1
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Pashkovskiy P, Ivanov Y, Ivanova A, Kartashov A, Zlobin I, Lyubimov V, Ashikhmin A, Bolshakov M, Kreslavski V, Kuznetsov V, Allakhverdiev SI. Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. PLANTS (BASEL, SWITZERLAND) 2023; 12:2552. [PMID: 37447113 DOI: 10.3390/plants12132552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in Pinus sylvestris L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined. RL resulted in an increase in the content of hydrogen peroxide and 4-HNE, as well as the total fraction of flavonoids in the needles. It also enhanced the expression of several PR (pathogen-related) genes compared to BL and WL. WFL increased the content of phenols, including flavonoids, and enhanced the overall activity of low-molecular antioxidants in needles and hypocotyls. BL increased the content of ascorbate and glutathione, including reduced glutathione, in the needles and simultaneously decreased the activity of peroxidases. Thus, by modifying the light quality, it is possible to regulate the accumulation of secondary metabolites in pine roots and needles, thereby influencing their resistance to various biotic and abiotic stressors.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Ilya Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Lyubimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
3
|
Chiocchio I, Barbaresi A, Barbanti L, Mandrone M, Poli F, Torreggiani D, Trenta M, Tassinari P. Effects of LED supplemental lighting on the growth and metabolomic profile of Taxus baccata cultivated in a smart greenhouse. PLoS One 2022; 17:e0266777. [PMID: 35802666 PMCID: PMC9269924 DOI: 10.1371/journal.pone.0266777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Light emitting diode (LED) lamps are increasingly being studied in cultivation of horticultural, ornamental and medicinal plants as means to increase yield, quality, stress resistance, and bioactive compounds content. Enhancing the production of metabolites for medicinal or pharmaceutical use by regulating LED intensity and spectra is a challenging subject, where promising results have been achieved. Nevertheless, some species have been poorly investigated, despite their interest as a source of medicinally active substances, with particular reference to LED effects at the plant cultivation level. This study evaluates the effects of supplementary top-light LED treatments on Taxus baccata, one of the main sources of taxane precursors. Blue, red and mixed red–and-blue spectra were tested at 100 μM m-2 s-1. Moreover, 50 and 150 μM m-2 s-1 intensities were tested for the mixed spectrum. All treatments were set for 14 hours a day and were tested against natural light as control treatment, in a controlled environment, from 19 August to 9 December 2019, this latter date representing 112 days after treatment (DAT) began. A smart monitoring and control system powered by environmental and proximal sensors was implemented to assure homogeneity of temperature, humidity, and base natural light for all the treatments. It resulted in negligible deviations from expected values and reliable exclusion of confusing factors. Biometric measurements and 1H-NMR based metabolomic analysis were performed to investigate growth and phytochemical profile throughout the trial. One-way ANOVA showed that supplemental LED lighting increased plant height and number of sprouts. Considering the mixed red–and-blue spectrum, plant height increased almost proportionally from control to 100 μM m-2 s-1 (+20% at 112 DAT), with no further increase at higher intensity. The number of sprouts was strongly enhanced by LED treatments only in the early phase (48.9 vs. 7.5 sprouts in the averaged 50, 100 and 150 μM m-2 s-1 vs. the control at 28 DAT), with no differences related to intensity in the very early stage, and more persisting effects (up to 56 DAT) for higher intensities. After the very early growth stages (28 DAT), plant vigor showed a modest although significant increase over time compared to the control, with no differences related to light intensity (0.81 vs. 0.74 of NDVI in the averaged 50, 100 and 150 μM m-2 s-1 vs. the control, across 56, 84 and 112 DAT). The different spectra tested at 100 μM m-2 s-1 showed no significant differences in growth parameters, except for a slight beneficial influence of blue (alone or with red) compared to only red for sprouting. According to the metabolomic analysis, treated plants at 28 DAT were characterized by the highest content of sucrose and aromatic compounds. Signals of a putative taxane were detected in the 1H NMR profiles of plants, which were compared to the spectrum of baccatin III standard. However, the intensity of these spectral signals was not affected by the treatment, while they increased only slightly during time. Light at 150 μM m-2 s-1 induced the strongest variation in the metabolome. Conversely, light composition did not induce significant differences in the metabolome.
Collapse
Affiliation(s)
- Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alberto Barbaresi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Torreggiani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Mattia Trenta
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Tassinari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Pashkovskiy P, Kreslavski VD, Ivanov Y, Ivanova A, Kartashov A, Shmarev A, Strokina V, Kuznetsov VV, Allakhverdiev SI. Influence of Light of Different Spectral Compositions on the Growth, Photosynthesis, and Expression of Light-Dependent Genes of Scots Pine Seedlings. Cells 2021; 10:cells10123284. [PMID: 34943792 PMCID: PMC8699472 DOI: 10.3390/cells10123284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Varying the spectral composition of light is one of the ways to accelerate the growth of conifers under artificial conditions for the development of technologies and to obtain sustainable seedlings required to preserve the existing areas of forests. We studied the influence of light of different quality on the growth, gas exchange, fluorescence indices of Chl a, and expression of key light-dependent genes of Pinus sylvestris L. seedlings. It was shown that in plants growing under red light (RL), the biomass of needles and root system increased by more than two and three times, respectively, compared with those of the white fluorescent light (WFL) control. At the same time, the rates of photosynthesis and respiration in RL and blue light (BL) plants were lower than those of blue red light (BRL) plants, and the difference between the rates of photosynthesis and respiration, which characterizes the carbon balance, was maximum under RL. RL influenced the number of xylem cells, activated the expression of genes involved in the transduction of cytokinin (Histidine-containing phosphotransfer 1, HPT1, Type-A Response Regulators, RR-A) and auxin (Auxin-induced protein 1, Aux/IAA) signals, and reduced the expression of the gene encoding the transcription factor phytochrome-interacting factor 3 (PIF3). It was suggested that RL-induced activation of key genes of cytokinin and auxin signaling might indicate a phytochrome-dependent change in cytokinins and auxins activity.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
- Correspondence: (P.P.); (S.I.A.)
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia; (V.D.K.); (A.S.); (V.S.)
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Alexander Shmarev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia; (V.D.K.); (A.S.); (V.S.)
| | - Valeriya Strokina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia; (V.D.K.); (A.S.); (V.S.)
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (Y.I.); (A.I.); (A.K.); (V.V.K.)
- Correspondence: (P.P.); (S.I.A.)
| |
Collapse
|
5
|
Salamy NFW, Sari GM, Purwanto B, Sulistiawati S. Correlation of Mothers with History of Diabetes Mellitus and Infants with Anti-GAD65. FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v55i4.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to determine the relationship between mothers with history of diabetes mellitus with Infants with Anti-GAD65. This study was an observational analytic study with a cohort study design. The case studied was the relationship between maternal history of diabetes mellitus and infants with Anti-GAD65. This study was conducted at Jemursari Hospital in Surabaya. Sample examination was performed with a GAD65 autoimmune rapid test. Then, a statistical test was performed to determine its relationship with other variables. There was no relationship between mothers with history of diabetes mellitus and infants with Anti-GAD65, but there was a significant relationship between Anti-GDA65 Mothers with Infants with Anti-GAD65. Thus, there was a possibility of transplacental antibody transfer and viral infections during pregnancy that cause damage to pancreatic beta cells. History of diabetes mellitus was not related to infants with Anti-GAD65, but there was a relationship between Anti-GAD65 Mothers with Anti-GAD65 BAyi so that there is a transfer of transplacenta antibodies and viral infections during pregnancy that can cause damage to beta pancreatic cells in infants.
Collapse
|
6
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
7
|
Growth, Nutrient Assimilation, and Carbohydrate Metabolism in Korean Pine (Pinus koraiensis) Seedlings in Response to Light Spectra. FORESTS 2019. [DOI: 10.3390/f11010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A need is growing to plant superior Korean pine (Pinus koraiensis Siebold & Zucc.) seedlings to cope with the degradation of secondary forests in Northeast Eurasia. The goal of this study was to detect the physiological effect on the quality of Korean pine seedlings exposed to a range of spectra. One-year-old seedlings (n = 6) were cultured in three light-emitting diode (LED) spectra (69‒77 μmol m−2 s−1) of 13.9% red (R) + 77.0% green (G) + 9.2% blue (B) (R1BG5), 26.2% R + 70.2% G + 3.5% B (R2BG3), and 42.3% R + 57.3% G + 0.4% B (R3BG1). The spectrum of high-pressure sodium (HPS) lamps (43.9% R + 54.7% G + 1.5 B) was taken as the reference. Results showed that LED-lighting resulted in shorter seedlings with a greater diameter, shoot biomass, assessed quality, and sturdiness compared to those under the HPS-lighting. The R3BG1 spectrum reduced the shoot nitrogen (N) deficiency induced by the HPS spectrum, while the R1BG5 treatment induced a steady-state uptake of N and phosphorus (P) in whole-plant organs. The R1BG5 spectrum also resulted in a higher soluble sugar concentration and higher activities of glutamine synthetase and acid phosphatase in needles compared to the control. Seedlings in the R2BG3 spectrum had the highest concentrations of chlorophyll and soluble protein in the leaves. Overall, the R-high LED-spectrum could stimulate biomass accumulation in shoot, but meanwhile resulted in a P deficiency. Hence, the LED lighting in the R1BG5 spectrum is recommended to promote the quality of Korean pine seedlings.
Collapse
|