1
|
Zhang Y, Zhang L, Chen M, Wang J, Dong S, Yuan X, Li X. Genome-wide identification and expression analysis of the DREB gene family in foxtail millet (Setaria Italica L.). BMC PLANT BIOLOGY 2025; 25:432. [PMID: 40186102 PMCID: PMC11971904 DOI: 10.1186/s12870-025-06442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Dehydration response element binding factors (DREBs) are a family of plant-specific transcription factors that regulate plant responses. RESULTS In this study, members of the SiDREB gene family were identified and analyzed in terms of their physicochemical properties, phylogeny, and structure of the encoded proteins. The expression patterns of the DREB transcription factors in foxtail millet under stress were analysed by combining the qRT-PCR data for foxtail millet after exposure to low temperature, abscisic acid (ABA), and osmotic stress (20% PEG 6000). There were 56 SiDREB genes, which were divided into six subgroups, that were located on nine chromosomes of foxtail millet. Chromosomal localization showed that the SiDREB genes were unevenly distributed across nine foxtail millet chromosomes. Furthermore, qRT‒PCR experiments revealed that 19 SiDREB genes play a role in the response to abiotic stress and ABA. CONCLUSIONS The results of this study lay a foundation for further research on the functions of the DREB genes in foxtail millet and will be beneficial foe the genetic improvement of this species.
Collapse
Affiliation(s)
- Yujia Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Liguang Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jiagang Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Shuqi Dong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xiaorui Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
2
|
Fan Z, Zhang L, Li S, Pang S, Zhang Y, Xu C, Liu Y, Qi M. The SlERF4-9-SlCDF1/3-SlAEC2/SlPIN5 module regulates tomato root morphogenesis. FRONTIERS IN PLANT SCIENCE 2025; 16:1546092. [PMID: 40225025 PMCID: PMC11985770 DOI: 10.3389/fpls.2025.1546092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
AP2/ERF transcription factors regulate plants' growth, development, and stress responses. In this study, the seed germination rate and seedling growth were reduced in the tomato slerf4-9 mutant. The fresh weight, drought weight, number of primary lateral roots (LRs), average root diameter, and number of root tips were also decreased in the mutant. The findings suggest that SlERF4-9 plays a significant role in root growth and development. The results of RNA-seq analysis of young roots indicated that the mutation of SlERF4-9 did not affect the expression of genes related to auxin biosynthesis or signal transduction, but it did reduce the expression of the auxin efflux carrier genes SlAEC2 and SlPIN5. Moreover, the mutation of SlERF4-9 affected the distribution of auxin in the roots of DR5 × WT and DR5 × slerf4-9 hybrid tomato seedlings. However, the promoters of SlAEC2 and SlPIN5 do not possess the GCC-box or DRE elements, suggesting that SlERF4-9 does not directly regulate their transcription. In addition, the expression levels of the two Cycling DOF Factors (CDFs) SlCDF1 and SlCDF3 decreased in the roots of the slerf4-9 mutant. Moreover, the GCC-box was present in the promoters of SlCDF1 and SlCDF3. Therefore, exploring the regulatory relationships between SlERF4-9, SlCDF1/3, and SlAEC2/SlPIN5 will further our understanding of the molecular mechanisms of tomato root growth and development.
Collapse
Affiliation(s)
- ZhengFeng Fan
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Special Sruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang of Production and Construction Crops, Shihezi University, Shihezi, China
| | - Li Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - SiQi Li
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Special Sruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang of Production and Construction Crops, Shihezi University, Shihezi, China
| | - ShengQun Pang
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Special Sruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang of Production and Construction Crops, Shihezi University, Shihezi, China
| | - YiBing Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - ChuanQiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - YuDong Liu
- College of Agriculture, Shihezi University, Shihezi, China
- Key Laboratory of Special Sruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang of Production and Construction Crops, Shihezi University, Shihezi, China
| | - MingFang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Upadhyay RK, Shao J, Maul JE, Schomberg H, Handa AK, Roberts DP, Mattoo AK. Unlocking the role of novel primary/di-amine oxidases in crop improvement: Tissue specificity leads to specific roles connected to abiotic stress, hormone responses and sensing nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154374. [PMID: 39522457 DOI: 10.1016/j.jplph.2024.154374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Genetic improvements of solanaceous crops for quality and stress responsive traits are needed because of the central role vegetables and fruits have in providing nutrients to human diets. Copper amine oxidase (CuAO) encoding genes involved in metabolism of primary/di-amine nitrogenous compounds, play a role in balancing internal nitrogen (N) pools especially when external N supply fluctuates during growth, development and environmental stresses. In the present study, we investigated the occurrence, molecular evolution and possible role(s) of these unknown genes in tomato crops. Multiple genome-wide bioinformatics approaches led to the identification of eight bona fide CuAO genes (SlCuAO1-SlCuAO8) in the tomato genome with gene numbers like those in Arabidopsis and rice indicating their conserved functional relevance with a tandemly duplicated SlCuAO6-SlCuAO7 pair at chr.9. A conserved intron-exon size and phase distribution for SlCuAO2, 3, 4 pairs are similar to a recently identified single duckweed SpCuAO1 orthologue gene indicating its evolutionary conservation. Synteny analysis showed their closest association to Arabidopsis and but not with rice. Transcriptome data indicated that gene expression for about six genes (SlCuAO1, 2, 3, 4, 6, 7) is root specific, fruit specific for SlCuAO5 and flower specific for SlCuAO8 thus indicating amine oxidation is variable across tissues with a prominance in the root tissue. The majority of CuAO genes are negatively regulated by methyl jasmonate. Positive regulation, however, involves CuAO3/8. Transcript analysis of the ethylene-deficient transgenic lines indicated that ethylene is required for activation of SlCuAO4. CuAO4 and CuAO5 exhibited most significant tissues-independent gene expression responses across various nitrogen regimes. Drought, heat and N stress identified CuAO5 as an overlapping highly expressed gene that corroborates with putrescine accumulation for free and conjugated forms with an opposite abundance of bound forms. Taken together our study highlights new insights into the roles of copper amine oxidation genes and identifies CuAO5 as a multiple stress induced gene that can be used in genetic improvement programs for combining heat, drought and nitrogen use efficiency related traits.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA; Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA; Department of Natural Sciences, College of Arts and Sciences, Bowie State University, 14000 Jericho Park Rd., Bowie, MD, 20715, USA.
| | - Jonathan Shao
- Statistics and Bioinformatics Group-Northeast Area, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Jude E Maul
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Harry Schomberg
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Avtar K Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Daniel P Roberts
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA.
| |
Collapse
|
4
|
Wang G, Xu Y, Guan SL, Zhang J, Jia Z, Hu L, Zhai M, Mo Z, Xuan J. Comprehensive genomic analysis of CiPawPYL-PP2C-SnRK family genes in pecan (Carya illinoinensis) and functional characterization of CiPawSnRK2.1 under salt stress responses. Int J Biol Macromol 2024; 279:135366. [PMID: 39244129 DOI: 10.1016/j.ijbiomac.2024.135366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Abscisic acid (ABA) is a pivotal regulator of plant growth, development, and responses to environmental stresses. The ABA signaling pathway involves three key components: ABA receptors known as PYLs, PP2Cs, and SnRK2s, which are conserved across higher plants. This study comprehensively investigated the PYL-PP2C-SnRK gene family in pecan, identifying 14 PYL genes, 97 PP2C genes, and 44 SnRK genes, which were categorized into subgroups through phylogenetic and sequence structure analysis. Whole-genome duplication (WGD) and dispersed duplication (DSD) were identified as major drivers of family expansion, and purifying selection was the primary evolutionary force. Tissue-specific expression analysis suggested diverse functions in different pecan tissues. qRT-PCR validation confirmed the involvement of CiPawPYLs, CiPawPP2CAs, and CiPawSnRK2s in salt stress response. Subcellular localization analysis revealed CiPawPP2C1 in the nucleus and CiPawPYL1 and CiPawSnRK2.1 in both the nucleus and the plasma membrane. In addition, VIGS indicated that CiPawSnRK2.1-silenced pecan seedling leaves display significantly reduced salt tolerance. Y2H and LCI assays verified that CiPawPP2C3 can interact with CiPawPYL5, CiPawPYL8, and CiPawSnRK2.1. This study characterizes the role of CiPawSnRK2.1 in salt stress and lays the groundwork for exploring the CiPawPYL-PP2C-SnRK module, highlighting the need to investigate the roles of other components in the pecan ABA signaling pathway.
Collapse
Affiliation(s)
- Guoming Wang
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ying Xu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Sophia Lee Guan
- College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, United States
| | - Jiyu Zhang
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhanhui Jia
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Longjiao Hu
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Min Zhai
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhenghai Mo
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jiping Xuan
- Jiangsu Engineering Research Center for Germplasm Innovation and Utilization of Pecan, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
5
|
Liu Y, Guo P, Gao Z, Long T, Xing C, Li J, Xue J, Chen G, Xie Q, Hu Z. Silencing of SlMYB78-like Reduces the Tolerance to Drought and Salt Stress via the ABA Pathway in Tomato. Int J Mol Sci 2024; 25:11449. [PMID: 39519002 PMCID: PMC11546358 DOI: 10.3390/ijms252111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The MYB transcription factor family plays a crucial regulatory role in plant growth, development, biological progress, and stress responses. Here, we identified a R2R3-MYB transcription factor gene, SlMYB78-like, from tomato and characterized its function by gene silencing via RNA interference (RNAi). The results exhibited that the silencing of SlMYB78-like reduced the sensitivity of tomato seedlings to exogenous ABA. In addition, when exposed to drought and salt stresses, the RNAi lines grown in soil showed decreased tolerance, with lower ABA accumulation, relative water content, and chlorophyll content while displaying higher relative conductivity and malondialdehyde (MDA) content than the wild type. Moreover, the expression of genes related to chlorophyll biosynthesis, photosynthesis, and ABA biosynthesis/response were down-regulated in SlMYB78-like-silenced lines. Notably, the transcript level of SlCYP707-A2, which encodes a protein involved in ABA degradation, was up-regulated significantly after stresses. The transient expression assay Dual-luciferase (Dual-LUC) and a yeast one-hybrid (Y1H) assay demonstrated that SlMYB78-like bound to the promoter of SlCYP707-A2. Additionally, the physical interaction between SlMYB78-like and SlDREB3, which functioned in ABA signaling transduction, was identified through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Collectively, our study illustrates that SlMYB78-like participates in the abiotic stress response via the ABA pathway.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Ting Long
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Chuanji Xing
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing 100097, China; (C.X.); (J.X.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Jing Xue
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing 100097, China; (C.X.); (J.X.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing 400044, China; (Y.L.); (Z.G.); (T.L.); (J.L.); (G.C.); (Q.X.)
| |
Collapse
|
6
|
Xu Y, Zhang Y, Ma F, Zhao J, Yang H, Song S, Zhang S. Identification of DREB Family Genes in Banana and Their Function under Drought and Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2119. [PMID: 39124237 PMCID: PMC11314547 DOI: 10.3390/plants13152119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Bananas are one of the most important cash crops in the tropics and subtropics. Drought and low-temperature stress affect the growth of banana. The DREB (dehydration responsive element binding protein) gene family, as one of the major transcription factor families, plays crucial roles in defense against abiotic stress. Currently, systematic analyses of the banana DREB (MaDREB) gene family have not yet been reported. In this study, 103 members of the MaDREB gene family were identified in the banana genome. In addition, transcriptomic analysis results revealed that MaDREBs responded to drought and cold stress. The expression of MaDREB14/22/51 was induced by drought and cold stress; these geneswere selected for further analysis. The qRT-PCR validation results confirmed the transcriptome results. Additionally, transgenic Arabidopsis plants overexpressing MaDREB14/22/51 exhibited enhanced resistance to drought and cold stress by reducing MDA content and increasing PRO and soluble sugar content. This study enhances our understanding of the function of the MaDREB gene family, provides new insights into their regulatory role under abiotic stress, and lays a good foundation for improving drought and cold stress-tolerant banana verities.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Yanshu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
| | - Funing Ma
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Jingxi Zhao
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Huiting Yang
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Shun Song
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (F.M.); (J.Z.); (H.Y.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (Y.Z.)
| |
Collapse
|
7
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
8
|
Prabhakar R, Gupta A, Singh R, Sane AP. Suppression of SlDREB3 increases leaf ABA responses and promotes drought tolerance in transgenic tomato plants. Biochem Biophys Res Commun 2023; 681:136-143. [PMID: 37774571 DOI: 10.1016/j.bbrc.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Drought susceptibility is a major yield limiting factor in agricultural crops especially in hybrids/varieties that have been bred for high yields. We show that manipulation of the SlDREB3 gene in tomato alters ABA responses and thereby sensitivity of stomatal closure to ABA. SlDREB3 suppression lines show ABA hypersensitivity and rapid stomatal closure in response to ABA while over-expression lines show reduced sensitivity to ABA and open stomata even at high ABA levels with rapid water loss after 10 days of water stress. This is accompanied with high ROS levels and increased membrane damage due to senescence of leaves and drastically reduced survival in drought. The relative water content (RWC) of OEx lines is much reduced even when grown under well-watered conditions. In contrast, suppression lines show greater tolerance to water stress and almost complete survival to 10-day water stress. They show much reduced ROS levels, reduced membrane damage, higher RWC and reduced leaf water loss. These changes are associated with higher expression of ABA signalling pathway genes in suppression lines while these are highly reduced in OEx lines. The studies suggest that control of ABA signalling by SlDREB3 can help in withstanding severe drought.
Collapse
Affiliation(s)
- Rakhi Prabhakar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Department of Biotechnology, Bundelkhand University, Jhansi, 284128, India
| | - Asmita Gupta
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rambir Singh
- Department of Biotechnology, Bundelkhand University, Jhansi, 284128, India; Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, 796004, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Wu Y, Zhang L, Nie L, Zheng Y, Zhu S, Hou J, Li R, Chen G, Tang X, Wang C, Yuan L. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics 2022; 23:598. [PMID: 35978316 PMCID: PMC9382803 DOI: 10.1186/s12864-022-08812-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Dehydration responsive element binding protein (DREB) is a significant transcription factor class known to be implicated in abiotic stresses. In this study, we systematically conducted a genome-wide identification and expression analysis of the DREB gene family, including gene structures, evolutionary relationships, chromosome distribution, conserved domains, and expression patterns. A total of 65 DREB family gene members were identified in Chinese cabbage (Brassica rapa L.) and were classified into five subgroups based on phylogenetic analysis. Through analysis of the conserved domains of BrDREB family genes, only one exon existed in the gene structure. Through the analysis of cis-acting elements, these genes were mainly involved in hormone regulation and adversity stress. In order to identify the function of BrDREB2B, overexpressed transgenic Arabidopsis was constructed. After different stress treatments, the germination rate, root growth, survival rate, and various plant physiological indicators were measured. The results showed that transgenic Arabidopsis thaliana plants overexpressing BrDREB2B exhibited enhanced tolerance to salt, heat and drought stresses. Taken together, our results are the first to report the BrDREB2B gene response to drought and heat stresses in Chinese cabbage and provide a basis for further studies to determine the function of BrDREBs in response to abiotic stresses.
Collapse
Affiliation(s)
- Ying Wu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Liting Zhang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Libing Nie
- College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yushan Zheng
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Renjie Li
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guohu Chen
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| | - Lingyun Yuan
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| |
Collapse
|
10
|
Gupta A, Upadhyay RK, Prabhakar R, Tiwari N, Garg R, Sane VA, Sane AP. SlDREB3, a negative regulator of ABA responses, controls seed germination, fruit size and the onset of ripening in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111249. [PMID: 35487658 DOI: 10.1016/j.plantsci.2022.111249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
SlDREB3 was identified as a ripening up-regulated gene of the AP2/ERF-domain family of transcription factors. Its manipulation affects processes primarily governed by ABA. It negatively regulates ABA responses in tomato by altering ABA levels/signaling and is, in turn, negatively regulated by ABA. SlDREB3 over-expression lines show higher transcript levels of the ABA metabolism genes CYP707A3 and UGT75C1 and an 85% reduction in ABA levels leading to early seed germination. In contrast, suppression lines show decreased CYP707A3/UGT75C1 expression, 3-fold higher ABA levels and delayed germination. The expression of other ABA signaling and response genes is also affected. Suppression of SlDREB3 accelerates the onset of ripening by 4-5 days while its over-expression delays it and also reduces final fruit size. SlDREB3 manipulation effects large scale changes in the fruit transcriptome with suppression lines showing early increase in ABA levels and activation of most ripening pathway genes that govern ethylene, carotenoids and softening. Strikingly, key transcription factors like CNR, NOR, RIN, FUL1, governing ethylene-dependent and ethylene-independent aspects of ripening, are activated early upon SlDREB3 suppression suggesting their control by ABA. The studies identify SlDREB3 as a negative regulator of ABA responses across tissues and a key ripening regulator controlling ethylene-dependent and ethylene-independent aspects.
Collapse
Affiliation(s)
- Asmita Gupta
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh K Upadhyay
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow 226001, India; Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA; Deparment of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN, USA
| | - Rakhi Prabhakar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow 226001, India; Department of Biotechnology, Bundelkhand University Jhansi, 284128, India
| | - Neerja Tiwari
- Phytochemistry Divisional Unit, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Rashmi Garg
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Wang G, Qi K, Gao X, Guo L, Cao P, Li Q, Qiao X, Gu C, Zhang S. Genome-wide identification and comparative analysis of the PYL gene family in eight Rosaceae species and expression analysis of seeds germination in pear. BMC Genomics 2022; 23:233. [PMID: 35337257 PMCID: PMC8957196 DOI: 10.1186/s12864-022-08456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of plant growth, seed germination, and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein, an ABA receptor, was involved in the initial step in ABA signal transduction. However, the evolutionary history and characteristics of PYL genes expression remain unclear in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. In this study, 67 PYL genes were identified in eight Rosaceae species, and have been classified into three subgroups based on specific motifs and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication (WGD) and dispersed duplication (DSD) have a major contribution to PYL family expansion. Purifying selection was the major force in PYL genes evolution. Expression analysis finds that PYL genes may function in multiple pear tissues. qRT-PCR validation of 11 PbrPYL genes indicates their roles in seed germination and abiotic stress responses. Our study provides a basis for further elucidation of the function of PYL genes and analysis of their expansion, evolution and expression patterns, which helps to understand the molecular mechanism of pear response to seed germination and seedling abiotic stress.
Collapse
Affiliation(s)
- Guoming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xin Gao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Peng Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
12
|
Stress-Inducible Overexpression of SlDDF2 Gene Improves Tolerance against Multiple Abiotic Stresses in Tomato Plant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dehydration-responsive element-binding protein 1 (DREB1)/C-repeat binding factor (CBF) family plays a key role in plant tolerance against different abiotic stresses. In this study, an orthologous gene of the DWARF AND DELAYED FLOWERING (DDF) members in Arabidopsis, SlDDF2, was identified in tomato plants. The SlDDF2 gene expression was analyzed, and a clear induction in response to ABA treatment, cold, salinity, and drought stresses was observed. Furthermore, two transgenic lines (SlDDF2-IOE#6 and SlDDF2-IOE#9) with stress-inducible overexpression of SlDDF2 under Rd29a promoter were generated. Under stress conditions, the gene expression of SlDDF2 was significantly higher in both transgenic lines. The growth performance, as well as physiological parameters, were evaluated in wild-type and transgenic plants. The transgenic lines showed growth retardation phenotypes and had higher chlorophyll content under stress conditions in plants. However, the relative decrease in growth performance (plant height, leaf number, and leaf area) in stressed transgenic lines was lower than that in stressed wild-type plants, compared with nonstressed conditions. The reduction in the relative water content and water loss rate was also lower in the transgenic lines. Compared with wild-type plants, transgenic lines showed enhanced tolerance to different abiotic stresses including water deficit, salinity, and cold. In conclusion, stress-inducible expression of SlDDF2 can be a useful tool to improve tolerance against multiple abiotic stresses in tomato plants.
Collapse
|
13
|
Luo P, Chen Y, Rong K, Lu Y, Wang N, Xu Z, Pang B, Zhou D, Weng J, Li M, Zhang D, Yong H, Han J, Zhou Z, Gao W, Hao Z, Li X. ZmSNAC13, a maize NAC transcription factor conferring enhanced resistance to multiple abiotic stresses in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:160-170. [PMID: 34891072 DOI: 10.1016/j.plaphy.2021.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Abiotic stress is the main factor that severely limits crop growth and yield. NAC (NAM, ATAF1/2 and CUC2) transcription factors play an important role in dealing with various abiotic stresses. Here, we discovered the ZmSNAC13 gene in drought-tolerant maize lines by RNA-seq analysis and verified its function in Arabidopsis thaliana. First, its gene structure showed that ZmSNAC13 had a typical NAC domain and a highly variable C-terminal. There were multiple cis-acting elements related to stress in its promoter region. Overexpression of ZmSNAC13 resulted in enhanced tolerances to drought and salt stresses in Arabidopsis, characterized by a reduction in the water loss rate, a sustained effective photosynthesis rate, and increased cell membrane stability in leaves under drought conditions. Transcriptome analysis showed that a large number of differentially expressed genes regulated by overexpression of ZmSNAC13 were identified, and the main drought tolerance regulatory pathways involved were the ABA pathway and MAPK cascade signaling pathway. Overexpression of ZmSNAC13 promoted the expression of genes, such as PYL9 and DREB3, thereby enhancing tolerance to adverse environments. Adaptability, while restraining genes expression such as WRKY53 and MPK3, facilitates regulation of senescence in Arabidopsis and improves plant responses to adversity. Therefore, ZmSNAC13 is promising gene of interest for use in transgenic breeding to improve abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Ping Luo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China; College of Agronomy, Xinjiang Agricultural University, Urumqi, PR China.
| | - Yong Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Kewei Rong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China; College of Agronomy, Xinjiang Agricultural University, Urumqi, PR China
| | - Yuelei Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China; College of Agronomy, Xinjiang Agricultural University, Urumqi, PR China
| | - Nan Wang
- College of Agronomy, Hebei Agricultural University, Baoding, PR China
| | - Zhennan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Bo Pang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, PR China
| | - Di Zhou
- College of Agronomy, Xinjiang Agricultural University, Urumqi, PR China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jienan Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhiqiang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wenwei Gao
- College of Agronomy, Xinjiang Agricultural University, Urumqi, PR China.
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
14
|
Hezema YS, Shukla MR, Goel A, Ayyanath MM, Sherif SM, Saxena PK. Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants. Int J Mol Sci 2021; 22:8398. [PMID: 34445105 PMCID: PMC8395105 DOI: 10.3390/ijms22168398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.
Collapse
Affiliation(s)
- Yasmine S. Hezema
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
- Department of Horticulture, Damanhour University, Damanhour 22713, El-Beheira, Egypt
| | - Mukund R. Shukla
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Alok Goel
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Murali M. Ayyanath
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Praveen K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| |
Collapse
|
15
|
Zhao X, Liu Q, Xie S, Jiang Y, Yang H, Wang Z, Zhang M. Response of Soil Fungal Community to Drought-Resistant Ea-DREB2B Transgenic Sugarcane. Front Microbiol 2020; 11:562775. [PMID: 33072024 PMCID: PMC7530946 DOI: 10.3389/fmicb.2020.562775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Drought limits crop productivity, especially of sugarcane, which is predominantly grown in the subtropical parts of China. Soil microbes perform a wide range of functions that are important for plant productivity and responses to drought stress, and fungi play an important role in plant-soil interactions. The Ea-DREB2B gene of sugarcane, Saccharum arundinaceum, is involved in regulating the response to drought stress. In this study, fungal communities of the transgenic (TG) sugarcane variety GN18, harboring the drought-tolerant gene Ea-DREB2B and its corresponding non-TG wild-type (WT) variety, FN95-1702, were investigated in three soil compartments (rhizoplane, rhizosphere, and bulk soil) by assessing the internal transcribed spacer region using Illumina MiSeq. As the soil microbial community is also affected by various environmental factors, such as pH, carbon availability, and soil moisture, we determined the total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents in the rhizoplane, rhizosphere, and bulk soil compartments to explore the associations between soil fungal communities and host plant characteristics. The differences between the soil fungal communities of TG and WT plants were detected. The alpha diversity of TG fungal communities was more correlated to environmental factors than the beta diversity. The abundance of operational taxonomic units (OTUs) enriched in TG root-related area was far more than that in the root-related area of WT plants. Thereinto, more saprotrophs were enriched in the TG root-related area, indicating altered niches of fungal guilds around TG roots. These results revealed that host plant genotype did play a key role for strengthening plant-fungi interaction and enhancing beneficial fungal function in the root-related area (rhizoplane and rhizosphere) of TG sugarcane in order to respond to drought stress.
Collapse
Affiliation(s)
- Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Sasa Xie
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuke Jiang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Huichun Yang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Upadhyay RK, Tucker ML, Mattoo AK. Ethylene and RIPENING INHIBITOR Modulate Expression of SlHSP17.7A, B Class I Small Heat Shock Protein Genes During Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:975. [PMID: 32714357 PMCID: PMC7344320 DOI: 10.3389/fpls.2020.00975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 06/02/2023]
Abstract
Heat shock proteins (HSPs) are ubiquitous and highly conserved in nature. Heat stress upregulates their gene expression and now it is known that they are also developmentally regulated. We have studied regulation of small HSP genes during ripening of tomato fruit. In this study, we identify two small HSP genes, SlHSP17.7A and SlHSP17.7B, localized on tomato Chr.6 and Chr.9, respectively. Each gene encodes proteins constituting 154 amino acids and has characteristic domains as in other sHSP genes. We found that SlHSP17.7A and SlHSP17.7B gene expression is low in the vegetative tissues as compared to that in the fruit. These sHSP genes are characteristically expressed in a fruit-ripening fashion, being upregulated during the ripening transition of mature green to breaker stage. Their expression patterns mirror that of the rate-limiting ethylene biosynthesis gene ACC (1-aminocyclopropane-1-carboxylic acid) synthase, SlACS2, and its regulator SlMADS-RIN. Exogenous application of ethylene to either mature green tomato fruit or tomato leaves suppressed the expression of both the SlHSP17.7A, B genes. Notably and characteristically, a transgenic tomato line silenced for SlACS2 gene and whose fruits produce ~50% less ethylene in vivo, had higher expression of both the sHSP genes at the fruit ripening transition stages [breaker (BR) and BR+3] than the control fruit. Moreover, differential gene expression of SlHSP17.7A versus SlHSP17.7B gene was apparent in the tomato ripening mutants-rin/rin, nor/nor, and Nr/Nr, with the expression of SlHSP17.7A being significantly reduced but that of SlHSP17.7B significantly upregulated as compared to the wild type (WT). These data indicate that ethylene negatively regulates transcriptional abundance of both these sHSPs. Transient overexpression of the ripening regulator SlMADS-RIN in WT and ACS2-AS mature green tomato fruits suppressed the expression of SlHSP17.7A but not that of SlHSP17.7B. Thus, ethylene directly or in tune with SlMADS-RIN regulates the transcript abundance of both these sHSP genes.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| |
Collapse
|
17
|
Zhao X, Jiang Y, Liu Q, Yang H, Wang Z, Zhang M. Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil. Front Microbiol 2020; 11:704. [PMID: 32431674 PMCID: PMC7214759 DOI: 10.3389/fmicb.2020.00704] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022] Open
Abstract
Drought is a major abiotic stress affecting plant growth and development. Sugarcane, a sugar crop planted in warmer climate, suffers dramatically from drought stress. Bacterial communities colonizing the rhizosphere, where roots sense drought stress initially, have been well studied for their beneficial effects on plant growth and health. The Ea-DREB2B gene cloned from the sugarcane, Saccharum arundinaceum, belongs to the DREB2 subgroup of the DREB gene family, which is involved in drought response regulation. Here, we present a detailed characterization of the rhizoplane, rhizosphere, and bulk soil bacterial communities determined using a high-sequencing approach with the transgenic (TG) sugarcane variety GN18 harboring the drought-tolerant Ea-DREB2B gene and its isogenic wild-type (WT) variety FN95-1702 under the same environmental conditions. In addition, the total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents in each soil area were compared to explore the relationship between bacterial alteration in the TG and WT plants and environmental factors (TC, TN, TP, C:N, C:P, and N:P). Our results showed that the bacterial communities in the rhizosphere and rhizoplane of TG sugarcane were more similar and perfectly correlated with the environmental factors than those of the WT. This suggested that the bacterial communities of the TG plants were altered in response to the changes in root exudates. The results of our study suggest that the change in soil environment caused by transgenic sugarcane alters soil bacterial communities.
Collapse
Affiliation(s)
- Xiaowen Zhao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Yuke Jiang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Qi Liu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Huichun Yang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| |
Collapse
|
18
|
An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genomics 2020; 295:941-956. [PMID: 32350607 DOI: 10.1007/s00438-020-01669-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2020] [Indexed: 01/19/2023]
Abstract
Water stress is the most important adverse factor limiting rice production. Too much water leads to flood and too little leads to drought. Floods and droughts can severely damage crop at different times of the rice life cycle. So the research on submergence tolerance and drought resistance of rice is particularly urgent. In this study, we reported that OsEBP89 (Oryza sativa Ethylene-responsive element binding protein, clone 89), a member of the AP2/ERF subfamily, is involved in a novel signal transduction associated with the tolerance to drought and submergence stress. OsEBP89 was found to be strongly inhibited by drought stress and promoted by submergence. The OsEBP89 protein was located at the nucleus in the rice protoplast. Loss of OsEBP89 was found to improve the seed germination under submerged conditions and also enhanced the tolerance to drought stress throughout growth stage. Additionally, OsEBP89 knockout rice plants increased the accumulation of proline, improved the ability to scavenge ROS compared to overexpression lines and wild type after PEG treatment. Transcriptome data indicates that knockout of OsEBP89 improved the expression of specific genes in response to adverse factors, such as OsAPX1, OsHsfA3, and OsP5CS. Further results indicate that OsEBP89 can interact with and be phosphorylated by SnRK1α (sucrose non-fermenting-1-related protein kinase-1 gene). These findings provide insight into the mechanism of abiotic stress tolerance, and suggest OsEBP89 as a new genetic engineering resource to improve abiotic stress tolerance in rice.
Collapse
|
19
|
Upadhyay RK, Handa AK, Mattoo AK. Transcript Abundance Patterns of 9- and 13-Lipoxygenase Subfamily Gene Members in Response to Abiotic Stresses (Heat, Cold, Drought or Salt) in Tomato ( Solanum lycopersicum L .) Highlights Member-Specific Dynamics Relevant to Each Stress. Genes (Basel) 2019; 10:genes10090683. [PMID: 31492025 PMCID: PMC6771027 DOI: 10.3390/genes10090683] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Lipoxygenases (LOXs; EC 1.13.11.12) catalyze the oxygenation of fatty acids to produce oxylipins including the jasmonate family of plant hormones. The involvement of jasmonates in plant growth and development and during abiotic stress has been documented, however, the response and regulation of each member of the LOX gene family under various abiotic stresses is yet to be fully deciphered. Previously, we identified fourteen members of the tomato LOX gene family, which were divisible into nine genes representing the 9-LOX family members and five others representing the 13-LOX family members based on the carbon oxidation position specificity of polyunsaturated fatty acids. Here, we have determined the transcript abundance patterns of all the 14 LOX genes in response to four independent abiotic stresses, namely, heat, cold, drought and salt. Our results show that each of these stresses leads to a time-dependent, variable or indifferent response of specific and different set(s) of LOX gene members of both subfamilies, differentiating functional relevance of the 14 LOX genes analyzed. Out of the 14 gene members, three LOX genes were expressed constitutively or were non-responsive to either heat (SlLOX9), cold (SlLOX9) or salt (SlLOX4) stress. An in-silico LOX gene promoter search for stress-responsive elements revealed that only some but not all of the LOX genes indeed are decorated with specific and known stress responsive cis-acting elements. Thus, these data implicate some other, yet to be discovered, cis-acting elements present in the LOX gene family members, which seemingly regulate tomato responses to defined abiotic stresses presented here.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA.
- Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907-2010, USA.
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907-2010, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
20
|
Wang G, Xu X, Wang H, Liu Q, Yang X, Liao L, Cai G. A tomato transcription factor, SlDREB3 enhances the tolerance to chilling in transgenic tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:254-262. [PMID: 31326718 DOI: 10.1016/j.plaphy.2019.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 05/23/2023]
Abstract
The dehydration response factor (DREB) transcription factor (TF) family can function in response to multiple cues around environment in plants. Nevertheless, the functions of dehydration response factor (DREB protein) in plant cold tolerance, especially in tomatoes (Solanum lycopersicum), have been rarely studied. In this study, the functions of tomato DREB TF (SlDREB3) in cold resistance were studied using transgenic tomatoes. The level of transcripts revealed that SlDREB3 was triggered by H2O2 and 4 °C treatments, indicating that SlDREB3 participates in response to cold stress in plants. SlDREB3-overexpressing plants exhibited high fresh mass, chlorophyll content, Fv/Fm, and O2-evolving activity; low membrane damage; and reactive oxygen species accumulation under chilling stress. Furthermore, the high expression levels of late embryogenesis-abundant genes SlLEA9 and SlLEA26 were detected in transgenic plants in response to cold stress. These findings revealed that SlDREB3 overexpression improved the tolerance to cold stress in transgenic plants possibly by upregulating SlLEAs expression.
Collapse
Affiliation(s)
- Guodong Wang
- College of Biological Science, Jining Medical University, Ri'zhao, Shandong, 276800, PR China.
| | - Xinping Xu
- College of Biological Science, Jining Medical University, Ri'zhao, Shandong, 276800, PR China
| | - Hao Wang
- College of Biological Science, Jining Medical University, Ri'zhao, Shandong, 276800, PR China
| | - Qi Liu
- College of Biological Science, Jining Medical University, Ri'zhao, Shandong, 276800, PR China
| | - Xiaotong Yang
- College of Biological Science, Jining Medical University, Ri'zhao, Shandong, 276800, PR China
| | - Lixiang Liao
- College of Biological Science, Jining Medical University, Ri'zhao, Shandong, 276800, PR China
| | - Guohua Cai
- College of Life Science, Nanjing University, Nan'jing, Jiangshu, 210046, PR China.
| |
Collapse
|
21
|
Li M, He X, Hao D, Wu J, Zhao J, Yang Q, Chen X. 6-SFT, a Protein from Leymus mollis, Positively Regulates Salinity Tolerance and Enhances Fructan Levels in Arabidopsis thaliana. Int J Mol Sci 2019; 20:E2691. [PMID: 31159261 PMCID: PMC6600527 DOI: 10.3390/ijms20112691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 11/26/2022] Open
Abstract
Fructans play vital roles in abiotic stress tolerance in plants. In this study, we isolated the sucrose:6-fructosyltransferase gene, which is involved in the synthesis of fructans, from Leymus mollis by rapid amplification of cDNA ends. The Lm-6-SFT gene was introduced into Arabidopsis thaliana cv. Columbia by Agrobacterium-mediated transformation. The transgenic plants were evaluated under salt stress conditions. The results showed that the expression of Lm-6-SFT was significantly induced by light, abscisic acid (ABA), salicylic acid (SA), and salt treatment in L. mollis plants. Overexpression of Lm-6-SFT in Arabidopsis promoted seed germination and primary root growth during the early vegetative growth stage under salt stress. We also found that the transgenic plants expressing Lm-6-SFT had increased proline and fructan levels. β-Glucuronidase staining and promoter analysis indicated that the promoter of Lm-6-SFT was regulated by light, ABA, and salt stress. Quantitative PCR suggested that overexpression of Lm-6-SFT could improve salt tolerance by interacting with the expression of some salt stress tolerance genes. Thus, we demonstrated that the Lm-6-SFT gene is a candidate gene that potentially confers salt stress tolerance to plants. Our study will aid the elucidation of the regulatory mechanism of 6-SFT genes in herb plants.
Collapse
Affiliation(s)
- Mao Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaolan He
- College of Environment and Life Science, Kaili University, Kaili 556011, GuiZhou, China.
| | - Dongdong Hao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Wu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qunhui Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinhong Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, China.
| |
Collapse
|
22
|
Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC PLANT BIOLOGY 2019; 19:38. [PMID: 30669982 PMCID: PMC6341727 DOI: 10.1186/s12870-018-1627-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/28/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND NPR1, nonexpressor of pathogenesis-related gene 1, is a master regulator involved in plant defense response to pathogens, and its regulatory mechanism in the defense pathway has been relatively clear. However, information about the function of NPR1 in plant response to abiotic stress is still limited. Tomato is the fourth most economically crop worldwide and also one of the best-characterized model plants employed in genetic studies. Because of the lack of a stable tomato NPR1 (SlNPR1) mutant, little is known about the function of SlNPR1 in tomato response to biotic and abiotic stresses. RESULTS Here we isolated SlNPR1 from tomato 'Ailsa Craig' and generated slnpr1 mutants using the CRISPR/Cas9 system. Analysis of the cis-acting elements indicated that SlNPR1 might be involved in tomato plant response to drought stress. Expression pattern analysis showed that SlNPR1 was expressed in all plant tissues, and it was strongly induced by drought stress. Thus, we investigated the function of SlNPR1 in tomato-plant drought tolerance. Results showed that slnpr1 mutants exhibited reduced drought tolerance with increased stomatal aperture, higher electrolytic leakage, malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, and lower activity levels of antioxidant enzymes, compared to wild type (WT) plants. The reduced drought tolerance of slnpr1 mutants was further reflected by the down-regulated expression of drought related key genes, including SlGST, SlDHN, and SlDREB. CONCLUSIONS Collectively, the data suggest that SlNPR1 is involved in regulating tomato plant drought response. These results aid in further understanding the molecular basis underlying SlNPR1 mediation of tomato drought sensitivity.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Chunxue Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Liu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Lin Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Wenqing Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Shujuan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, 100872 China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
23
|
Shi Z, Halaly-Basha T, Zheng C, Weissberg M, Ophir R, Galbraith DW, Pang X, Or E. Transient induction of a subset of ethylene biosynthesis genes is potentially involved in regulation of grapevine bud dormancy release. PLANT MOLECULAR BIOLOGY 2018; 98:507-523. [PMID: 30392158 DOI: 10.1007/s11103-018-0793-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/28/2018] [Indexed: 05/26/2023]
Abstract
Transient increases in ethylene biosynthesis, achieved by tight regulation of transcription of specific ACC oxidase and ACC synthase genes, play a role in activation of grapevine bud dormancy release. The molecular mechanisms regulating dormancy release in grapevine buds are as yet unclear. It has been hypothesized that its core involves perturbation of respiration which induces an interplay between ethylene and ABA metabolism that removes repression and allows regrowth. Roles for hypoxia and ABA metabolism in this process have been previously supported. The potential involvement of ethylene biosynthesis in regulation of dormancy release, which has received little attention so far, is now explored. Our results indicate that (1) ethylene biosynthesis is induced by hydrogen cyanamide (HC) and azide (AZ), known artificial stimuli of dormancy release, (2) inhibitors of ethylene biosynthesis and signalling antagonize dormancy release by HC/AZ treatments, (3) ethylene application induces dormancy release, (4) there are two sets of bud-expressed ethylene biosynthesis genes which are differentially regulated, (5) only one set is transiently upregulated by HC/AZ and during the natural dormancy cycle, concomitant with changes in ethylene levels, and (6) levels of ACC oxidase transcripts and ethylene sharply decrease during natural dormancy release, whereas ACC accumulates. Given these results, we propose that transient increases in ethylene biosynthesis prior to dormancy release, achieved primarily by regulation of transcription of specific ACC oxidase genes, play a role in activation of dormancy release.
Collapse
Affiliation(s)
- Zhaowan Shi
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tamar Halaly-Basha
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Chuanlin Zheng
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Mira Weissberg
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - Ron Ophir
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Etti Or
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, 7528809, Rishon LeZion, Israel.
| |
Collapse
|
24
|
Upadhyay RK, Mattoo AK. Genome-wide identification of tomato (Solanum lycopersicum L.) lipoxygenases coupled with expression profiles during plant development and in response to methyl-jasmonate and wounding. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:318-328. [PMID: 30368230 DOI: 10.1016/j.jplph.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023]
Abstract
Lipoxygenases (LOXs) (EC 1.13.11.12) catalyze the oxygenation of fatty acids and produce oxylipins including the plant hormone jasmonate (jasmonic acid/methyl jasmonate; MeJA). Little is known about the tomato LOX gene family members that impact tomato growth and development, and less so about their feed-back regulation in response to MeJA. We present genome wide identification of 14 LOX gene family members in tomato which map unevenly on 12 chromosomes. The characteristic structural features of 9-LOX and 13-LOX tomato gene family, their protein domains/features, and divergence are presented. Quantification of the expression patterns of all the 14 SlLOX gene members segregated the members based on differential association with growth, development, or fruit ripening. We also identified those SlLOX genes whose transcription responds to exogenous MeJA and/or wounding stress. MeJA-based feedback regulation that involves activation of specific members of LOX genes is defined. Specific nature of SlLOX gene regulation in tomato is defined. The novel data on dynamics of SlLOX gene expression should help catalyze future strategies to elucidate role(s) of each gene member in planta and for crop biotechnological intervention.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
25
|
Wang Y, Gao L, Li J, Zhu B, Zhu H, Luo Y, Wang Q, Zuo J. Analysis of long-non-coding RNAs associated with ethylene in tomato. Gene 2018; 674:151-160. [PMID: 29958947 DOI: 10.1016/j.gene.2018.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
Abstract
Long-Non-Coding RNAs (LncRNAs) are a class of non-coding endogenous RNAs contributing to numerous biological processes. LeERF1 is a tomato ethylene response factor (ERF) near the end of the ethylene signal transduction pathway. To identify lncRNAs in tomato and elucidate their roles in ethylene signaling, deep sequencing was deployed in over-expression and repression LeERF1 transgenic and control tomato fruits. A total of 397 lncRNAs were identified, including 169 tomato lncRNAs that had not previously been identified. Among these, 12 were differentially expressed between the transgenic and control tomato fruits. Numerous lncRNA target genes were identified including many associated with ethylene signaling including auxin response factors and auxin-induced proteins, F-box proteins, ERFs and MADS-box proteins. In addition, two lncRNAs were found to be the precursor of three miRNAs and four lncRNAs could be targeted by five miRNAs. We propose a regulatory model highlighting the relationships between lncRNAs and their targets involved in ethylene signal transduction which establishes a foundation for addressing the role of LncRNAs in ethylene response.
Collapse
Affiliation(s)
- Yunxiang Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048,China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongliang Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY 14853, USA.
| |
Collapse
|