1
|
Nair AV, Singh A, Chakravortty D. Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis. Redox Biol 2025; 83:103648. [PMID: 40288044 DOI: 10.1016/j.redox.2025.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Microbial infections have been a widely studied area of disease research since historical times, yet they are a cause of severe illness and deaths worldwide. Furthermore, infections by pathogens are not just restricted to humans; instead, a diverse range of hosts, including plants, livestock, marine organisms and fish, cause significant economic losses and pose threats to humans through their transmission in the food chain. It is now believed that both the pathogen and the host contribute to the outcomes of a disease pathology. Researchers have unravelled numerous aspects of host-pathogen interactions, offering valuable insights into the physiological, cellular and molecular processes and factors that contribute to the development of infectious diseases. Polyamines are key factors regulating cellular processes and human ageing and health. However, they are often overlooked in the context of host-pathogen interactions despite playing a dynamic role as a defence molecule from the perspective of the host as well as the pathogen. They form a complex network interacting with several molecules within the cell, with reactive oxygen species being a key component. This review presents a thorough overview of the current knowledge of polyamines and their intricate interactions with reactive oxygen species in the infection of multiple pathogens in diverse hosts. Interestingly, the review covers the interplay of the commensals and pathogen infection involving polyamines and reactive oxygen species, highlighting an unexplored area within this field. From a future perspective, the dynamic interplay of polyamines and oxidative stress in microbial pathogenesis is a fascinating area that widens the scope of developing therapeutic strategies to combat deadly infections.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Yi Q, Park MJ, Vo KTX, Jeon JS. Polyamines in Plant-Pathogen Interactions: Roles in Defense Mechanisms and Pathogenicity with Applications in Fungicide Development. Int J Mol Sci 2024; 25:10927. [PMID: 39456710 PMCID: PMC11506843 DOI: 10.3390/ijms252010927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Polyamines (PAs), which are aliphatic polycationic compounds with a low molecular weight, are found in all living organisms and play essential roles in plant-pathogen interactions. Putrescine, spermidine, and spermine, the most common PAs in nature, respond to and function differently in plants and pathogens during their interactions. While plants use certain PAs to enhance their immunity, pathogens exploit PAs to facilitate successful invasion. In this review, we compile recent studies on the roles of PAs in plant-pathogen interactions, providing a comprehensive overview of their roles in both plant defense and pathogen pathogenicity. A thorough understanding of the functions of PAs and conjugated PAs highlights their potential applications in fungicide development. The creation of new fungicides and compounds derived from PAs demonstrates their promising potential for further research and innovation in this field.
Collapse
Affiliation(s)
- Qi Yi
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Min-Jeong Park
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
3
|
Sun W, Shahrajabian MH, Soleymani A. The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:613. [PMID: 38475460 DOI: 10.3390/plants13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Soleymani
- Department of Agronomy and Plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Plant Improvement and Seed Production Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
4
|
Ramamoorthy S, Pena M, Ghosh P, Liao YY, Paret M, Jones JB, Potnis N. Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism. Microbiol Spectr 2024; 12:e0285223. [PMID: 38018859 PMCID: PMC10782981 DOI: 10.1128/spectrum.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Ramamoorthy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Michelle Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Palash Ghosh
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Ying-Yu Liao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Mathews Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
5
|
Solmi L, Rossi FR, Romero FM, Bach-Pages M, Preston GM, Ruiz OA, Gárriz A. Polyamine-mediated mechanisms contribute to oxidative stress tolerance in Pseudomonas syringae. Sci Rep 2023; 13:4279. [PMID: 36922543 PMCID: PMC10017717 DOI: 10.1038/s41598-023-31239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance. We demonstrated that bacteria respond to H2O2 by increasing the external levels of the polyamine putrescine while maintaining the inner concentrations of this compound as well as the analogue amine spermidine. In line with this, adding exogenous putrescine to media increased bacterial tolerance to H2O2. Deletion of arginine decarboxylase (speA) and ornithine decarboxylate (speC), prevented the synthesis of putrescine and augmented susceptibility to H2O2, whereas targeting spermidine synthesis alone through deletion of spermidine synthase (speE) increased the level of extracellular putrescine and enhanced H2O2 tolerance. Further research demonstrated that the increased tolerance of the ΔspeE mutant correlated with higher expression of H2O2-degrading catalases and enhanced outer cell membrane stability. Thus, this work demonstrates previously unrecognized connections between bacterial defense mechanisms against oxidative stress and the polyamine metabolism.
Collapse
Affiliation(s)
- Leandro Solmi
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Franco R Rossi
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Fernando M Romero
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | | | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Oscar A Ruiz
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Andrés Gárriz
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Avenida Intendente Marino Km 8.2, Chascomús, CP7130, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Solmi L, Rosli HG, Pombo MA, Stalder S, Rossi FR, Romero FM, Ruiz OA, Gárriz A. Inferring the Significance of the Polyamine Metabolism in the Phytopathogenic Bacteria Pseudomonas syringae: A Meta-Analysis Approach. Front Microbiol 2022; 13:893626. [PMID: 35602047 PMCID: PMC9120772 DOI: 10.3389/fmicb.2022.893626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
To succeed in plant invasion, phytopathogenic bacteria rely on virulence mechanisms to subvert plant immunity and create favorable conditions for growth. This process requires a precise regulation in the production of important proteins and metabolites. Among them, the family of compounds known as polyamines have attracted considerable attention as they are involved in important cellular processes, but it is not known yet how phytopathogenic bacteria regulate polyamine homeostasis in the plant environment. In the present study, we performed a meta-analysis of publicly available transcriptomic data from experiments conducted on bacteria to begin delving into this topic and better understand the regulation of polyamine metabolism and its links to pathogenicity. We focused our research on Pseudomonas syringae, an important phytopathogen that causes disease in many economically valuable plant species. Our analysis discovered that polyamine synthesis, as well as general gene expression activation and energy production are induced in the early stages of the disease. On the contrary, synthesis of these compounds is inhibited whereas its transport is upregulated later in the process, which correlates with the induction of virulence genes and the metabolism of nitrogen and carboxylic acids. We also found that activation of plant defense mechanisms affects bacterial polyamine synthesis to some extent, which could reduce bacterial cell fitness in the plant environment. Furthermore, data suggest that a proper bacterial response to oxidative conditions requires a decrease in polyamine production. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Leandro Solmi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Hernán G. Rosli
- Laboratorio de Interacciones Planta Patógeno-Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata (CONICET-UNLP), La Plata, Argentina
| | - Marina A. Pombo
- Laboratorio de Interacciones Planta Patógeno-Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata (CONICET-UNLP), La Plata, Argentina
| | - Santiago Stalder
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Franco R. Rossi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Fernando M. Romero
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Oscar A. Ruiz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Andrés Gárriz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Andrés Gárriz,
| |
Collapse
|
7
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
8
|
Rossi FR, Gárriz A, Marina M, Pieckenstain FL. Modulation of polyamine metabolism in Arabidopsis thaliana by salicylic acid. PHYSIOLOGIA PLANTARUM 2021; 173:843-855. [PMID: 34109645 DOI: 10.1111/ppl.13478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Polyamines (PAs) play important roles in plant defense against pathogens, but the regulation of PA metabolism by hormone-mediated defense signaling pathways has not been studied in depth. In this study, the modulation of PA metabolism by salicylic acid (SA) was analyzed in Arabidopsis by combining the exogenous application of this hormone with PA biosynthesis and SA synthesis/signaling mutants. SA induced notable modifications of PA metabolism, mainly consisting in putrescine (Put) accumulation both in whole-plant extracts and apoplastic fluids. Put was accumulated at the expense of increased biosynthesis by ARGININE DECARBOXYLASE 2 and decreased oxidation by copper amine oxidase. Enhancement of Put levels by SA was independent of the regulatory protein NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and the signaling kinases MKK4 and MPK3, but depended on MPK6. However, plant infection by Pseudomonas syringae pv. tomato DC3000 elicited Put accumulation in an SA-dependent way. The present study demonstrates a clear connection between SA signaling and plant PA metabolism in Arabidopsis and contributes to understanding the mechanisms by which SA modulates PA levels during plant-pathogen interactions.
Collapse
Affiliation(s)
- Franco R Rossi
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Andrés Gárriz
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - María Marina
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Fernando L Pieckenstain
- Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
9
|
Gerlin L, Baroukh C, Genin S. Polyamines: double agents in disease and plant immunity. TRENDS IN PLANT SCIENCE 2021; 26:1061-1071. [PMID: 34127368 DOI: 10.1016/j.tplants.2021.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Polyamines (PAs) are ubiquitous amine molecules found in all living organisms. In plants, beside their role in signaling and protection against abiotic stresses, there is increasing evidence that PAs have a major role in the interaction between plants and pathogens. Plant PAs are involved in immunity against pathogens, notably by amplifying pattern-triggered immunity (PTI) responses through the production of reactive oxygen species (ROS). In response, pathogens use phytotoxins and effectors to manipulate the levels of PAs in the plant, most likely to their own benefit. It also appears that pathogenic microorganisms produce PAs during infection, sometimes in large quantities. This may reflect different infectious strategies based on the selective exploitation of these molecules and the functions they perform in the cell.
Collapse
Affiliation(s)
- Léo Gerlin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
10
|
Mantz GM, Rossi FR, Viretto PE, Noelting MC, Maiale SJ. Stem canker caused by Phomopsis spp. Induces changes in polyamine levels and chlorophyll fluorescence parameters in pecan leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:761-769. [PMID: 34217132 DOI: 10.1016/j.plaphy.2021.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Pecan plants are attacked by the fungus Phomopsis spp. that causes stem canker, a serious and emerging disease in commercial orchards. Stem canker, which has been reported in several countries, negatively affects tree canopy health, eventually leading to production losses. The purpose of this study was to inquire into the physiology of pecan plants under stem canker attack by Phomopsis spp. To this end, pecan plants were inoculated with an isolate of Phomopsis spp. and several parameters, such as polyamines, proline, sugars, starch, chlorophyll fluorescence and canopy temperature were analysed. Under artificial inoculation, a high disease incidence was observed with symptoms similar to those in plants showing stem canker under field conditions. Furthermore, the infected stem showed dead tissue with brown necrotic discolouration in the xylem tissue. The free polyamines putrescine, spermidine, and spermine were detected and their levels decreased as leaves aged in the infected plants with respect to the controls. Chlorophyll fluorescence parameters, such as Sm, ψEO, and QbRC decreased under plant infection and therefore the K-band increased. Canopy temperature and proline content increased in the infected plants with respect to the controls while sugar content decreased. These data suggest that stem canker caused by Phomopsis spp. induces physiological changes that are similar to those observed in plants under drought stress. To our knowledge, this is the first study that documents the physiological and biochemical effects derived from pecan-Phomopsis interaction.
Collapse
Affiliation(s)
- Guillermo Martin Mantz
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Martín (UNSAM), Int. Marino Km 8, Chascomús, Provincia de Buenos Aires, Argentina
| | - Franco Ruben Rossi
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Martín (UNSAM), Int. Marino Km 8, Chascomús, Provincia de Buenos Aires, Argentina
| | - Pablo Esteban Viretto
- Estación Experimental Agropecuaria Valle Inferior del Río Negro (EEA)-Instituto Nacional de Tecnología Agropecuaria (INTA), Valle inferior Río Negro, RN 3 Km 971, Pcia. RN, Argentina
| | - María Cristina Noelting
- Instituto Fitotécnico de Santa Catalina (IFSC), Universidad Nacional de La Plata (UNLP), Garibaldi, 3400, Lavallol, Provincia de Buenos Aires, Argentina
| | - Santiago Javier Maiale
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Martín (UNSAM), Int. Marino Km 8, Chascomús, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. Genomic Analysis of the Endophytic Stenotrophomonas Strain 169 Reveals Features Related to Plant-Growth Promotion and Stress Tolerance. Front Microbiol 2021; 12:687463. [PMID: 34220780 PMCID: PMC8245107 DOI: 10.3389/fmicb.2021.687463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Plant-associated Stenotrophomonas isolates have great potential for plant growth promotion, especially under stress conditions, due to their ability to promote tolerance to abiotic stresses such as salinity or drought. The endophytic strain Stenotrophomonas sp. 169, isolated from a field-grown poplar, increased the growth of inoculated in vitro plants, with a particular effect on root development, and was able to stimulate the rooting of poplar cuttings in the greenhouse. The strain produced high amounts of the plant growth-stimulating hormone auxin under in vitro conditions. The comparison of the 16S rRNA gene sequences and the phylogenetic analysis of the core genomes showed a close relationship to Stenotrophomonas chelatiphaga and a clear separation from Stenotrophomonas maltophilia. Whole genome sequence analysis revealed functional genes potentially associated with attachment and plant colonization, growth promotion, and stress protection. In detail, an extensive set of genes for twitching motility, chemotaxis, flagella biosynthesis, and the ability to form biofilms, which are connected with host plant colonization, could be identified in the genome of strain 169. The production of indole-3-acetic acid and the presence of genes for auxin biosynthesis pathways and the spermidine pathway could explain the ability to promote plant growth. Furthermore, the genome contained genes encoding for features related to the production of different osmoprotective molecules and enzymes mediating the regulation of stress tolerance and the ability of bacteria to quickly adapt to changing environments. Overall, the results of physiological tests and genome analysis demonstrated the capability of endophytic strain 169 to promote plant growth. In contrast to related species, strain 169 can be considered non-pathogenic and suitable for biotechnology applications.
Collapse
Affiliation(s)
- Kristina Ulrich
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | | | - Regina Becker
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Volker Schneck
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
12
|
Santamaría‐Hernando S, Cerna‐Vargas JP, Martínez‐García PM, de Francisco‐de Polanco S, Nebreda S, Rodríguez‐Palenzuela P, Rodríguez‐Herva JJ, López‐Solanilla E. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1606-1619. [PMID: 33029921 PMCID: PMC7694672 DOI: 10.1111/mpp.13001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/01/2023]
Abstract
Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Jean Paul Cerna‐Vargas
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pedro Manuel Martínez‐García
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERAvenida Americo VespucioSevilleSpain
| | - Sofía de Francisco‐de Polanco
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones Científicas, Avenida Ramiro de MaeztuMadridSpain
| | - Sandra Nebreda
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pablo Rodríguez‐Palenzuela
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - José Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
13
|
Liu C, Atanasov KE, Arafaty N, Murillo E, Tiburcio AF, Zeier J, Alcázar R. Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:2755-2768. [PMID: 32839979 DOI: 10.1111/pce.13874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 05/20/2023]
Abstract
Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.
Collapse
Affiliation(s)
- Changxin Liu
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nazanin Arafaty
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio F Tiburcio
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Jasso-Robles FI, Gonzalez ME, Pieckenstain FL, Ramírez-García JM, Guerrero-González MDLL, Jiménez-Bremont JF, Rodríguez-Kessler M. Decrease of Arabidopsis PAO activity entails increased RBOH activity, ROS content and altered responses to Pseudomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110372. [PMID: 32005378 DOI: 10.1016/j.plantsci.2019.110372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Polyamines (PAs) are small aliphatic amines with important regulatory activities in plants. Biotic stress results in changes in PA levels due to de novo synthesis and PA oxidation. In Arabidopsis thaliana five FAD-dependent polyamine oxidase enzymes (AtPAO1-5) participate in PA back-conversion and degradation. PAO activity generates H2O2, an important molecule involved in cell signaling, elongation, programmed cell death, and defense responses. In this work we analyzed the role of AtPAO genes in the Arabidopsis thaliana-Pseudomonas syringae pathosystem. AtPAO1 and AtPAO2 genes were transcriptionally up-regulated in infected plants. Atpao1-1 and Atpao2-1 single mutant lines displayed altered responses to Pseudomonas, and an increased susceptibility was found in the double mutant Atpao1-1 x Atpao2-1. These polyamine oxidases mutant lines showed disturbed contents of ROS (H2O2 and O2-) and altered activities of RBOH, CAT and SOD enzymes both in infected and control plants. In addition, changes in the expression levels of AtRBOHD, AtRBOHF, AtPRX33, and AtPRX34 genes were also noticed. Our data indicate an important role for polyamine oxidases in plant defense and ROS homeostasis.
Collapse
Affiliation(s)
- Francisco Ignacio Jasso-Robles
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico.
| | - María Elisa Gonzalez
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Intendente Marino Km 8.2, 7130, Chascomús, Provincia de Buenos Aires, Argentina.
| | - Fernando Luis Pieckenstain
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Intendente Marino Km 8.2, 7130, Chascomús, Provincia de Buenos Aires, Argentina.
| | - José Miguel Ramírez-García
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico.
| | - María de la Luz Guerrero-González
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí (UASLP), Carretera San Luis-Matehuala Km 14.5, Ejido Palma de la Cruz, 78321, Soledad de Graciano Sánchez, San Luis Potosí, Mexico.
| | - Juan Francisco Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa de San José 2055, Lomas 4ª Sección, 78216, San Luis Potosí, Mexico.
| | - Margarita Rodríguez-Kessler
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico.
| |
Collapse
|
15
|
Nieva AS, Vilas JM, Gárriz A, Maiale SJ, Menéndez AB, Erban A, Kopka J, Ruiz OA. The fungal endophyte Fusarium solani provokes differential effects on the fitness of two Lotus species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:100-109. [PMID: 31561198 DOI: 10.1016/j.plaphy.2019.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
The interactions established between plants and endophytic fungi span a continuum from beneficial to pathogenic associations. The aim of this work was to isolate potentially beneficial fungal endophytes in the legume Lotus tenuis and explore the mechanisms underlying their effects. One of the nine fungal strains isolated was identified as Fusarium solani and shows the highest phosphate-solubilisation activity, and also grows endophytically in roots of L. japonicus and L. tenuis. Interestingly, fungal invasion enhances plant growth in L. japonicus but provokes a contrasting effect in L. tenuis. These differences were also evidenced when the rate of photosynthesis as well as sugars and K contents were assessed. Our results indicate that the differential responses observed are due to distinct mechanisms deployed during the establishment of the interactions that involve the regulation of photosynthesis, potassium homeostasis, and carbohydrate metabolism. These responses are employed by these plant species to maintain fitness during the endophytic interaction.
Collapse
Affiliation(s)
- Amira Susana Nieva
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Juan Manuel Vilas
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Andrés Gárriz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Santiago Javier Maiale
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina
| | - Ana Bernardina Menéndez
- Departamento de Biodiversidad y Biología Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, PROPLAME-PRHIDEB (CONICET), Argentina
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Oscar Adolfo Ruiz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino km 8.2, Chascomús, 7130, Argentina; Instituto de Fisiología y Recursos Genéticos Vegetales-Instituto Nacional de Tecnología Agropecuaria (IFRGV-INTA), Camino 60 cuadras km 5.5, Córdoba, 5119, Argentina.
| |
Collapse
|
16
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Liu C, Atanasov KE, Tiburcio AF, Alcázar R. The Polyamine Putrescine Contributes to H 2O 2 and RbohD/F-Dependent Positive Feedback Loop in Arabidopsis PAMP-Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2019; 10:894. [PMID: 31379894 PMCID: PMC6646693 DOI: 10.3389/fpls.2019.00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 05/10/2023]
Abstract
Polyamines are involved in defense against pathogenic microorganisms in plants. However, the role of the polyamine putrescine (Put) during plant defense has remained elusive. In this work, we studied the implication of polyamines during pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in the model species Arabidopsis thaliana. Our data indicate that polyamines, particularly Put, accumulate in response to non-pathogenic Pseudomonas syringae pv. tomato DC3000 hrcC and in response to the purified PAMP flagellin22. Exogenously supplied Put to Arabidopsis seedlings induces defense responses compatible with PTI activation, such as callose deposition and transcriptional up-regulation of several PTI marker genes. Consistent with this, we show that Put primes for resistance against pathogenic bacteria. Through chemical and genetic approaches, we find that PTI-related transcriptional responses induced by Put are hydrogen peroxide and NADPH oxidase (RBOHD and RBOHF) dependent, thus suggesting that apoplastic ROS mediates Put signaling. Overall, our data indicate that Put amplifies PTI responses through ROS production, leading to enhanced disease resistance against bacterial pathogens.
Collapse
|