT plants and gib-1 mutants showed their characteristic stunted growth phenotype. Taken together, our results reveal that elevated [CO2] enhances growth only within a narrow developmental window, in which GA biosynthesis is dispensable. This finding could be relevant for breeding crops in the face of the expected increases in atmospheric CO2 over the next century.
Collapse
Affiliation(s)
- Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | | | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| |
Collapse
|
6
|
Ho LH, Klemens PAW, Neuhaus HE, Ko HY, Hsieh SY, Guo WJ. SlSWEET1a is involved in glucose import to young leaves in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3241-3254. [PMID: 30958535 PMCID: PMC6598072 DOI: 10.1093/jxb/erz154] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 05/04/2023]
Abstract
Sugar allocation from source to sink (young) leaves, critical for plant development, relies on activities of plasma membrane sugar transporters. However, the key sugar unloading mechanism to sink leaves remains elusive. SWEET transporters mediate sugar efflux into reproductive sinks; therefore, they are promising candidates for sugar unloading during leaf growth. Transcripts of SlSWEET1a, belonging to clade I of the SWEET family, were markedly more abundant than those of all other 30 SlSWEET genes in young leaves of tomatoes. High expression of SlSWEET1a was also detected in reproductive sinks, such as flowers. SlSWEET1a was dominantly expressed in leaf unloading veins, and the green fluorescent protein (GFP) fusion protein was localized to the plasma membrane using Arabidopsis protoplasts, further implicating this carrier in sugar unloading. In addition, yeast growth assays and radiotracer uptake analyses further demonstrated that SlSWEET1a acted as a low-affinity (Km ~100 mM) glucose-specific carrier with a passive diffusion manner. Finally, virus-induced gene silencing of SlSWEET1a expression reduced hexose accumulation to ~50% in young leaves, with a parallel 2-fold increase in mature leaves. Thus, we propose a novel function for SlSWEET1a in the uptake of glucose into unloading cells as part of the sugar unloading mechanism in sink leaves of tomato.
Collapse
Affiliation(s)
- Li-Hsuan Ho
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, Germany
| | - Han-Yu Ko
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Hsieh
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
7
|
Hong J, Lee H, Lee J, Kim H, Ryu H. ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:207-214. [PMID: 30908972 DOI: 10.1016/j.plaphy.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
ABSCISIC ACID-INSENSITIVE 3 (ABI3) is one of the essential transcription factors of ABSCISIC ACID (ABA) signaling, functioning in seed germination, early seedling development, and abiotic stress tolerance. A recent study showed that epigenetic repression of ABI3 by brassinosteroid (BR)-activated BRI1 EMS SUPPRESSOR1 (BES1)-TOPLESS (TPL)HISTONE DEACETYLASE 19 (HDA19) repressor complex is a critical event for promoting seed germination and early seedling development. However, other physiological roles of the repression of ABI3 and ABA responses by BES1-mediated BR signaling pathways remain elusive. Here, we show that BES1-mediated suppression of ABI3 promotes floral transition and ABI3 acts as a negative regulator for flowering. Ectopic expression of ABI3 specifically compromised the early flowering phenotype of bes1-D and induced severe late-flowering phenotypes in wild-type Arabidopsis and Solanum lycopersicum plants. Both spatiotemporal expression patterns and global transcriptome analysis of ABI3-overexpressing plants supported the biological roles of ABI3 in the negative regulation of floral transition and reproduction. Finally, we confirmed that the loss of function of ABI3 induced early-flowering phenotypes in both long- and short-day conditions. In conclusion, our data suggest that BES1-mediated regulation of ABI3 is important in the reproductive phase transition of plants.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Barbosa MAM, Chitwood DH, Azevedo AA, Araújo WL, Ribeiro DM, Peres LEP, Martins SCV, Zsögön A. Bundle sheath extensions affect leaf structural and physiological plasticity in response to irradiance. PLANT, CELL & ENVIRONMENT 2019; 42:1575-1589. [PMID: 30523629 DOI: 10.1111/pce.13495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light-saturated rates of photosynthesis, Amax ) and water transport capacity (leaf hydraulic conductance, Kleaf ). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near-isogenic lines grown at two different irradiance levels. Kleaf , minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax , leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes ) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long-term water-use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.
Collapse
Affiliation(s)
- Maria Antonia M Barbosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 48824, East Lansing, MI, USA
| | - Aristéa A Azevedo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
9
|
Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, Notini MM, Junior AC, De Jesus FA, Castilho P, Carrera E, López-Díaz I, Grotewold E, Peres LEP, Nogueira FTS. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. THE NEW PHYTOLOGIST 2019; 221:1328-1344. [PMID: 30238569 DOI: 10.1111/nph.15492] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Box gene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.
Collapse
Affiliation(s)
- Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Airton C Junior
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Frederico A De Jesus
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Pollyanna Castilho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
10
|
da-Silva CJ, Mollica DC, Vicente MH, Peres LE, Modolo LV. NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 2018; 76:164-173. [DOI: 10.1016/j.niox.2017.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/02/2017] [Accepted: 09/21/2017] [Indexed: 11/26/2022]
|
11
|
Zsögön A, Cermak T, Voytas D, Peres LEP. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:120-130. [PMID: 28167025 DOI: 10.1016/j.plantsci.2016.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 05/02/2023]
Abstract
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Collapse
Affiliation(s)
- Agustin Zsögön
- Laboratory of Molecular Plant Physiology, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tomas Cermak
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
12
|
Almeida J, Azevedo MDS, Spicher L, Glauser G, vom Dorp K, Guyer L, del Valle Carranza A, Asis R, de Souza AP, Buckeridge M, Demarco D, Bres C, Rothan C, Peres LEP, Hörtensteiner S, Kessler F, Dörmann P, Carrari F, Rossi M. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:919-34. [PMID: 26596763 PMCID: PMC4737080 DOI: 10.1093/jxb/erv504] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality.
Collapse
Affiliation(s)
- Juliana Almeida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Mariana da Silva Azevedo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, Brazil
| | - Livia Spicher
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Katharina vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115 Bonn, Germany
| | - Luzia Guyer
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | - Ramón Asis
- CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | - Amanda Pereira de Souza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Marcos Buckeridge
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Cécile Bres
- INRA and Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- INRA and Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, Brazil
| | - Stefan Hörtensteiner
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Félix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115 Bonn, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria and Consejo Nacional de Investigaciones Científicas y Técnicas, PO Box 25, B1712WAA, Castelar, Argentina
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| |
Collapse
|