1
|
Liu Z, Xuanyuan G, Yang S, Du M, Zhang X, Bao T, Zhang Z, Zhang W, Zhao J. Genome-wide identification and analysis of Rop GTPase family members reveal their potential functions in biotic stress in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2025; 25:457. [PMID: 40211138 PMCID: PMC11983853 DOI: 10.1186/s12870-025-06428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Rop (RHO of plants) proteins are the plant-specific subfamily of RHO small GTP-binding proteins and act as a molecular switch to converge on a wide range of upstream signals and elicit downstream signaling cascades involving in modulating developmental processes and managing environmental stress. Although the function of Rops has been well studied in many plant species, the research conducting on Rops in potato is limited. RESULTS In this work, a total of 11 Rop members were identified in the potato (Solanum tuberosum) genome. A comprehensive analysis encompassing their phylogenetic relationships, chromosomal locations, collinearity, conserved motifs, gene structures, cis-regulatory elements, tissue-specific expression profiles, and responses to biotic stress were undertaken. Phylogenetic and collinearity analyses suggested that 11 StRops were categorized into four groups, and five StRop genes (StRop6, StRop7, StRop8, StRop9 and StRop10) were incorporated in segmental duplication events. Synteny analysis indicated that five and eight StRop genes were orthologous to Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum), respectively. Tissue-specific expression analysis confirmed that StRops were widely expressed in various potato tissues, with variety-specific expression, implicating their multiple roles in growth and development in potato. The cis-regulatory elements related to stress response and hormone response were found in the promoters of StRop genes. Most StRops, including StRop2, StRop3, StRop8, StRop9, StRop10 and StRop11, were shown to be significantly differentially expressed in three different cultivars after infection with various pathogens (Phytophthora infestans, Fusarium oxysporum and Verticillium dahliae). Knock-down each of StRop3, StRop7 and StRop8 by virus induced gene silencing (VIGS) resulted in increased susceptibility of potato to pathogens P. infestans and V. dahliae, and transient silencing of StRop6 led to enhanced potato root colonization by V. dahliae, indicating their distinct roles in response to different pathogen challenges. CONCLUSIONS The results unveil the structural characteristics of StRop genes, and provide the basic knowledge for further elucidating the gene functions of individual members in response to biotic stress.
Collapse
Affiliation(s)
- Zhida Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Guochao Xuanyuan
- The Modern Agriculture and Husbandry Research Center, Inner Mongolia Open University, Hohhot, 010010, China
| | - Shuqing Yang
- College of Agriculture, Tarim University, Alaer, 843300, China
| | - Miru Du
- Inner Mongolia Potato Engineering and Technology Research Centre, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaoluo Zhang
- Inner Mongolia Agricultural and Animal Husbandry Technology Extension Center, Hohhot, 010031, China
| | - Tingting Bao
- Hohhot Garden Construction Service Center, Hohhot, 010030, China
| | - Zhiwei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Wenbing Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
2
|
Yu G, Jia L, Yu N, Feng M, Qu Y. Cloning and Functional Analysis of CsROP5 and CsROP10 Genes Involved in Cucumber Resistance to Corynespora cassiicola. BIOLOGY 2024; 13:308. [PMID: 38785790 PMCID: PMC11117962 DOI: 10.3390/biology13050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The cloning of resistance-related genes CsROP5/CsROP10 and the analysis of their mechanism of action provide a theoretical basis for the development of molecular breeding of disease-resistant cucumbers. The structure domains of two Rho-related guanosine triphosphatases from plant (ROP) genes were systematically analyzed using the bioinformatics method in cucumber plants, and the genes CsROP5 (Cucsa.322750) and CsROP10 (Cucsa.197080) were cloned. The functions of the two genes were analyzed using reverse-transcription quantitative PCR (RT-qPCR), virus-induced gene silencing (VIGS), transient overexpression, cucumber genetic transformation, and histochemical staining technology. The conserved elements of the CsROP5/CsROP10 proteins include five sequence motifs (G1-G5), a recognition site for serine/threonine kinases, and a hypervariable region (HVR). The knockdown of CsROP10 through VIGS affected the transcript levels of ABA-signaling-pathway-related genes (CsPYL, CsPP2Cs, CsSnRK2s, and CsABI5), ROS-signaling-pathway-related genes (CsRBOHD and CsRBOHF), and defense-related genes (CsPR2 and CsPR3), thereby improving cucumber resistance to Corynespora cassiicola. Meanwhile, inhibiting the expression of CsROP5 regulated the expression levels of ROS-signaling-pathway-related genes (CsRBOHD and CsRBOHF) and defense-related genes (CsPR2 and CsPR3), thereby enhancing the resistance of cucumber to C. cassiicola. Overall, CsROP5 and CsROP10 may participate in cucumber resistance to C. cassiicola through the ROS and ABA signaling pathways.
Collapse
Affiliation(s)
- Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Lian Jia
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Ning Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Miao Feng
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| | - Yue Qu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan 114007, China; (L.J.); (N.Y.); (M.F.); (Y.Q.)
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan 114007, China
| |
Collapse
|
3
|
Tian Z, Zhang Z, Kang L, Li M, Zhang J, Feng Y, Yin J, Gong X, Zhao J. Small G Protein StRab5b positively regulates potato resistance to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2023; 13:1065627. [PMID: 36699835 PMCID: PMC9868449 DOI: 10.3389/fpls.2022.1065627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Rabproteins are the largest members of the small G protein family and are widely distributed in eukaryotes. It comprises eight subfamilies and is responsible for regulating vesicle transport, plant growth and development, and biotic and abiotic stress responses. In this study, the small G protein gene StRab5b was cloned from potato, and its biological information, expression profile and induced expression level, overexpression and gene silencing were examined on regulating potato resistance to Phytophthora infestans using PCR, qPCR and Virus-induced gene silencing (VIGS). Our results indicate that the amino acid of StRab5b shows the highest and lowest homology with NbRab5b in N. benthamiana and StRab in potato respectively. StRab5b expression varied among different potato tissues and varieties, and was induced by P. infestans infection. Transiently ectopic expression of StRab5b in N. benthamiana enhanced its resistance to P. infestans, whereas, silencing of StRab5b and its homologous gene facilitated pathogen infection in potato and N. benthamiana respectively. Furthermore, stable expression of the StRab5b gene in potatoes enhanced its redox-stress response capacity, as manifested by the accumulation of H2O2 in infected leaves and subsequent increase in the activity and expression of ROS scavenging enzymes, thereby attenuating the development of P. infestans and ultimately reducing the lesions on infected potato leaves. In addition, the LOX gene transcripts and JA level were upregulated rapidly after inoculation with P. infestans. Collectively, our results suggest that StRab5b positively regulates the resistance against potato late blight (PLB) via JA-mediated defense signaling pathway.
Collapse
Affiliation(s)
- Zaimin Tian
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Zhiwei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Liru Kang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Min Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Feng
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Jiang Yin
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Xuechen Gong
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
5
|
Zhang H, Hu Z, Luo X, Wang Y, Wang Y, Liu T, Zhang Y, Chu L, Wang X, Zhen Y, Zhang J, Yu Y. ZmRop1 participates in maize defense response to the damage of Spodoptera frugiperda larvae through mediating ROS and soluble phenol production. PLANT DIRECT 2022; 6:e468. [PMID: 36540415 PMCID: PMC9751866 DOI: 10.1002/pld3.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
As plant-specific molecular switches, Rho-like GTPases (Rops) are vital for plant survival in response to biotic and abiotic stresses. However, their roles in plant defense response to phytophagous insect's damage are largely unknown. In this study, the expression levels of nine maize RAC family genes were analyzed after fall armyworm (FAW) larvae infestation. Among the analyzed genes, ZmRop1 was specifically and highly expressed, and its role in maize response to FAW larvae damage was studied. The results showed that upon FAW larvae infestation, salicylic acid and methyl jasmonate treatment ZmRop1 gene transcripts were all down-regulated. However, upon mechanical injury, the expression level of ZmRop1 was up-regulated. Overexpression of ZmRop1 gene in maize plants could improve maize plant resistance to FAW larvae damage. Conversely, silencing of ZmRop1 increased maize plant susceptibility to FAW larvae damage. The analysis of the potential anti-herbivore metabolites, showed that ZmRop1 promoted the enzyme activities of catalase, peroxidase and the expression levels of ZmCAT, ZmPOD, ZmRBOHA and ZmRBOHB, thereby enhancing the reactive oxygen species (ROS) production, including the content of O2- and H2O2. In addition, overexpression or silencing of ZmRop1 could have influence on the content of the total soluble phenol through mediating the activity of polyphenol oxidase. In summary, the results illuminated our understanding of how ZmRop1 participate in maize defense response to FAW larvae damage as a positive regulator through mediating ROS production and can be used as a reference for the green prevention and control of FAW larvae.
Collapse
Affiliation(s)
- Haoran Zhang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Zongwei Hu
- College of AgricultureYangtze UniversityJingzhouChina
| | - Xincheng Luo
- College of Life SciencesYangtze UniversityJingzhouChina
| | - Yuxue Wang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yi Wang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Ting Liu
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yi Zhang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Longyan Chu
- College of AgricultureYangtze UniversityJingzhouChina
| | | | - Yangya Zhen
- College of Life SciencesYangtze UniversityJingzhouChina
| | - Jianmin Zhang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yonghao Yu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
| |
Collapse
|
6
|
A Small Gtp-Binding Protein GhROP3 Interacts with GhGGB Protein and Negatively Regulates Drought Tolerance in Cotton (Gossypium hirsutum L.). PLANTS 2022; 11:plants11121580. [PMID: 35736735 PMCID: PMC9227279 DOI: 10.3390/plants11121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber quality. In this study, virus-induced gene silencing (VIGS) technology was used to analyze the biological function of GhROP3 in cotton drought stress tolerance. Meanwhile, we used yeast two-hybrid and bimolecular fluorescence complementation assays to examine the interaction between GhROP3 and GhGGB. GhROP3 has a high expression level in cotton true leaves and roots, and responds to drought, high salt, cold, heat stress, and exogenous abscisic acid (ABA) and auxin (IAA) treatments. Silencing GhROP3 improved the drought tolerance of cotton. The water loss rates (WLR) of detached leaves significantly reduced in silenced plants. Also, the relative water content (RWC) and total contents of chlorophyll (Chl) and proline (Pro) of leaves after drought stress and the activities of three antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) significantly increased, whereas the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) significantly reduced. In the leaves of silenced plants, the expression of genes related to ABA synthesis and its related pathway was significantly upregulated, and the expression of decomposition-related GhCYP707A gene and genes related to IAA synthesis and its related pathways was significantly downregulated. It indicated that GhROP3 was a negative regulator of cotton response to drought by participating in the negative regulation of the ABA signaling pathway and the positive regulation of the IAA signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhROP3 protein interacted with the GhGGB protein in vivo and in vitro. This study provided a theoretical basis for the in-depth investigation of the drought resistance–related molecular mechanism of the GhROP3 gene and the biological function of the GhGGB gene.
Collapse
|
7
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|