1
|
Zhou Y, Shi L, Li X, Wei S, Ye X, Gao Y, Zhou Y, Cheng L, Cheng L, Duan F, Li M, Zhang H, Qian Q, Zhou W. Genetic engineering of RuBisCO by multiplex CRISPR editing small subunits in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:731-749. [PMID: 39630060 PMCID: PMC11869188 DOI: 10.1111/pbi.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 11/16/2024] [Indexed: 03/01/2025]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is required for photosynthetic carbon assimilation, as it catalyses the conversion of inorganic carbon into organic carbon. Despite its importance, RuBisCO is inefficient; it has a low catalytic rate and poor substrate specificity. Improving the catalytic performance of RuBisCO is one of the key routes for enhancing plant photosynthesis. As the basic subunit of RuBisCO, RbcS affects the catalytic properties and plays a key role in stabilizing the structure of holoenzyme. Yet, the understanding of functions of RbcS in crops is still largely unknown. Toward this end, we employed CRISPR-Cas9 technology to randomly edit five rbcS genes in rice (OsrbcS1-5), generating a series of knockout mutants. The mutations of predominant rbcS genes in rice photosynthetic tissues, OsrbcS2-5, conferred inhibited growth, delayed heading and reduced yield in the field conditions, accompanying with lower RuBisCO contents and activities and significantly reduced photosynthetic efficiency. The retarded phenotypes were severer caused by multiple mutations. In addition, we revealed that these mutants had fewer chloroplasts and starch grains and a lower sugar content in the shoot base, resulting in fewer rice tillers. Further structural analysis of the mutated RuBisCO enzyme in one rbcs2,3,5 mutant line uncovered no significant differences from the wild-type protein, indicating that the mutations of rbcS did not compromise the protein assembly or the structure. Our findings generated a mutant pool with genetic diversities, which offers a valuable resource and novel insights into unravelling the mechanisms of RuBisCO in rice. The multiplex genetic engineering approach of this study provides an effective and feasible strategy for RuBisCO modification in crops, further facilitate the photosynthesis improvement and sustainable crop production.
Collapse
Affiliation(s)
- Yujie Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xia Li
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shaobo Wei
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiangyuan Ye
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuan Gao
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yupeng Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lin Cheng
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Long Cheng
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Fengying Duan
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hui Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Qian Qian
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wenbin Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
2
|
Sidhu GK, Pandey R, Kaur G, Singh A, Lenka SK, Reddy PM. Towards assembling functional cyanobacterial β-carboxysomes in Oryza sativa chloroplasts. Funct Integr Genomics 2025; 25:5. [PMID: 39752022 DOI: 10.1007/s10142-024-01518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO2 by CA, following in an increase in carbon flux near Rubisco boosting CO2 fixation process. Inspired by this mechanism, our study aims to improve photosynthetic efficiency in the C3 model crop, rice (Oryza sativa), by stably engineering the genetic components of the β-carboxysome of Synechococcus elongatus PCC 7942 (hereafter, Syn7942) in the rice genome. We demonstrated this proof of concept by developing two types of transgenic rice plants. The first type involved targeting the chloroplasts with three key carboxysome structural proteins (ccmL, ccmO, and ccmK) and a chimeric protein (ccmC), which integrates domains from four distinct carboxysome proteins. The second type combined these proteins with the introduction of cyanobacterial Rubisco targeted to chloroplasts. Additionally, in the second transgenic background, RNA interference was employed to silence the endogenous rice Rubisco along with stromal carbonic anhydrase gene. The transgenic plants exhibited the assembly of carboxysome-like compartments and aggregated proteins in the chloroplasts and the second type demonstrated reduced plant growth and yield. We have followed a bottom-up approach for targeting the cyanobacterial CCM in rice chloroplast which would help in stacking up the components further required for increasing the photosynthetic efficiency in future.
Collapse
Affiliation(s)
- Gurbir Kaur Sidhu
- TERI School of Advanced Studies, 10 Institutional Area, New Delhi, 110070, India.
| | - Rakesh Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gurdeep Kaur
- TERI School of Advanced Studies, 10 Institutional Area, New Delhi, 110070, India
| | - Anjulata Singh
- TERI School of Advanced Studies, 10 Institutional Area, New Delhi, 110070, India
| | - Sangram K Lenka
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Pallavolu M Reddy
- The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India
- TERI-Deakin Nanobiotechnology Research Centre, Gurugram, Haryana, 122003, India
| |
Collapse
|
3
|
Barrett J, Naduthodi MIS, Mao Y, Dégut C, Musiał S, Salter A, Leake MC, Plevin MJ, McCormick AJ, Blaza JN, Mackinder LCM. A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage. NATURE PLANTS 2024; 10:1801-1813. [PMID: 39384944 PMCID: PMC11570498 DOI: 10.1038/s41477-024-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Mihris I S Naduthodi
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | | | - Sabina Musiał
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Aidan Salter
- Department of Biology, University of York, York, UK
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK
| | - Mark C Leake
- Department of Biology, University of York, York, UK
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Michael J Plevin
- Department of Biology, University of York, York, UK
- York Structural Biology Laboratory, University of York, York, UK
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - James N Blaza
- York Structural Biology Laboratory, University of York, York, UK
- Department of Chemistry, University of York, York, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York, UK.
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, UK.
| |
Collapse
|
4
|
Zhai M, Chen Y, Pan X, Chen Y, Zhou J, Jiang X, Zhang Z, Xiao G, Zhang H. OsEIN2-OsEIL1/2 pathway negatively regulates chilling tolerance by attenuating OsICE1 function in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2561-2577. [PMID: 38518060 DOI: 10.1111/pce.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Low temperature severely affects rice development and yield. Ethylene signal is essential for plant development and stress response. Here, we reported that the OsEIN2-OsEIL1/2 pathway reduced OsICE1-dependent chilling tolerance in rice. The overexpressing plants of OsEIN2, OsEIL1 and OsEIL2 exhibited severe stress symptoms with excessive reactive oxygen species (ROS) accumulation under chilling, while the mutants (osein2 and oseil1) and OsEIL2-RNA interference plants (OsEIL2-Ri) showed the enhanced chilling tolerance. We validated that OsEIL1 and OsEIL2 could form a heterxodimer and synergistically repressed OsICE1 expression by binding to its promoter. The expression of OsICE1 target genes, ROS scavenging- and photosynthesis-related genes were downregulated by OsEIN2 and OsEIL1/2, which were activated by OsICE1, suggesting that OsEIN2-OsEIL1/2 pathway might mediate ROS accumulation and photosynthetic capacity under chilling by attenuating OsICE1 function. Moreover, the association analysis of the seedling chilling tolerance with the haplotype showed that the lower expression of OsEIL1 and OsEIL2 caused by natural variation might confer chilling tolerance on rice seedlings. Finally, we generated OsEIL2-edited rice with an enhanced chilling tolerance. Taken together, our findings reveal a possible mechanism integrating OsEIN2-OsEIL1/2 pathway with OsICE1-dependent cascade in regulating chilling tolerance, providing a practical strategy for breeding chilling-tolerant rice.
Collapse
Affiliation(s)
- Mingjuan Zhai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yating Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ying Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodan Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO 2 assimilation in plants. Proc Natl Acad Sci U S A 2024; 121:e2321050121. [PMID: 38442173 PMCID: PMC10945770 DOI: 10.1073/pnas.2321050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - David M Emms
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
6
|
Maheshwari C, Garg NK, Singh A, Tyagi A. Optimization of paclobutrazol dose for mitigation of water-deficit stress in rice ( L.). BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Jiang X, Zhou W, Wang H, You J, Liu W, Zhang M. TMT-Based Proteomic Analysis of Continuous Cropping Response in Codonopsis tangshen Oliv. Life (Basel) 2023; 13:life13030765. [PMID: 36983920 PMCID: PMC10052164 DOI: 10.3390/life13030765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
The growth and development of Codonopsis tangshen, an important herb used in Chinese traditional medicine, have been seriously affected by continuous cropping obstacles. Therefore, understanding the molecular responses of C. tangshen to continuous cropping is imperative to improve its resistance to continuous cropping obstacles. Here, physiological and biochemical results showed that the levels of chlorophyll and malonaldehyde (MDA) were higher in the continuous cropping (LZ) group compared with those of the non-continuous cropping (FLZ) group, while superoxide dismutase (SOD) content was lower in the LZ group than in the FLZ group. Tandem mass tag (TMT)-based proteomic analysis was performed to investigate the response mechanism to continuous cropping obstacles in C. tangshen. A total of 70 differentially expressed proteins (DEPs) were significantly involved in relevant pathways, including photosynthesis, oxidative phosphorylation, ribosome activity, and secondary metabolites. The results suggest that these DEPs in C. tangshen might play a critical role in response to continuous cropping. These findings could provide scientific basis for improving C. tangshen’s resistance to continuous cropping obstacles.
Collapse
Affiliation(s)
- Xiaogang Jiang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Wuxian Zhou
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Hua Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Jinwen You
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Wenlu Liu
- Agricultural and Rural Bureau of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Correspondence: ; Tel.: +86-139-9776-7016
| |
Collapse
|
8
|
Mao Y, Catherall E, Díaz-Ramos A, Greiff GRL, Azinas S, Gunn L, McCormick AJ. The small subunit of Rubisco and its potential as an engineering target. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:543-561. [PMID: 35849331 PMCID: PMC9833052 DOI: 10.1093/jxb/erac309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches.
Collapse
Affiliation(s)
- Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Ella Catherall
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stavros Azinas
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Laura Gunn
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| |
Collapse
|
9
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|