1
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Yang X, Xie Y, Wang T, Qiao Y, Li J, Wu L, Gao Y. Transcriptomic analysis of the response of Avena sativa to Bacillus amyloliquefaciens DGL1. Front Microbiol 2024; 15:1321989. [PMID: 38633698 PMCID: PMC11022965 DOI: 10.3389/fmicb.2024.1321989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Bacillus amyloliquefaciens DGL1, isolated from the arid sandy areas in Dagler, Qinghai Province, China, promotes the growth of Avena sativa variety "Qing Yan 1". Methods To elucidate the transcriptomic changes in the oat root system following interaction with DGL1 and to reveal the molecular mechanism by which DGL1 promotes oat growth, treatment and control groups of oat roots at 2, 4, 8, and 12 h after inoculation with a suspension of strain DGL1 were analyzed using Illumina high-throughput transcriptome sequencing technology. The differentially expressed genes were determined through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the metabolic pathways and key genes were analyzed. Results The results showed that 7874, 13,392, 13,169, and 19,026 differentially expressed genes were significantly enriched in the glycolysis/gluconeogenesis pathway, amino acid metabolism, nitrogen metabolism, plant hormone signal transduction, and other related metabolic pathways in the oat roots at 2, 4, 8, and 12 h after inoculation with a DGL1 suspension. The GO and KEGG enrichment analyses revealed that the genes encoding plasma membrane ATPase, phosphoglycerate kinase gene PGK, ammonium transporter protein gene AMT, cellulose synthase gene CSLF6, and growth hormone response family gene IAA18 were significantly upregulated. Discussion It is hypothesized that the pro-growth mechanism of strain DGL1 in oats is the result of the coordination of multiple pathways through the promotion of oat energy metabolism, phytohormone signaling, secondary metabolite synthesis, and amino acid metabolism.
Collapse
Affiliation(s)
- Xue Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Use of Forage Germplasm Resources on Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
| | - Yongli Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Use of Forage Germplasm Resources on Tibetan Plateau of Qinghai Province, Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University Xining, Xining, Qinghai, China
| | - Tian Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Youming Qiao
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University Xining, Xining, Qinghai, China
| | - Junxi Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Lingling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Ying Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
Stawoska I, Myszkowska D, Oliwa J, Skoczowski A, Wesełucha-Birczyńska A, Saja-Garbarz D, Ziemianin M. Air pollution in the places of Betula pendula growth and development changes the physicochemical properties and the main allergen content of its pollen. PLoS One 2023; 18:e0279826. [PMID: 36696393 PMCID: PMC9876359 DOI: 10.1371/journal.pone.0279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Pollen allergy becomes an increasing problem for humans, especially in the regions, where the air pollution level increases due to the traffic and urbanization. These factors may also affect the physiological activity of plants, causing changes in pollen allergenicity. The aim of the study was to estimate the influence of air pollutants on the chemical composition of birch pollen and the secondary structures of the Bet v1 protein. The research was conducted in seven locations in Malopolska region, South of Poland of a different pollution level. We have found slight fluctuations in the values of parameters describing the photosynthetic light reactions, similar spectra of leaf reflectance and the negligible differences in the discrimination values of the δ13C carbon isotope were found. The obtained results show a minor effect of a degree of pollution on the physiological condition B. pendula specimen. On the other hand, mean Bet v1 concentration measured in pollen samples collected in Kraków was significantly higher than in less polluted places (p = .03886), while FT-Raman spectra showed the most distinct variations in the wavenumbers characteristic of proteins. Pollen collected at sites of the increased NOx and PM concentration, show the highest percentage values of potential aggregated forms and antiparallel β-sheets in the expense of α-helix, presenting a substantial impact on chemical compounds of pollen, Bet v1 concentration and on formation of the secondary structure of proteins, what can influence their functions.
Collapse
Affiliation(s)
- Iwona Stawoska
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | - Dorota Myszkowska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Oliwa
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | | | | | - Diana Saja-Garbarz
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Ziemianin
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
4
|
Gao Y, Jin Y, Guo W, Xue Y, Yu L. Metabolic and Physiological Changes in the Roots of Two Oat Cultivars in Response to Complex Saline-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:835414. [PMID: 35422836 PMCID: PMC9002314 DOI: 10.3389/fpls.2022.835414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
Saline-alkali stress is a major abiotic stress factor in agricultural productivity. Oat (Avena sativa L.) is a saline-alkali tolerant crop species. However, molecular mechanisms of saline-alkali tolerance in oats remain unclear. To understand the physiological and molecular mechanisms underlying seedling saline-alkali tolerance in oats, the phenotypic and metabolic responses of two oat cultivars, Baiyan7 (BY, tolerant cultivar) and Yizhangyan4 (YZY, sensitive cultivar), were characterized under saline-alkali stress conditions. Compared with YZY, BY showed better adaptability to saline-alkali stress. A total of 151 and 96 differential metabolites induced by saline-alkali stress were identified in roots of BY and YZY, respectively. More detailed analyses indicated that enhancements of energy metabolism and accumulations of organic acids were the active strategies of oat roots, in response to complex saline-alkali stress. The BY utilized sugars via sugar consumption more effectively, while amino acids strengthened metabolism and upregulated lignin and might be the positive responses of BY roots to saline-alkali stress, which led to a higher osmotic adjustment of solute concentrations and cell growth. The YZY mainly used soluble sugars and flavonoids combined with sugars to form glycosides, as osmotic regulatory substances or antioxidant substances, to cope with saline-alkali stress. The analyses of different metabolites of roots of tolerant and sensitive cultivars provided an important theoretical basis for understanding the mechanisms of saline-alkali tolerance and increased our knowledge of plant metabolism regulation under stress. Meanwhile, some related metabolites, such as proline, betaine, and p-coumaryl alcohol, can also be used as candidates for screening saline-alkali tolerant oat cultivars.
Collapse
|
5
|
Liang XD, Shalapy M, Zhao SF, Liu JH, Wang JY. A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat. PLANTA 2021; 254:130. [PMID: 34817644 DOI: 10.1007/s00425-021-03770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
A Populus euphratica NAC gene regulates (1,3; 1,4)-β-D-glucan content in oat developing seed and improves the spikelet number and grain number per spike in transgenic oat under salinity conditions Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.
Collapse
Affiliation(s)
- Xiao-Dong Liang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Beijing, 100081, China
| | - Mohamed Shalapy
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
| | - Shi-Feng Zhao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Jing-Hui Liu
- Inner Mongolia Agriculture University, No. 275 Xue Yuan East Street, Hohhot, 010019, China.
| | - Jun-Ying Wang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China.
| |
Collapse
|
6
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
7
|
FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules 2021; 26:molecules26175388. [PMID: 34500820 PMCID: PMC8434250 DOI: 10.3390/molecules26175388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
Raman spectroscopy is a useful method in biological, biomedical, food, and agricultural studies, allowing the simultaneous examination of various chemical compounds and evaluation of molecular changes occurring in tested objects. The purpose of our research was to explain how the elimination of ω-fractions from the wheat gliadin complex influences the secondary structures of the remaining αβγ-gliadins. To this aim, we analyzed the endosperm of wheat kernels as well as gliadin proteins extracted from two winter wheat genotypes: wasko.gl+ (control genotype containing the full set of gliadins) and wasko.gl− (modified genotype lacking all ω-gliadins). Based on the decomposition of the amide I band, we observed a moderate increase in β-forms (sheets and turns) at the expense of α-helical and random coil structures for gliadins isolated from the flour of the wasko.gl− line. Since ω-gliadins contain no cysteine residues, they do not participate in the formation of the disulfide bridges that stabilize the protein structure. However, they can interact with other proteins via weak, low-energetic hydrogen bonds. We conclude that the elimination of ω-fractions from the gliadin complex causes minor modifications in secondary structures of the remaining gliadin proteins. In our opinion, these small, structural changes of proteins may lead to alterations in gliadin allergenicity.
Collapse
|
8
|
Apolonia S, Maria Ł, Magdalena K, Maria F, Magdalena S, Anna B. Protective responses of tolerant and sensitive wheat seedlings to systemic and local zearalenone application - Electron paramagnetic resonance studies. BMC PLANT BIOLOGY 2021; 21:393. [PMID: 34418972 PMCID: PMC8379791 DOI: 10.1186/s12870-021-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mycotoxins are among the environmental stressors whose oxidative action is currently widely studied. The aim of this paper was to investigate the response of seedling leaves to zearalenone (ZEA) applied to the leaves (directly) and to the grains (indirectly) in tolerant and sensitive wheat cultivars. RESULTS Biochemical analyses of antioxidant activity were performed for chloroplasts and showed a similar decrease in this activity irrespective of plant sensitivity and the way of ZEA application. On the other hand, higher amounts of superoxide radical (microscopic observations) were generated in the leaves of plants grown from the grains incubated in ZEA solution and in the sensitive cultivar. Electron paramagnetic resonance (EPR) studies showed that upon ZEA treatment greater numbers of Mn - aqua complexes were formed in the leaves of the tolerant wheat cultivar than in those of the sensitive one, whereas the degradation of Fe-protein complexes occurred independently of the cultivar sensitivity. CONCLUSION The changes in the quantity of stable, organic radicals formed by stabilizing reactive oxygen species on biochemical macromolecules, indicated greater potential for their generation in leaf tissues subjected to foliar ZEA treatment. This suggested an important role of these radical species in protective mechanisms mainly against direct toxin action. The way the defense mechanisms were activated depended on the method of the toxin application.
Collapse
Affiliation(s)
- Sieprawska Apolonia
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Łabanowska Maria
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Kurdziel Magdalena
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Filek Maria
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Skórka Magdalena
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| | - Barbasz Anna
- Institute of Biology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
9
|
Capouchová I, Kouřimská L, Pazderů K, Škvorová P, Božik M, Konvalina P, Dvořák P, Dvořáček V. Fatty acid profile of new oat cultivars grown via organic and conventional farming. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Birczyńska-Zych M, Czepiel J, Łabanowska M, Kurdziel M, Biesiada G, Kozicki M, Garlicki A, Wesełucha-Birczyńska A. The aging of P. falciparum infected RBCs by 2D-correlation Raman and EPR spectroscopy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kornaś A, Filek M, Sieprawska A, Bednarska-Kozakiewicz E, Gawrońska K, Miszalski Z. Foliar application of selenium for protection against the first stages of mycotoxin infection of crop plant leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:482-485. [PMID: 29808470 DOI: 10.1002/jsfa.9145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The aim of this study was to investigate whether the application of selenium (Se) ions directly to the leaf surface can protect plants against infection by the fungal toxin zearalenone (ZEA). The experiments were performed for the most common and agronomically important crops such as wheat, oat, and barley (both tolerant and sensitive varieties) because mycotoxin accumulation in plants is the cause of many diseases in animals and people. RESULTS ZEA at a concentration of 10 µmol L-1 either alone or in combination with Se (5 µmol L-1 Na2 SeO4 ) was applied to the second leaf of seedlings. Visualization of leaf temperature profiles by infrared thermography demonstrated a decrease in temperature at the location of ZEA infection that was more noticeable in sensitive genotypes. The presence of Se significantly suppressed changes at the site of ZEA application in all tested plants, especially the tolerant genotypes. Microscopic observations confirmed that foliar administration of ZEA resulted in its penetration to deeper localized cells and that damage induced by ZEA (mainly to chloroplasts) decreased after Se application. Analyses of antioxidant enzymes demonstrated the involvement of Se in antioxidation mechanisms, in particular by activating SOD and CAT under ZEA-induced stress conditions. CONCLUSION The foliar application of Se to seedling leaves may be a non-invasive method of protecting crops against the first steps of ZEA infection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrzej Kornaś
- Institute of Biology, Pedagogical University, Kraków, Poland
| | - Maria Filek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Cracow, Poland
| | | | | | | | - Zbigniew Miszalski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Cracow, Poland
| |
Collapse
|
12
|
Kurdziel M, Filek M, Łabanowska M. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2607-2616. [PMID: 29064559 DOI: 10.1002/jsfa.8753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND UV irradiation has ionisation character and leads to the generation of reactive oxygen species (ROS). The destructive character of ROS was observed among others during interaction of cereal grains with ozone and was caused by changes in structures of biomolecules leading to the formation of stable organic radicals. That effect was more evident for stress sensitive genotypes. In this study we investigated the influence of UV irradiation on cereal grains originating from genotypes with different tolerance to oxidative stress. RESULTS Grains and their parts (endosperm, embryo and seed coat) of barley, wheat and oat were subjected to short-term UV irradiation. It was found that UV caused the appearance of various kinds of reactive species (O2-• , H2 O2 ) and stable radicals (semiquinone, phenoxyl and carbon-centred). Simultaneously, lipid peroxidation occurred and the organic structure of Mn(II) and Fe(III) complexes become disturbed. CONCLUSIONS UV irradiation causes damage of main biochemical structures of plant tissues, the effect is more significant in sensitive genotypes. In comparison with ozone treatment, UV irradiation leads to stronger destruction of biomolecules in grains and their parts. It is caused by the high energy of UV light, facilitating easier breakage of molecular bonds in biochemical compounds. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Maria Filek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | | |
Collapse
|
13
|
Shumoy H, Raes K. Tef: The Rising Ancient Cereal: What do we know about its Nutritional and Health Benefits? PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:335-344. [PMID: 29098639 DOI: 10.1007/s11130-017-0641-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This review covers the nutritional significance of tef cereal as compared to other common cereals with emphasis on carbohydrate content and starch digestibility, protein content, iron and zinc bioavailability and antioxidant potentials. Tef is a gluten free cereal and contains the highest iron and calcium among other cereals. It has high micro- and macro- nutritional profile and is becoming globally popular in the healthy grain food chain. Tef starch has a high gelatinization temperature, an essential precondition in the preparation of low glycemic index foods. There are significantly conflicting reports of iron content of tef ranging from 5 to 150 mg/100 g dm. The traditional fermentation of injera reduced majority of the phytic acid but no significant change to mineral bioavailability was observed. This review indicated that studies on starch digestibility, protein characterization, amylase and protease inhibitors, mineral bioavailability and antioxidant potentials are needed to further explore the nutritional and health benefits of tef.
Collapse
Affiliation(s)
- Habtu Shumoy
- Research Group Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500, Kortrijk, Belgium
| | - Katleen Raes
- Research Group Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500, Kortrijk, Belgium.
| |
Collapse
|
14
|
Filek M, Łabanowska M, Kurdziel M, Sieprawska A. Electron Paramagnetic Resonance (EPR) Spectroscopy in Studies of the Protective Effects of 24-Epibrasinoide and Selenium against Zearalenone-Stimulation of the Oxidative Stress in Germinating Grains of Wheat. Toxins (Basel) 2017; 9:E178. [PMID: 28555005 PMCID: PMC5488028 DOI: 10.3390/toxins9060178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
These studies concentrate on the possibility of using selenium ions and/or 24-epibrassinolide at non-toxic levels as protectors of wheat plants against zearalenone, which is a common and widespread mycotoxin. Analysis using the UHPLC-MS technique allowed for identification of grains having the stress-tolerant and stress-sensitive wheat genotype. When germinating in the presence of 30 µM of zearalenone, this mycotoxin can accumulate in both grains and hypocotyls germinating from these grains. Selenium ions (10 µM) and 24-epibrassinolide (0.1 µM) introduced together with zearalenone decreased the uptake of zearalenone from about 295 to 200 ng/g and from about 350 to 300 ng/g in the grains of tolerant and sensitive genotypes, respectively. As a consequence, this also resulted in a reduction in the uptake of zearalenone from about 100 to 80 ng/g and from about 155 to 128 ng/g in the hypocotyls from the germinated grains of tolerant and sensitive wheat, respectively. In the mechanism of protection against the zearalenone-induced oxidative stress, the antioxidative enzymes-mainly superoxide dismutase (SOD) and catalase (CAT)-were engaged, especially in the sensitive genotype. Electron paramagnetic resonance (EPR) studies allowed for a description of the chemical character of the long-lived organic radicals formed in biomolecular structures which are able to stabilize electrons released from reactive oxygen species as well as the changes in the status of transition paramagnetic metal ions. The presence of zearalenone drastically decreased the amount of paramagnetic metal ions-mainly Mn(II) and Fe(III)-bonded in the organic matrix. This effect was particularly found in the sensitive genotype, in which these species were found at a smaller level. The protective effect of selenium ions and 24-epibrassinolide originated from their ability to inhibit the destruction of biomolecules by reactive oxygen species. An increased ability to defend biomolecules against zearalenone action was observed for 24-epibrassinolide.
Collapse
Affiliation(s)
- Maria Filek
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland.
| | - Maria Łabanowska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland.
| | - Magdalena Kurdziel
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland.
| | - Apolonia Sieprawska
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Cracow, Poland.
| |
Collapse
|
15
|
Filek M, Łabanowska M, Kurdziel M, Wesełucha-Birczyńska A, Bednarska-Kozakiewicz E. Structural and biochemical response of chloroplasts in tolerant and sensitive barley genotypes to drought stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:61-72. [PMID: 27835766 DOI: 10.1016/j.jplph.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The aim of this research was to characterize the changes of structural organization of chloroplasts of sensitive (Maresi) and tolerant (Cam/B1) barley genotypes upon soil drought (10days), which was applied in two stages of plant growth, i.e. seedlings and flag leaves. The electron paramagnetic resonance (EPR) technique was used for the determination of changes in the concentration and nature of long-lived radicals and metal ions (Mn, Fe), measured directly in the structures of fresh leaves, occurring after stress treatment. Stronger variations of EPR parameters were found after drought stress application in the flag-leaf phase and for sensitive genotype. Chloroplasts of Cam/B1 were characterized by a larger surface area and less degradation of their structure during drought stress in comparison to Maresi. The data obtained from Raman spectra showed that better stress tolerance of the genotype was accompanied by greater accumulation of carotenoids in chloroplasts and was correlated with an increase in carotenoid radicals. The increase of the value of the electrokinetic potential (relative to control), which was slightly larger for the chloroplasts of Maresi than of Cam/B1, indicated the chemical reconstruction of the membrane leading to a reduction of their polarity during drought action.
Collapse
Affiliation(s)
- Maria Filek
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland; Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Cracow, Poland
| | - Maria Łabanowska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Magdalena Kurdziel
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland.
| | | | | |
Collapse
|