1
|
Liu K, Qin Y, Wu L, Yi R, Shi X, Yu J, Shi X, Dong W, Jia L, Fan M. Genome-wide identification, characterization and expression pattern analysis of HAK/KUP/KT potassium transporter gene family in potato. FRONTIERS IN PLANT SCIENCE 2025; 15:1487794. [PMID: 39886687 PMCID: PMC11779732 DOI: 10.3389/fpls.2024.1487794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
The HAK/KUP/KT (High-affinity K+ transporters/K+ uptake permeases/K+ transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato (Solanum tuberosum L.) remains limited and unclear. In this study, 24 HAK/KUP/KT genes (StHAKs) were identified through a genome-wide analysis and were found to be unevenly distributed across ten chromosomes. Based on phylogenetic analysis, these StHAK gene family members were classified into four distinct clusters. All StHAK protein sequences contained the conserved motifs and domains. Promoter cis-acting elements analysis revealed that most StHAK gene family members in potatoes were associated with responses to light and hormones such as abscisic acid or methyl jasmonate, however, many motifs responsive to hormones and stress conditions have not been clearly studied or reported in plants. Synteny analysis suggested that 33, 19, 8, 1 StHAK genes were orthologous to those in soybean, cassava, Arabidopsis and rice, respectively. The previously published RNA-seq results, transcriptomic data and qRT-PCR experiments indicated that the expression profiles of these StHAK genes were tissue-specific and were influenced by multiple factors, including biotic and abiotic stress, hormone, potassium fertilizer. To provide a clear and convenient view of StHAK gene expression across different tissues in potato, we generated a cartoon heatmap to vividly illustrate the tissue-specific expression of StHAK genes, which is unprecedented in the gene family analysis of potato. At last, we identified genes such as StHAK8, StHAK14, and StHAK22 with high expression in potato tubers using qRT-PCR, suggesting their potential involvement in tuber growth and development. This can contribute to a deeper understanding of the mechanism of potassium absorption and transportation in potatoes. It has laid a solid theoretical foundation for the genetic regulation of potassium nutritional efficiency in potatoes and the breeding of potato varieties with high potassium efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liguo Jia
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Mingshou Fan
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Liu Y, Hou Q, Dong K, Chen Y, Wang Z, Xie S, Wu S, Zhang X, Yu S, Yang Z. Overexpression of AtNHX1 increases leaf potassium content by improving enrichment capacity in tobacco ( Nicotiana tabacum) roots. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24144. [PMID: 39509264 DOI: 10.1071/fp24144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The NHX1 gene encodes a Na+ /H+ antiporter located in the tonoplast membrane, which plays critical role in regulating plant salt tolerance. It is also involved in the uptake and accumulation of K in plants; however, its precise mechanism is unknown. In this research, we elucidated the physiological basis underlying the increases in K content induced by NHX1 . We evaluated main agronomic traits, leaf K content, K+ uptake kinetics, and root morphological and physiological characteristics from field-planted and hydroponic plants. We included a wild-type tobacco (Nicotiana tabacum ) variety (K326) and three transgenic tobacco lines (NK7, NK9, NK10) that overexpress AtNHX1 from Arabidopsis thaliana . Results demonstrated that the agronomic performance of the AtNHX1 -overexpressing tobacco lines was similar to K326 in field and hydroponic settings. The three AtNHX1 -overexpressing tobacco lines had significantly higher leaf K contents than K326. Under hydroponic condition, enhanced K uptake capacity and a larger maximum K uptake rate were seen in AtNHX1 -overexpressing tobacco lines. AtNHX1 -overexpressing lines also exhibited significantly superior root morphological and physiological traits relative to K326, including root biomass, root volume, absorption area, root activity, cation exchange capacity, soluble protein content, and H+ -ATPase activity. Overexpression of AtNHX1 in tobacco significantly improves the K uptake and accumulation. Therefore, leaf K content greatly increased in these transgenic lines in the end. Our findings strongly suggest that AtNHX1 overexpression increased leaf K content by boosting the capacity of enriching K in tobacco roots, thereby advancing the understanding of the function of AtNHX1 .
Collapse
Affiliation(s)
- Yong Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 45002, China
| | - Qian Hou
- Pingliang Agricultural Technology Extension Station, Pingliang 744000, China
| | - Kunle Dong
- Luoyang City Company, Henan Provincial Tobacco Company, Luoyang 471000, China
| | - Yi Chen
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Zhihong Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Shengdong Xie
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Shengjiang Wu
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 45002, China
| | - Shizhou Yu
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Zhixiao Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| |
Collapse
|
3
|
Cheng R, Zhao Z, Tang Y, Gu Y, Chen G, Sun Y, Wang X. Genome-wide survey of KT/HAK/KUP genes in the genus Citrullus and analysis of their involvement in K +-deficiency and drought stress responses in between C. lanatus and C. amarus. BMC Genomics 2024; 25:836. [PMID: 39237905 PMCID: PMC11378637 DOI: 10.1186/s12864-024-10712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The KT/HAK/KUP is the largest K+ transporter family in plants, playing crucial roles in K+ absorption, transport, and defense against environmental stress. Sweet watermelon is an economically significant horticultural crop belonging to the genus Citrullus, with a high demand for K+ during its growth process. However, a comprehensive analysis of the KT/HAK/KUP gene family in watermelon has not been reported. RESULTS 14 KT/HAK/KUP genes were identified in the genomes of each of seven Citrullus species. These KT/HAK/KUPs in watermelon were unevenly distributed across seven chromosomes. Segmental duplication is the primary driving force behind the expansion of the KT/HAK/KUP family, subjected to purifying selection during domestication (Ka/Ks < 1), and all KT/HAK/KUPs exhibit conserved motifs and could be phylogenetically classified into four groups. The promoters of KT/HAK/KUPs contain numerous cis-regulatory elements related to plant growth and development, phytohormone response, and stress response. Under K+ deficiency, the growth of watermelon seedlings was significantly inhibited, with cultivated watermelon experiencing greater impacts (canopy width, redox enzyme activity) compared to the wild type. All KT/HAK/KUPs in C. lanatus and C. amarus exhibit specific expression responses to K+-deficiency and drought stress by qRT-PCR. Notably, ClG42_07g0120700/CaPI482276_07g014010 were predominantly expressed in roots and were further induced by K+-deficiency and drought stress. Additionally, the K+ transport capacity of ClG42_07g0120700 under low K+ stress was confirmed by yeast functional complementation assay. CONCLUSIONS KT/HAK/KUP genes in watermelon were systematically identified and analyzed at the pangenome level and provide a foundation for understanding the classification and functions of the KT/HAK/KUPs in watermelon plants.
Collapse
Affiliation(s)
- Rui Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China
| | - Zhengxiang Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China
| | - Yan Tang
- Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Yan Gu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China
| | - Guodong Chen
- Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Yudong Sun
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China.
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China.
| |
Collapse
|
4
|
Jing X, Wang P, Liu J, Xiang M, Song X, Wang C, Li P, Li H, Wu Z, Zhang C. A viral protein competitively bound to rice CIPK23 inhibits potassium absorption and facilitates virus systemic infection in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2348-2363. [PMID: 38578842 PMCID: PMC11258980 DOI: 10.1111/pbi.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Potassium (K+) plays a crucial role as a macronutrient in the growth and development of plants. Studies have definitely determined the vital roles of K+ in response to pathogen invasion. Our previous investigations revealed that rice plants infected with rice grassy stunt virus (RGSV) displayed a reduction in K+ content, but the mechanism by which RGSV infection subverts K+ uptake remains unknown. In this study, we found that overexpression of RGSV P1, a specific viral protein encoded by viral RNA1, results in enhanced sensitivity to low K+ stress and exhibits a significantly lower rate of K+ influx compared to wild-type rice plants. Further investigation revealed that RGSV P1 interacts with OsCIPK23, an upstream regulator of Shaker K+ channel OsAKT1. Moreover, we found that the P1 protein recruits the OsCIPK23 to the Cajal bodies (CBs). In vivo assays demonstrated that the P1 protein competitively binds to OsCIPK23 with both OsCBL1 and OsAKT1. In the nucleus, the P1 protein enhances the binding of OsCIPK23 to OsCoilin, a homologue of the signature protein of CBs in Arabidopsis, and facilitates their trafficking through these CB structures. Genetic analysis indicates that mutant in oscipk23 suppresses RGSV systemic infection. Conversely, osakt1 mutants exhibited increased sensitivity to RGSV infection. These findings suggest that RGSV P1 hinders the absorption of K+ in rice plants by recruiting the OsCIPK23 to the CB structures. This process potentially promotes virus systemic infection but comes at the expense of inhibiting OsAKT1 activity.
Collapse
Affiliation(s)
- Xinxin Jing
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengyue Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianjian Liu
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
- Hubei Engineering Research Center for Pest Forewarning and ManagementCollege of AgronomyYangtze UniversityJingzhouChina
| | - Meirong Xiang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Xia Song
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaonan Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Pengbai Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant VirologyCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan ProvinceCollege of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
5
|
Jiménez-Estévez E, Martínez-Martínez A, Amo J, Yáñez A, Miñarro P, Martínez V, Nieves-Cordones M, Rubio F. Increased tolerance to low K +, and to cationic stress of Arabidopsis plants by expressing the F130S mutant version of the K + transporter AtHAK5. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108768. [PMID: 38797008 DOI: 10.1016/j.plaphy.2024.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Potassium (K+) selectivity of high-affinity K+ uptake systems is crucial for plant growth under low K+ and in the presence of inhibitors of K+ uptake that are toxic to plants such as Na+ or Cs+. Here, we express a mutated version of the Arabidopsis AtHAK5 high-affinity K+ transporter consisting on a change of phenylalanine 130 to serine (F130S) in athak5 akt1 double mutant plants. F130S-expressing plants show better growth, increased K+ uptake from low external concentrations and higher K+ contents when grown at low K+ (10 μM) and when grown at low K+ in the presence of Na+ (15 mM) or Cs+ (1 μM). In addition, these plants accumulate less Na+ and Cs+, resulting in lower Na+/K+ and Cs+/K+ ratios, which are important determinants of plant tolerance to salt stress and to Cs+-polluted soils. Structure analysis of AtHAK5 suggest that the F130 residue approaches the intracellular gate of the K+ tunnel of AtHAK5, affecting somehow its ionic selectivity. Modification of transport systems has a large potential to face challenges of future agriculture such as sustainable production under abiotic stress conditions imposed by climate change.
Collapse
Affiliation(s)
- Elisa Jiménez-Estévez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Adrián Yáñez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Pedro Miñarro
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
6
|
Zeng P, Xie T, Shen J, Liang T, Yin L, Liu K, He Y, Chen M, Tang H, Chen S, Shabala S, Zhang H, Cheng J. Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:731-748. [PMID: 38482956 DOI: 10.1111/jipb.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.
Collapse
Affiliation(s)
- Peng Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taokai Liang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Lu Yin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kexin Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haijuan Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Guo H, Tan J, Jiao Y, Huang B, Ma R, Ramakrishnan M, Qi G, Zhang Z. Genome-wide identification and expression analysis of the HAK/KUP/KT gene family in Moso bamboo. FRONTIERS IN PLANT SCIENCE 2024; 15:1331710. [PMID: 38595761 PMCID: PMC11002169 DOI: 10.3389/fpls.2024.1331710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is the most prominent group of potassium (K+) transporters, playing a key role in K+ uptake, transport, plant growth and development, and stress tolerance. However, the presence and functions of the KUP/HAK/KT family in Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs) distributed across 18 chromosomal scaffolds of the Moso bamboo genome. PeHAK is a typical membrane protein with a conserved structural domain and motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters, while collinearity analysis revealed gene duplications resulting from purifying selection, including both tandem and segmental duplications. Enrichment analysis of promoter cis-acting elements suggested their plausible role in abiotic stress response and hormone induction. Transcriptomic data and STEM analyses indicated that PeHAKs were involved in tissue and organ development, rapid growth, and responded to different abiotic stress conditions. Subcellular localization analysis demonstrated that PeHAKs are predominantly expressed at the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs in potassium ion transport was confirmed by studying the potassium ion transport properties of a yeast mutant. Additionally, through homology modeling, we revealed the structural properties of HAK as a transmembrane protein associated with potassium ion transport. This research provides a solid basis for understanding the classification, characterization, and functional analysis of the PeHAK family in Moso bamboo.
Collapse
Affiliation(s)
- Hui Guo
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jiaqi Tan
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yang Jiao
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bing Huang
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ruifang Ma
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Guoning Qi
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhijun Zhang
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Luo M, Chu J, Wang Y, Chang J, Zhou Y, Jiang X. Positive Regulatory Roles of Manihot esculenta HAK5 under K + Deficiency or High Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:849. [PMID: 38592853 PMCID: PMC10974855 DOI: 10.3390/plants13060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
HAK/KUP/KT family members have been identified as playing key roles in K+ uptake and salt tolerance in numerous higher plants. However, their functions in cassava (Manihot esculenta Cantz) remain unknown. In this study, a gene encoding for a high-affinity potassium transporter (MeHAK5) was isolated from cassava and its function was investigated. Subcellular localization analysis showed that MeHAK5 is a plasma membrane-localized transporter. RT-PCR and RT-qPCR indicated that MeHAK5 is predominantly expressed in cassava roots, where it is upregulated by low potassium or high salt; in particular, its highest expression levels separately increased by 2.2 and 2.9 times after 50 µM KCl and 150 mM NaCl treatments. When heterologously expressed in yeast, MeHAK5 mediated K+ uptake within the cells of the yeast strain CY162 and rescued the salt-sensitive phenotype of AXT3K yeast. MeHAK5 overexpression in transgenic Arabidopsis plants exhibited improved growth and increased shoot K+ content under low potassium conditions. Under salt stress, MeHAK5 transgenic Arabidopsis plants accumulated more K+ in the shoots and roots and had reduced Na+ content in the shoots. As a result, MeHAK5 transgenic Arabidopsis demonstrated a more salt-tolerant phenotype. These results suggest that MeHAK5 functions as a high-affinity K+ transporter under K+ starvation conditions, improving K+/Na+ homeostasis and thereby functioning as a positive regulator of salt stress tolerance in transgenic Arabidopsis. Therefore, MeHAK5 may be a suitable candidate gene for improving K+ utilization efficiency and salt tolerance.
Collapse
Affiliation(s)
- Minghua Luo
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
| | - Jing Chu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yu Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jingyan Chang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
| | - Xingyu Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
9
|
Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int J Mol Sci 2023; 24:16682. [PMID: 38069005 PMCID: PMC10705939 DOI: 10.3390/ijms242316682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Potassium is essential for plant growth and development and stress adaptation. The maintenance of potassium homeostasis involves a series of potassium channels and transporters, which promote the movement of potassium ions (K+) across cell membranes and exhibit complex expression patterns and regulatory mechanisms. Rice is a major food crop in China. The low utilization rate of potassium fertilizer limits the yield and quality of rice. Elucidating the molecular mechanisms of potassium absorption, transport, and utilization is critical in improving potassium utilization efficiency in rice. Although some K+ transporter genes have been identified from rice, research on the regulatory network is still in its infancy. Therefore, this review summarizes the relevant information on K+ channels and transporters in rice, covering the absorption of K+ in the roots, transport to the shoots, the regulation pathways, the relationship between K+ and the salt tolerance of rice, and the synergistic regulation of potassium, nitrogen, and phosphorus signals. The related research on rice potassium nutrition has been comprehensively reviewed, the existing research foundation and the bottleneck problems to be solved in this field have been clarified, and the follow-up key research directions have been pointed out to provide a theoretical framework for the cultivation of potassium-efficient rice.
Collapse
Affiliation(s)
- Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
10
|
Shen L, Fan W, Li N, Wu Q, Chen D, Luan J, Zhang G, Tian Q, Jing W, Zhang Q, Zhang W. Rice potassium transporter OsHAK18 mediates phloem K + loading and redistribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:201-216. [PMID: 37381632 DOI: 10.1111/tpj.16371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) are important pathways mediating K+ transport across cell membranes, which function in maintaining K+ homeostasis during plant growth and stress response. An increasing number of studies have shown that HAK/KUP/KT transporters play crucial roles in root K+ uptake and root-to-shoot translocation. However, whether HAK/KUP/KT transporters also function in phloem K+ translocation remain unclear. In this study, we revealed that a phloem-localized rice HAK/KUP/KT transporter, OsHAK18, mediated cell K+ uptake when expressed in yeast, Escherichia coli and Arabidopsis. It was localized at the plasma membrane. Disruption of OsHAK18 rendered rice seedlings insensitive to low-K+ (LK) stress. After LK stress, some WT leaves showed severe wilting and chlorosis, whereas the corresponding leaves of oshak18 mutant lines (a Tos17 insertion line and two CRISPR lines) remained green and unwilted. Compared with WT, the oshak18 mutants accumulated more K+ in shoots but less K+ in roots after LK stress, leading to a higher shoot/root ratio of K+ per plant. Disruption of OsHAK18 does not affect root K+ uptake and K+ level in xylem sap, but it significantly decreases phloem K+ concentration and inhibits root-to-shoot-to-root K+ (Rb+ ) translocation in split-root assay. These results reveal that OsHAK18 mediates phloem K+ loading and redistribution, whose disruption is in favor of shoot K+ retention under LK stress. Our findings expand the understanding of HAK/KUP/KT transporters' functions and provide a promising strategy for improving rice tolerance to K+ deficiency.
Collapse
Affiliation(s)
- Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxia Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junxia Luan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gangao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanxiang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Nieves-Cordones M, Amo J, Hurtado-Navarro L, Martínez-Martínez A, Martínez V, Rubio F. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 uncovers CIPK-CBL-target network rewiring in land plants. THE NEW PHYTOLOGIST 2023; 238:2495-2511. [PMID: 36967582 DOI: 10.1111/nph.18910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/19/2023] [Indexed: 05/19/2023]
Abstract
Transport of K+ to the xylem is a key process in the mineral nutrition of the shoots. Although CIPK-CBL complexes have been widely shown to regulate K+ uptake transport systems, no information is available about the xylem ones. Here, we studied the physiological roles of the voltage-gated K+ channel SlSKOR and its regulation by the SlCIPK23-SlCBL1/9 complexes in tomato plants. We phenotyped gene-edited slskor and slcipk23 tomato knockout mutants and carried out two-electrode voltage-clamp (TEVC) and BiFC assays in Xenopus oocytes as key approaches. SlSKOR was preferentially expressed in the root stele and was important not only for K+ transport to shoots but also, indirectly, for that of Ca2+ , Mg2+ , Na+ , NO3 - , and Cl- . Surprisingly, the SlCIPK23-SlCBL1/9 complexes turned out to be negative regulators of SlSKOR. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 was observed in Xenopus oocytes and tomato plants. Regulation of SKOR-like channels by CIPK23-CBL1 complexes was also present in Medicago, grapevine, and lettuce but not in Arabidopsis and saltwater cress. Our results provide a molecular framework for coordinating root K+ uptake and its translocation to the shoot by SlCIPK23-SlCBL1/9 in tomato plants. Moreover, they evidenced that CIPK-CBL-target networks have evolved differently in land plants.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Laura Hurtado-Navarro
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| |
Collapse
|
12
|
Santa-María GE, Lavres J, Rubio G. The concept of mineral plant nutrient in the light of evolution. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111747. [PMID: 37230191 DOI: 10.1016/j.plantsci.2023.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The concept of mineral plant nutrient has been the subject of a long debate. Here, we suggest that an updated discussion on this issue requires considering three dimensions. The first one is ontological as it refers to the fundamentals that underlie the category of being a mineral plant nutrient, the second one refers to the practical rules helping to assign a given element to that category, while the third dimension implies the consequences of those rules for human activities. We highlight the idea that the definition of what is a mineral plant nutrient can be enriched by incorporating an evolutionary perspective, thus giving biological insight and helping to integrate information from different disciplines. Following this perspective, mineral nutrients can be contemplated as the elements adopted and/or retained, along evolution, for survival and reproductive success. We suggest that the operational rules stated in both early and recent works, while highly valuable for their original purposes, will not necessarily account for fitness under the conditions prevailing in natural ecosystems where elements were adopted and are retained -as a result of natural selection processes- covering a wide spectrum of biological activities. We outline a new definition that considers the mentioned three dimensions.
Collapse
Affiliation(s)
- Guillermo Esteban Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM). Escuela de Bio y Nanotecnologías (EByN), UNSAM. Avda. Int. Marino km 8.2. Chascomús, Buenos Aires, 7300, Argentina.
| | - José Lavres
- Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP). Av. Centenário, 303 - São Dimas. CEP: 13416-000 - Piracicaba (SP) - Brasil
| | - Gerardo Rubio
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Cátedra de Fertilidad y Fertilizantes, Facultad de Agronomía, Universidad de Buenos Aires. Av San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
13
|
Peng Y, Cao H, Peng Z, Zhou L, Sohail H, Cui L, Yang L, Huang Y, Bie Z. Transcriptomic and functional characterization reveals CsHAK5;3 as a key player in K + homeostasis in grafted cucumbers under saline conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111509. [PMID: 36283579 DOI: 10.1016/j.plantsci.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Grafting can improve the salt tolerance of many crops. However, critical genes in scions responsive to rootstock under salt stress remain a mystery. We found that pumpkin rootstock decreased the content of Na+ by 70.24 %, increased the content of K+ by 25.9 %, and increased the K+/Na+ ratio by 366.0 % in cucumber scion leaves. RNA-seq analysis showed that ion transport-related genes were the key genes involved in salt stress tolerance in grafted cucumber. The identification and analysis of the expression of K+ transporter proteins in cucumber and pumpkin revealed six and five HAK5 members, respectively. The expression of CsHAK5;3 in cucumber was elevated in different graft combinations under salt stress and most notably in cucumber scion/pumpkin rootstock. CsHAK5;3 was localized to the plasma membrane, and a yeast complementation assay revealed that it can transport K+. CsHAK5;3 knockout in hairy root mutants decreased the K+ content of leaves (45.6 %) and roots (50.3 %), increased the Na+ content of leaves (29.3 %) and roots (34.8 %), and decreased the K+/Na+ ratio of the leaves (57.9 %) and roots (62.9 %) in cucumber. However, CsHAK5;3 overexpression in hairy roots increased the K+ content of the leaves (31.2 %) and roots (38.3 %), decreased the Na+ content of leaves (17.2 %) and roots (14.3 %), and increased the K+/Na+ ratio of leaves (58.9 %) and roots (61.6 %) in cucumber. In conclusion, CsHAK5;3 in cucumber can mediate K+ transport and is one of the key target pumpkin genes that enhance salt tolerance of cucumber grafted.
Collapse
Affiliation(s)
- Yuquan Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China; Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaowen Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lijian Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lvjun Cui
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Yamanashi T, Uchiyama T, Saito S, Higashi T, Ikeda H, Kikunaga H, Yamagami M, Ishimaru Y, Uozumi N. Potassium transporter KUP9 participates in K + distribution in roots and leaves under low K + stress. STRESS BIOLOGY 2022; 2:52. [PMID: 37676337 PMCID: PMC10441886 DOI: 10.1007/s44154-022-00074-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 09/08/2023]
Abstract
Potassium (K) is a major essential element in plant cells, and KUP/HAK/KT-type K+ transporters participate in the absorption of K+ into roots and in the long-distance transport to above-ground parts. In Arabidopsis thaliana, KUP9 is involved in the transport of K+ and Cs+ in roots. In this study, we investigated KUP9 function in relation to the K+ status of the plant. The expression of KUP9 was upregulated in older leaves on K+-depleted medium, compared to the expression of the other 12 KUP genes in the KUP/HAK/KT family in Arabidopsis. When grown on low K+ medium, the kup9 mutant had reduced chlorophyll content in seedlings and chlorosis in older rosette leaves. Tissue-specific expression of KUP9 determined by KUP9 promoter:GUS assay depended on the K+ status of the plants: In K+ sufficient medium, KUP9 was expressed in the leaf blade towards the leaf tip, whereas in K+ depleted medium expression was mainly found in the petioles. In accordance with this, K+ accumulated in the roots of kup9 plants. The short-term 43K+ tracer measurement showed that 43K was transferred at a lower rate in roots and shoots of kup9, compared to the wild type. These data show that KUP9 participates in the distribution of K+ in leaves and K+ absorption in roots under low K+ conditions.
Collapse
Affiliation(s)
- Taro Yamanashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Takeshi Uchiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Taiki Higashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Hayato Ikeda
- Research Center for Electron Photon Science, Tohoku University, Sendai, 980-0826, Japan
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
| | - Hidetoshi Kikunaga
- Research Center for Electron Photon Science, Tohoku University, Sendai, 980-0826, Japan
| | - Mutsumi Yamagami
- Institute for Environmental Sciences, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
15
|
Mo Z, Luo W, Pi K, Duan L, Wang P, Ke Y, Zeng S, Jia R, Liang T, Huang Y, Liu R. Comparative transcriptome analysis between inbred lines and hybrids provides molecular insights into K + content heterosis of tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:940787. [PMID: 35991430 PMCID: PMC9389268 DOI: 10.3389/fpls.2022.940787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is essential for crop growth. Increasing the K+ content can often directly promote the improvement of crop yield and quality. Heterosis plays an important role in genetic improvement and leads to genetic gains. We found that the K+ content of tobacco showed significant heterosis, which is highly significant for cultivating tobacco varieties with high K+ content. However, the mechanism by which K+ content heterosis occurs in tobacco leaves is not clear. In this study, a comprehensive comparative transcriptome sequencing analysis of root samples from the hybrid G70 × GDH11 and its parental inbred lines G70 and GDH11 was performed to elucidate the importance of the root uptake capacity of K+ in the formation of heterosis. The results showed that 29.53% and 60.49% of the differentially expressed genes (DEGs) exhibited dominant and over-dominant expression patterns, respectively. These non-additive upregulated DEGs were significantly enriched in GO terms, such as metal ion transport and reaction, ion balance and homeostasis, ion channel activity, root meristem growth, and regulation of root hairs. The KEGG annotation results indicated that these genes were mainly involved in the pathways such as energy metabolism, carbohydrate formation, amino acid metabolism, and signal transduction. Further analysis showed that probable potassium transporter 17 (NtKT17) and potassium transporter 5-like (NtKT5), associated with potassium ion absorption, glutamate receptor 2.2-like and glutamate receptor 2.8-like, associated with ion channel activity, LOC107782957, protein detoxification 42-like, and probable glutamate carboxypeptidase 2, associated with root configuration, showed a significantly higher expression in the hybrids. These results indicated that the over-dominant expression pattern of DEGs played a key role in the heterosis of K+ content in tobacco leaves, and the overexpression of the genes related to K+ uptake, transport, and root development in hybrids helped to improve the K+ content of plants, thus showing the phenomenon of heterosis.
Collapse
Affiliation(s)
- Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Wen Luo
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Kai Pi
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Pingsong Wang
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Yuzhou Ke
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Shuaibo Zeng
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Rongli Jia
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Ting Liang
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Ying Huang
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Renxiang Liu
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Li W, Li M, Li S, Zhang Y, Li X, Xu G, Yu L. Function of Rice High-Affinity Potassium Transporters in Pollen Development and Fertility. PLANT & CELL PHYSIOLOGY 2022; 63:967-980. [PMID: 35536598 DOI: 10.1093/pcp/pcac061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Plant High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) transporters have been predicted as membrane H+-K+ symporters in facilitating K+ uptake and distribution, while their role in seed production remains to be elucidated. In this study, we report that OsHAK26 is preferentially expressed in anthers and seed husks and located in the Golgi apparatus. Knockout of either OsHAK26 or plasma membrane located H+-K+ symporter gene OsHAK1 or OsHAK5 in both Nipponbare and Dongjin cultivars caused distorted anthers, reduced number and germination rate of pollen grains. Seed-setting rate assay by reciprocal cross-pollination between the mutants of oshak26, oshak1, oshak5 and their wild types confirmed that each HAK transporter is foremost for pollen viability, seed-setting and grain yield. Intriguingly, the pollens of oshak26 showed much thinner wall and were more vulnerable to desiccation than those of oshak1 or oshak5. In vitro assay revealed that the pollen germination rate of oshak5 was dramatically affected by external K+ concentration. The results suggest that the role of OsHAK26 in maintaining pollen development and fertility may relate to its proper cargo sorting for construction of pollen walls, while the role of OsHAK1 and OsHAK5 in maintaining seed production likely relates to their transcellular K+ transport activity.
Collapse
Affiliation(s)
- Weihong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Academy of Agricultural Sciences, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu 223001, China
| | - Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
18
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
19
|
Wei J, Tiika RJ, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in Salicornia europaea L. under varied NaCl and KCl treatments. PeerJ 2022; 10:e12989. [PMID: 35261820 PMCID: PMC8898550 DOI: 10.7717/peerj.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Background The KT/HAK/KUP (KUP) transporters play important roles in potassium (K+) uptake and translocation, regulation of osmotic potential, salt tolerance, root morphogenesis and plant development. However, the KUP family has not been systematically studied in the typical halophyte Salicornia europaea L., and the specific expression patterns of SeKUPs under NaCl condition and K+ deficiency are unknown. Methods In this study, SeKUPs were screened from PacBio transcriptome data of Salicornia europaea L. using bioinformatics. The identification, phylogenetic analysis and prediction of conserved motifs of SeKUPs were extensively explored. Moreover, the expression levels of 24 selected SeKUPs were assayed by real-time quantitative polymerase chain reaction (RT-qPCR). Results In this study, a total of 24 putative SeKUPs were identified in S. europaea. Nineteen SeKUPs with the fixed domain EA[ML]FADL were used to construct the phylogenetic tree, and they were divided into four clusters (clusters I-IV). MEME analysis identified 10 motifs in S. europaea, and the motif analysis suggested that 19 of the identified SeKUPs had at least four K+ transporter motifs existed in all SeKUPs (with the exception of SeKUP-2). The RT-qPCR analysis showed that the expression levels of most SeKUPs were significantly up-regulated in S. europaea when they were exposed to K+ deficiency and high salinity, implying that these SeKUPs may play a key role in the absorption and transport of K+ and Na+ in S. europaea. Discussions Our results laid the foundation for revealing the salt tolerance mechanism of SeKUPs, and provided key candidate genes for further studies on the function of KUP family in S. europaea.
Collapse
Affiliation(s)
- Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| |
Collapse
|
20
|
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, Moschou P, Ljung K, Hatzopoulos P, Rigas S. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. PLANT PHYSIOLOGY 2022; 188:1043-1060. [PMID: 34633458 PMCID: PMC8825323 DOI: 10.1093/plphys/kiab472] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 05/09/2023]
Abstract
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.
Collapse
Affiliation(s)
- Dimitris Templalexis
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Panagiotis Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR 70 013, Greece
- Department of Biology, University of Crete, Heraklion GR 71 500, Greece
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
- Author for communication:
| |
Collapse
|
21
|
Liu C, Liao W. Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:110-121. [PMID: 35123248 DOI: 10.1016/j.plaphy.2022.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potassium ion (K+) has been regarded as an essential signaling in plant growth and development. K+ transporters and channels at transcription and protein levels have been made great progress. K+ can enhance plant abiotic stress resistance. Meanwhile, it is now clear that calcium (Ca2+), reactive oxygen species (ROS), and reactive nitrogen species (RNS) act as signaling molecules in plants. They regulate plant growth and development and mediate K+ transport. However, the interaction of K+ with these signaling molecules remains unclear. K+ may crosstalk with Ca2+ and ROS/RNS in abiotic stress responses in plants. Also, there are interactions among K+, Ca2+, and ROS/RNS signaling pathways in plant growth, development, and abiotic stress responses. They regulate ion homeostasis, antioxidant system, and stress resistance-related gene expression in plants. Future work needs to focus on the deeper understanding of molecular mechanism of crosstalk among K+, Ca2+, and ROS/RNS under abiotic stress.
Collapse
Affiliation(s)
- Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
22
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
23
|
Lana LG, de Araújo LM, Silva TF, Modolo LV. Interplay between gasotransmitters and potassium is a K +ey factor during plant response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:322-332. [PMID: 34837865 DOI: 10.1016/j.plaphy.2021.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters known for their roles in plant response to (a)biotic stresses. The crosstalk between these gasotransmitters and potassium ions (K+) has received considerable attention in recent years, particularly due to the dual role of K+ as an essential mineral nutrient and a promoter of plant tolerance to abiotic stress. This review brings together what it is known about the interplay among NO, CO, H2S and K+ in plants with focus on the response to high salinity. Some findings obtained for plants under water deficit and metal stress are also presented and discussed since both abiotic stresses share similarities with salt stress. The molecular targets of the gasotransmitters NO, CO and H2S in root and guard cells that drive plant tolerance to salt stress are highlighted as well.
Collapse
Affiliation(s)
- Luísa Gouveia Lana
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lara Matos de Araújo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thamara Ferreira Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luzia Valentina Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
24
|
Zhou JY, Hao DL, Yang GZ. Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H +-ATPases and Multiple Transporters. Int J Mol Sci 2021; 22:12998. [PMID: 34884802 PMCID: PMC8657649 DOI: 10.3390/ijms222312998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.
Collapse
Affiliation(s)
- Jin-Yan Zhou
- Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China;
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guang-Zhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| |
Collapse
|
25
|
He B, Meng L, Tang L, Qi W, Hu F, Lv Y, Song W. The Landscape of Alternative Splicing Regulating Potassium Use Efficiency in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2021; 12:774829. [PMID: 34858465 PMCID: PMC8630638 DOI: 10.3389/fpls.2021.774829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 06/01/2023]
Abstract
Alternative splicing (AS) occurs extensively in eukaryotes as an essential mechanism for regulating transcriptome complexity and diversity, but the AS landscape regulating potassium (K) use efficiency in plants is unclear. In this study, we performed high-throughput transcriptome sequencing of roots and shoots from allopolyploid Nicotiana tabacum under K+ deficiency. Preliminary physiological analysis showed that root system architecture was dramatically changed due to potassium deficiency and that IAA content was significantly reduced in root and shoot. AS analysis showed that a total of 28,179 genes exhibited 54,457 AS events, and 1,510 and 1,732 differentially alternatively spliced (DAS) events were identified in shoots and roots under low K+ stress. Nevertheless, only 120 DAS events occurred in both shoots and roots, implying that most DAS events were tissue-specific. Both in shoot and the root, the proportion of DAS genes in differentially expressed (DE) genes equaled that in non-DE genes, which indicated that AS might play a unique regulatory role in response to low potassium. Gene ontology analysis further indicated that transcription regulation and AS modulation worked independently in response to low K+ stress in tobacco, as their target biological processes were different. Totally 45 DAS transcription factors (TFs) were found, which were involved in 18 TF families. Five Auxin response factor (ARF) TFs were significantly DAS in root, suggesting that response to auxin was probably subject to AS regulation in the tobacco root. Our study shows that AS variation occurs extensively and has a particular regulatory mechanism under K+ deficiency in tobacco. The study also links changes in root system architecture with the changes in AS of ARF TFs, which implied the functional significance of these AS events for root growth and architecture.
Collapse
Affiliation(s)
- Bing He
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lina Tang
- Tobacco Science Research Institute, Fujian Tobacco Monopoly Administration, Fuzhou, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
26
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
27
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
28
|
The Potassium Transporter Hak1 in Candida Albicans, Regulation and Physiological Effects at Limiting Potassium and under Acidic Conditions. J Fungi (Basel) 2021; 7:jof7050362. [PMID: 34066565 PMCID: PMC8148600 DOI: 10.3390/jof7050362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The three families of yeast plasma membrane potassium influx transporters are represented in Candida albicans: Trk, Acu, and Hak proteins. Hak transporters work as K+-H+ symporters, and the genes coding for Hak proteins are transcriptionally activated under potassium limitation. This work shows that C. albicans mutant cells lacking CaHAK1 display a severe growth impairment at limiting potassium concentrations under acidic conditions. This is the consequence of a defective capacity to transport K+, as indicated by potassium absorption experiments and by the kinetics parameters of Rb+ (K+) transport. Moreover, hak1- cells are more sensitive to the toxic cation lithium. All these phenotypes became much less robust or even disappeared at alkaline growth conditions. Finally, transcriptional studies demonstrate that the hak1- mutant, in comparison with HAK1+ cells, activates the expression of the K+/Na+ ATPase coded by CaACU1 in the presence of Na+ or in the absence of K+.
Collapse
|
29
|
Ródenas R, Ragel P, Nieves-Cordones M, Martínez-Martínez A, Amo J, Lara A, Martínez V, Quintero FJ, Pardo JM, Rubio F. Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51. PLANT PHYSIOLOGY 2021; 185:1860-1874. [PMID: 33595056 PMCID: PMC8133630 DOI: 10.1093/plphys/kiab028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/02/2023]
Abstract
The high-affinity K+ transporter HAK5 from Arabidopsis (Arabidopsis thaliana) is essential for K+ acquisition and plant growth at low micromolar K+ concentrations. Despite its functional relevance in plant nutrition, information about functional domains of HAK5 is scarce. Its activity is enhanced by phosphorylation via the AtCIPK23/AtCBL1-9 complex. Based on the recently published three-dimensionalstructure of the bacterial ortholog KimA from Bacillus subtilis, we have modeled AtHAK5 and, by a mutational approach, identified residues G67, Y70, G71, D72, D201, and E312 as essential for transporter function. According to the structural model, residues D72, D201, and E312 may bind K+, whereas residues G67, Y70, and G71 may shape the selective filter for K+, which resembles that of K+shaker-like channels. In addition, we show that phosphorylation of residue S35 by AtCIPK23 is required for reaching maximal transport activity. Serial deletions of the AtHAK5 C-terminus disclosed the presence of an autoinhibitory domain located between residues 571 and 633 together with an AtCIPK23-dependent activation domain downstream of position 633. Presumably, autoinhibition of AtHAK5 is counteracted by phosphorylation of S35 by AtCIPK23. Our results provide a molecular model for K+ transport and describe CIPK-CBL-mediated regulation of plant HAK transporters.
Collapse
Affiliation(s)
- Reyes Ródenas
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
- Present address: Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, cic-Cartuja, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Sevilla, Spain
- Present address: Centre for Organismal Studies (COS), Department of Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, cic-Cartuja, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cic-Cartuja, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain
- Author for communication:
| |
Collapse
|
30
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
31
|
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:34-52. [PMID: 33325114 DOI: 10.1111/jipb.13053] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N), potassium (K), and phosphorus (P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice (Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
32
|
Zhou J, Zhou HJ, Chen P, Zhang LL, Zhu JT, Li PF, Yang J, Ke YZ, Zhou YH, Li JN, Du H. Genome-Wide Survey and Expression Analysis of the KT/HAK/KUP Family in Brassica napus and Its Potential Roles in the Response to K + Deficiency. Int J Mol Sci 2020; 21:ijms21249487. [PMID: 33322211 PMCID: PMC7763660 DOI: 10.3390/ijms21249487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I–III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs.
Collapse
Affiliation(s)
- Jie Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hong-Jun Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ping Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lan-Lan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Tian Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yong-Hong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: (J.-N.L.); or (H.D.); Tel.: +86-1822-348-0008 (H.D.)
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Z.); (H.-J.Z.); (P.C.); (L.-L.Z.); (J.-T.Z.); (P.-F.L.); (J.Y.); (Y.-Z.K.); (Y.-H.Z.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: (J.-N.L.); or (H.D.); Tel.: +86-1822-348-0008 (H.D.)
| |
Collapse
|
33
|
Kocourková D, Krčková Z, Pejchar P, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 mediates the high-Mg 2+ stress response partially through regulation of K + homeostasis. PLANT, CELL & ENVIRONMENT 2020; 43:2460-2475. [PMID: 32583878 DOI: 10.1111/pce.13831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 05/28/2023]
Abstract
Intracellular levels of Mg2+ are tightly regulated, as Mg2+ deficiency or excess affects normal plant growth and development. In Arabidopsis, we determined that phospholipase Dα1 (PLDα1) is involved in the stress response to high-magnesium conditions. The T-DNA insertion mutant pldα1 is hypersensitive to increased concentrations of magnesium, exhibiting reduced primary root length and fresh weight. PLDα1 activity increases rapidly after high-Mg2+ treatment, and this increase was found to be dose dependent. Two lines harbouring mutations in the HKD motif, which is essential for PLDα1 activity, displayed the same high-Mg2+ hypersensitivity of pldα1 plants. Moreover, we show that high concentrations of Mg2+ disrupt K+ homeostasis, and that transcription of K+ homeostasis-related genes CIPK9 and HAK5 is impaired in pldα1. Additionally, we found that the akt1, hak5 double mutant is hypersensitive to high-Mg2+ . We conclude that in Arabidopsis, the enzyme activity of PLDα1 is vital in the response to high-Mg2+ conditions, and that PLDα1 mediates this response partially through regulation of K+ homeostasis.
Collapse
Affiliation(s)
- Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Krčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Podmanická
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Oliferuk S, Simontacchi M, Rubio F, Santa-María GE. Exposure to a natural nitric oxide donor negatively affects the potential influx of rubidium in potassium-starved Arabidopsis plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:204-208. [PMID: 32155448 DOI: 10.1016/j.plaphy.2020.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Nitric oxide (NO) and potassium (K+) exert a profound influence on the acclimation of plants to multiple stress conditions. A recent report indicated that exogenous addition of an NO donor causes, under conditions of adequate K+ supply, a detrimental effect on K+ status. It remains unknown whether an exogenous NO source could negatively affect the potential capture of this element when plants are faced with a K+ shortage. In this work we offer evidence that, under conditions of K+-deprivation, the addition of the naturally occurring NO donor, S-nitrosoglutathione (GSNO), diminishes the potential inward transport of the K+-analogue rubidium (Rb+) from diluted Rb+ concentrations in Arabidopsis thaliana. Studies with the akt1-2 mutant, lacking the AKT1 inward-rectifier K+-channel involved in K+-uptake, unveiled that the effect of GSNO on Rb+-influx involves a non-AKT1 component. In addition, exposure to the NO-donor led to down-regulation of transcripts coding for the AtHAK5 K+-transporter, a major component of the K+-transport machinery in K+-deprived plants. Moreover, studies with the hak5 mutant showed that GSNO could either stimulate Rb+-uptake or does not lead to a significant effect on Rb+-uptake relative to -K+ and to -K+ in the presence of decayed GSNO, respectively, thus indicating that the presence of AtHAK5 is required for GSNO exerting an inhibitory effect.
Collapse
Affiliation(s)
- Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH, CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Buenos Aires, Argentina
| | - Francisco Rubio
- Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus de Espinardo, Murcia, Spain
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH, CONICET-UNSAM), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Raddatz N, Morales de los Ríos L, Lindahl M, Quintero FJ, Pardo JM. Coordinated Transport of Nitrate, Potassium, and Sodium. FRONTIERS IN PLANT SCIENCE 2020; 11:247. [PMID: 32211003 PMCID: PMC7067972 DOI: 10.3389/fpls.2020.00247] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
Potassium (K+) and nitrogen (N) are essential nutrients, and their absorption and distribution within the plant must be coordinated for optimal growth and development. Potassium is involved in charge balance of inorganic and organic anions and macromolecules, control of membrane electrical potential, pH homeostasis and the regulation of cell osmotic pressure, whereas nitrogen is an essential component of amino acids, proteins, and nucleic acids. Nitrate (NO3 -) is often the primary nitrogen source, but it also serves as a signaling molecule to the plant. Nitrate regulates root architecture, stimulates shoot growth, delays flowering, regulates abscisic acid-independent stomata opening, and relieves seed dormancy. Plants can sense K+/NO3 - levels in soils and adjust accordingly the uptake and root-to-shoot transport to balance the distribution of these ions between organs. On the other hand, in small amounts sodium (Na+) is categorized as a "beneficial element" for plants, mainly as a "cheap" osmolyte. However, at high concentrations in the soil, Na+ can inhibit various physiological processes impairing plant growth. Hence, plants have developed specific mechanisms to transport, sense, and respond to a variety of Na+ conditions. Sodium is taken up by many K+ transporters, and a large proportion of Na+ ions accumulated in shoots appear to be loaded into the xylem by systems that show nitrate dependence. Thus, an adequate supply of mineral nutrients is paramount to reduce the noxious effects of salts and to sustain crop productivity under salt stress. In this review, we will focus on recent research unraveling the mechanisms that coordinate the K+-NO3 -; Na+-NO3 -, and K+-Na+ transports, and the regulators controlling their uptake and allocation.
Collapse
Affiliation(s)
| | | | | | | | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
36
|
Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H, Huang S, Zhu JK. Loss of salt tolerance during tomato domestication conferred by variation in a Na + /K + transporter. EMBO J 2020; 39:e103256. [PMID: 32134151 DOI: 10.15252/embj.2019103256] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Domestication has resulted in reduced salt tolerance in tomato. To identify the genetic components causing this deficiency, we performed a genome-wide association study (GWAS) for root Na+ /K+ ratio in a population consisting of 369 tomato accessions with large natural variations. The most significant variations associated with root Na+ /K+ ratio were identified within the gene SlHAK20 encoding a member of the clade IV HAK/KUP/KT transporters. We further found that SlHAK20 transports Na+ and K+ and regulates Na+ and K+ homeostasis under salt stress conditions. A variation in the coding sequence of SlHAK20 was found to be the causative variant associated with Na+ /K+ ratio and confer salt tolerance in tomato. Knockout mutations in tomato SlHAK20 and the rice homologous genes resulted in hypersensitivity to salt stress. Together, our study uncovered a previously unknown molecular mechanism of salt tolerance responsible for the deficiency in salt tolerance in cultivated tomato varieties. Our findings provide critical information for molecular breeding to improve salt tolerance in tomato and other crops.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Guangtao Zhu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Yumei Li
- The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Qingfeng Niu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Kai Hua
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinjuan Bai
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingfang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
37
|
Villette J, Cuéllar T, Verdeil JL, Delrot S, Gaillard I. Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:123. [PMID: 32174933 PMCID: PMC7054452 DOI: 10.3389/fpls.2020.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 06/01/2023]
Abstract
Potassium (K+) nutrition is of relevant interest for winegrowers because it influences grapevine growth, berry composition, as well as must and wine quality. Indeed, wine quality strongly depends on berry composition at harvest. However, K+ content of grape berries increased steadily over the last decades, in part due to climate change. Currently, the properties and qualities of many fruits are also impacted by environment. In grapevine, this disturbs berry properties resulting in unbalanced wines with poor organoleptic quality and low acidity. This requires a better understanding of the molecular basis of K+ accumulation and its control along grape berry development. This mini-review summarizes our current knowledge on K+ nutrition in relation with fruit quality in the context of a changing environment.
Collapse
Affiliation(s)
- Jérémy Villette
- BPMP, Univ Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon, France
| | | |
Collapse
|
38
|
Tascón I, Sousa JS, Corey RA, Mills DJ, Griwatz D, Aumüller N, Mikusevic V, Stansfeld PJ, Vonck J, Hänelt I. Structural basis of proton-coupled potassium transport in the KUP family. Nat Commun 2020; 11:626. [PMID: 32005818 PMCID: PMC6994465 DOI: 10.1038/s41467-020-14441-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 12/05/2022] Open
Abstract
Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins. KUP transporters facilitate potassium uptake by the co-transport of protons and are key players in potassium homeostasis. Here authors identify the potassium importer KimA from Bacillus subtilis as a new member of the KUP transporter family and show the cryo-EM structure of KimA in an inward-occluded, trans-inhibited conformation.
Collapse
Affiliation(s)
- Igor Tascón
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - David Griwatz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nadine Aumüller
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Vedrana Mikusevic
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK.,School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E435. [PMID: 31652570 PMCID: PMC6843428 DOI: 10.3390/plants8100435] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
Collapse
Affiliation(s)
- Marek Sustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Ales Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Edita Tylova
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
40
|
Buet A, Galatro A, Ramos-Artuso F, Simontacchi M. Nitric oxide and plant mineral nutrition: current knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4461-4476. [PMID: 30903155 DOI: 10.1093/jxb/erz129] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
Plants under conditions of essential mineral deficiency trigger signaling mechanisms that involve common components. Among these components, nitric oxide (NO) has been identified as a key participant in responses to changes in nutrient availability. Usually, nutrient imbalances affect the levels of NO in specific plant tissues, via modification of its rate of synthesis or degradation. Changes in the level of NO affect plant morphology and/or trigger responses associated with nutrient homeostasis, mediated by its interaction with reactive oxygen species, phytohormones, and through post-translational modification of proteins. NO-related events constitute an exciting field of research to understand how plants adapt and respond to conditions of nutrient shortage. This review summarizes the current knowledge on NO as a component of the multiple processes related to plant performance under conditions of deficiency in mineral nutrients, focusing on macronutrients such as nitrogen, phosphate, potassium, and magnesium, as well as micronutrients such as iron and zinc.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrea Galatro
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
41
|
Nieves-Cordones M, Lara A, Ródenas R, Amo J, Rivero RM, Martínez V, Rubio F. Modulation of K + translocation by AKT1 and AtHAK5 in Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2019; 42:2357-2371. [PMID: 31046137 DOI: 10.1111/pce.13573] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 05/16/2023]
Abstract
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild-type Arabidopsis thaliana and in T-DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T-DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+ -starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+ -sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Reyes Ródenas
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Rosa María Rivero
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| |
Collapse
|
42
|
Haro R, Benito B. The Role of Soil Fungi in K + Plant Nutrition. Int J Mol Sci 2019; 20:ijms20133169. [PMID: 31261721 PMCID: PMC6651076 DOI: 10.3390/ijms20133169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
K+ is an essential cation and the most abundant in plant cells. After N, its corresponding element, K, is the nutrient required in the largest amounts by plants. Despite the numerous roles of K in crop production, improvements in the uptake and efficiency of use of K have not been major focuses in conventional or transgenic breeding studies in the past. In research on the mineral nutrition of plants in general, and K in particular, this nutrient has been shown to be essential to soil-dwelling-microorganisms (fungi, bacteria, protozoa, nematodes, etc.) that form mutualistic associations and that can influence the availability of mineral nutrients for plants. Therefore, this article aims to provide an overview of the role of soil microorganisms in supplying K+ to plants, considering both the potassium-solubilizing microorganisms and the potassium-facilitating microorganisms that are in close contact with the roots of plants. These microorganisms can influence the active transporter-mediated transfer of K+. Regarding the latter group of microorganisms, special focus is placed on the role of endophytic fungus. This review also includes a discussion on productivity through sustainable agriculture.
Collapse
Affiliation(s)
- Rosario Haro
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus Montegancedo UPM. Pozuelo de Alarcón, 28223-Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus Montegancedo UPM. Pozuelo de Alarcón, 28223-Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain.
| |
Collapse
|
43
|
High External K + Concentrations Impair Pi Nutrition, Induce the Phosphate Starvation Response, and Reduce Arsenic Toxicity in Arabidopsis Plants. Int J Mol Sci 2019; 20:ijms20092237. [PMID: 31067662 PMCID: PMC6539835 DOI: 10.3390/ijms20092237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/30/2023] Open
Abstract
Potassium (K+) and phosphorous (Pi) are two of the most important nutrients required by plants and there is an interest in studying how they are acquired. Most studies have focused on the characterization of the mechanisms involved in K+ and Pi uptake and their distribution within the plants, as well as the regulatory mechanisms involved. Evidence is emerging which points to interactions in the nutrition of different nutrients and to the existence of crosstalk in the signaling cascades regulating their acquisition. However, the interaction between K+ and Pi has been scarcely studied. Here we show that high concentrations of K+ in the external solution inhibit Pi uptake and impair Pi nutrition in Arabidopsis plants, resulting in the induction of phosphate starvation response (PSR) and the upregulation of genes encoding root phosphate uptake systems. The high K+-induced PSR depends on the PHR1 and PHL1 transcription factors that are key pieces of Pi signaling in Arabidopsis. Importantly, high K+ reduces arsenic accumulation in plants and its toxic effects. The results presented may help to design strategies to reduce Pi deficiency as well as the accumulation of arsenic in crops.
Collapse
|
44
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:281. [PMID: 30949187 PMCID: PMC6435592 DOI: 10.3389/fpls.2019.00281] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O. Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J. Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
45
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
46
|
Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K + Nutrition in Plants. FRONTIERS IN PLANT SCIENCE 2019. [PMID: 30949187 DOI: 10.3389/fpls.2019.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.
Collapse
Affiliation(s)
- Paula Ragel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - Eduardo O Leidi
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| | - José M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Seville, Spain
| |
Collapse
|
47
|
Niu M, Xie J, Chen C, Cao H, Sun J, Kong Q, Shabala S, Shabala L, Huang Y, Bie Z. An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4945-4960. [PMID: 29992291 PMCID: PMC6137988 DOI: 10.1093/jxb/ery251] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 05/20/2023]
Abstract
Tissue tolerance to salinity stress is a complex physiological trait composed of multiple 'sub-traits' such as Na+ compartmentalization, K+ retention, and osmotic tolerance. Previous studies have shown that some Cucurbita species employ tissue tolerance to combat salinity and we aimed to identify the physiological and molecular mechanisms involved. Five C. maxima (salt-tolerant) and five C. moschata (salt-sensitive) genotypes were comprehensively assessed for their salt tolerance mechanisms and the results showed that tissue-specific transport characteristics enabled the more tolerant lines to deal with the salt load. This mechanism was associated with the ability of the tolerant species to accumulate more Na+ in the leaf vein and to retain more K+ in the leaf mesophyll. In addition, C. maxima more efficiently retained K+ in the roots when exposed to transient NaCl stress and it was also able to store more Na+ in the xylem parenchyma and cortex in the leaf vein. Compared with C. moschata, C. maxima was also able to rapidly close stomata at early stages of salt stress, thus avoiding water loss; this difference was attributed to higher accumulation of ABA in the leaf. Transcriptome and qRT-PCR analyses revealed critical roles of high-affinity potassium (HKT1) and intracellular Na+/H+ (NHX4/6) transporters as components of the mechanism enabling Na+ exclusion from the leaf mesophyll and Na+ sequestration in the leaf vein. Also essential was a higher expression of NCED3s (encoding 9-cis-epoxycarotenoid dioxygenase, a key rate-limiting enzyme in ABA biosynthesis), which resulted in greater ABA accumulation in the mesophyll and earlier stomata closure in C. maxima.
Collapse
Affiliation(s)
- Mengliang Niu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Junjun Xie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Jingyu Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Qiusheng Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, P. R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, P. R. China
| |
Collapse
|
48
|
Santa María GE, Oliferuk S, Moriconi JI. A survey of sequences of KT-HAK-KUP transporters in green algae and basal land plants. Data Brief 2018; 19:2356-2363. [PMID: 30238025 PMCID: PMC6144887 DOI: 10.1016/j.dib.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022] Open
Abstract
In this data article, information is provided on sequences of KT-HAK-KUP transporters from green algae and basal land plants. A data set is offered containing sequences corresponding to the chlorophyte algae Chlamydomonas eustigma, Gonium pectorale and Coccomyxa subellipsoidea, the charophyte algae Coleochaete orbicularis and Klebsormidium flaccidum, the bryophyte Sphagnum fallax, the marchantophyte Marchantia polymorpha and the gymnosperm Pinus taeda, which have been not formerly analyzed. In addition, an analysis of similarity scores among representatives of the clusters recognized in photosynthetic green organisms (namely, chlorophyte algae, charophyte algae, basal embryophytes and higher embryophytes) is performed as well as an analysis of membrane topology for them.
Collapse
Affiliation(s)
- Guillermo E Santa María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8,2, Chascomús 7130, Provincia de Buenos Aires, Argentina
| | - Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8,2, Chascomús 7130, Provincia de Buenos Aires, Argentina
| | - Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8,2, Chascomús 7130, Provincia de Buenos Aires, Argentina
| |
Collapse
|