1
|
Zhou Y, Shi L, Li X, Wei S, Ye X, Gao Y, Zhou Y, Cheng L, Cheng L, Duan F, Li M, Zhang H, Qian Q, Zhou W. Genetic engineering of RuBisCO by multiplex CRISPR editing small subunits in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:731-749. [PMID: 39630060 PMCID: PMC11869188 DOI: 10.1111/pbi.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 11/16/2024] [Indexed: 03/01/2025]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is required for photosynthetic carbon assimilation, as it catalyses the conversion of inorganic carbon into organic carbon. Despite its importance, RuBisCO is inefficient; it has a low catalytic rate and poor substrate specificity. Improving the catalytic performance of RuBisCO is one of the key routes for enhancing plant photosynthesis. As the basic subunit of RuBisCO, RbcS affects the catalytic properties and plays a key role in stabilizing the structure of holoenzyme. Yet, the understanding of functions of RbcS in crops is still largely unknown. Toward this end, we employed CRISPR-Cas9 technology to randomly edit five rbcS genes in rice (OsrbcS1-5), generating a series of knockout mutants. The mutations of predominant rbcS genes in rice photosynthetic tissues, OsrbcS2-5, conferred inhibited growth, delayed heading and reduced yield in the field conditions, accompanying with lower RuBisCO contents and activities and significantly reduced photosynthetic efficiency. The retarded phenotypes were severer caused by multiple mutations. In addition, we revealed that these mutants had fewer chloroplasts and starch grains and a lower sugar content in the shoot base, resulting in fewer rice tillers. Further structural analysis of the mutated RuBisCO enzyme in one rbcs2,3,5 mutant line uncovered no significant differences from the wild-type protein, indicating that the mutations of rbcS did not compromise the protein assembly or the structure. Our findings generated a mutant pool with genetic diversities, which offers a valuable resource and novel insights into unravelling the mechanisms of RuBisCO in rice. The multiplex genetic engineering approach of this study provides an effective and feasible strategy for RuBisCO modification in crops, further facilitate the photosynthesis improvement and sustainable crop production.
Collapse
Affiliation(s)
- Yujie Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xia Li
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shaobo Wei
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiangyuan Ye
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuan Gao
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yupeng Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lin Cheng
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Long Cheng
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Fengying Duan
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hui Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Qian Qian
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wenbin Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
2
|
Lobo AK, Orr DJ, Carmo-Silva E. Regulation of Rubisco activity by interaction with chloroplast metabolites. Biochem J 2024; 481:1043-1056. [PMID: 39093337 PMCID: PMC11346435 DOI: 10.1042/bcj20240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis. Most metabolites did not directly affect Rubisco in vitro activity under both saturating and limiting concentrations of Rubisco substrates, CO2 and RuBP (ribulose-1,5-bisphosphate). As expected, Rubisco activity was strongly inhibited in the presence of CABP and CA1P. High physiologically relevant concentrations of the carboxylation product 3-PGA (3-phosphoglyceric acid) decreased Rubisco activity by up to 30%. High concentrations of the photosynthetically derived hexose phosphates fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) slightly reduced Rubisco activity under limiting CO2 and RuBP concentrations. Biochemical measurements of the apparent Vmax and Km for CO2 and RuBP (at atmospheric O2 concentration) and docking interactions analysis suggest that CABP/CA1P and 3-PGA inhibit Rubisco activity by binding tightly and loosely, respectively, to its catalytic sites (i.e. competing with the substrate RuBP). These findings will aid the design and biochemical modelling of new strategies to improve the regulation of Rubisco activity and enhance the efficiency and sustainability of carbon assimilation in rice.
Collapse
Affiliation(s)
- Ana K.M. Lobo
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Douglas J. Orr
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | | |
Collapse
|
3
|
Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO 2 assimilation in plants. Proc Natl Acad Sci U S A 2024; 121:e2321050121. [PMID: 38442173 PMCID: PMC10945770 DOI: 10.1073/pnas.2321050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - David M Emms
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
4
|
Mao Y, Catherall E, Díaz-Ramos A, Greiff GRL, Azinas S, Gunn L, McCormick AJ. The small subunit of Rubisco and its potential as an engineering target. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:543-561. [PMID: 35849331 PMCID: PMC9833052 DOI: 10.1093/jxb/erac309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches.
Collapse
Affiliation(s)
- Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Ella Catherall
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stavros Azinas
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Laura Gunn
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| |
Collapse
|
5
|
Iqbal WA, Lisitsa A, Kapralov MV. Predicting plant Rubisco kinetics from RbcL sequence data using machine learning. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:638-650. [PMID: 36094849 PMCID: PMC9833099 DOI: 10.1093/jxb/erac368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is responsible for the conversion of atmospheric CO2 to organic carbon during photosynthesis, and often acts as a rate limiting step in the later process. Screening the natural diversity of Rubisco kinetics is the main strategy used to find better Rubisco enzymes for crop engineering efforts. Here, we demonstrate the use of Gaussian processes (GPs), a family of Bayesian models, coupled with protein encoding schemes, for predicting Rubisco kinetics from Rubisco large subunit (RbcL) sequence data. GPs trained on published experimentally obtained Rubisco kinetic datasets were applied to over 9000 sequences encoding RbcL to predict Rubisco kinetic parameters. Notably, our predicted kinetic values were in agreement with known trends, e.g. higher carboxylation turnover rates (Kcat) for Rubisco enzymes from C4 or crassulacean acid metabolism (CAM) species, compared with those found in C3 species. This is the first study demonstrating machine learning approaches as a tool for screening and predicting Rubisco kinetics, which could be applied to other enzymes.
Collapse
Affiliation(s)
- Wasim A Iqbal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Alexei Lisitsa
- Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | |
Collapse
|
6
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
7
|
Iqbal WA, Miller IG, Moore RL, Hope IJ, Cowan-Turner D, Kapralov MV. Rubisco substitutions predicted to enhance crop performance through carbon uptake modelling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6066-6075. [PMID: 34115846 PMCID: PMC8411856 DOI: 10.1093/jxb/erab278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 05/03/2023]
Abstract
Improving the performance of the CO2-fixing enzyme Rubisco is among the targets for increasing crop yields. Here, Earth system model (ESM) representations of canopy C3 and C4 photosynthesis were combined with species-specific Rubisco parameters to quantify the consequences of bioengineering foreign Rubiscos into C3 and C4 crops under field conditions. The 'two big leaf' (sunlit/shaded) model for canopy photosynthesis was used together with species-specific Rubisco kinetic parameters including maximum rate (Kcat), Michaelis-Menten constant for CO2 at ambient atmospheric O2 (Kc21%O2), specificity for CO2 to O2 (Sc/o), and associated heat activation (Ha) values. Canopy-scale consequences of replacing native Rubiscos in wheat, maize, and sugar beet with foreign enzymes from 27 species were modelled using data from Ameriflux and Fluxnet databases. Variation among the included Rubisco kinetics differentially affected modelled carbon uptake rates, and Rubiscos from several species of C4 grasses showed the greatest potential of >50% carbon uptake improvement in wheat, and >25% improvement in sugar beet and maize. This study also reaffirms the need for data on fully characterized Rubiscos from more species, and for better parameterization of 'Vcmax' and temperature response of 'Jmax' in ESMs.
Collapse
Affiliation(s)
- Wasim A Iqbal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Correspondence:
| | - Isabel G Miller
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Rebecca L Moore
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Iain J Hope
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|