1
|
Guo AY, Wu WQ, Liu WC, Zheng Y, Bai D, Li Y, Xie J, Guo S, Song CP. C2-domain abscisic acid-related proteins regulate the dynamics of a plasma membrane H+-ATPase in response to alkali stress. PLANT PHYSIOLOGY 2024; 196:2784-2794. [PMID: 39217410 DOI: 10.1093/plphys/kiae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) H+-ATPase1 (AHA1), a plasma membrane (PM)-localized H+-ATPase, plays a key role in plant alkali stress tolerance by pumping protons from the cytoplasm to the apoplast. However, its molecular dynamics are poorly understood. We report that many C2-domain ABA-related (CAR) protein family members interact with AHA1 in Arabidopsis. Single or double mutants of CAR1, CAR6, and CAR10 had no obvious phenotype of alkali stress tolerance, while their triple mutants showed significantly higher tolerance to this stress. The disruption of AHA1 largely compromised the increased alkali stress tolerance of the car1car6car10 mutant, revealing a key role of CARs in AHA1 regulation during the plant's response to a high alkali pH. Furthermore, variable-angle total internal reflection fluorescence microscopy was used to observe AHA1-mGFP5 in intact Arabidopsis seedlings, revealing the presence of heterogeneous diffusion coefficients and oligomerization states in the AHA1 spots. In the aha1 complementation lines, alkali stress curtailed the residence time of AHA1 at the PM and increased the diffusion coefficient and particle velocity of AHA1. In contrast, the absence of CAR proteins decreased the restriction of the dynamic behavior of AHA1. Our results suggest that CARs play a negative role in plant alkali stress tolerance by interacting with AHA1 and provide a perspective to investigate the regulatory mechanism of PM H+-ATPase activity at the single-particle level.
Collapse
Affiliation(s)
- Ai-Yu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, Hainan, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, Hainan, China
| |
Collapse
|
2
|
Galland P, Corrochano LM. Light reception of Phycomyces revisited: several white collar proteins confer blue- and red-light sensitivity and control dynamic range and adaptation. Photochem Photobiol Sci 2024; 23:1587-1607. [PMID: 39001971 DOI: 10.1007/s43630-024-00604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
The giant-fruiting body, sporangiophore, of the fungus Phycomyces blakesleeanus grows toward near-UV/blue-light (phototropism). The blue-light photoreceptor, MadA, should contain FAD bound to the LOV domain, and forms a complex with MadB. Both proteins are homologs of white collar proteins WC-1 and WC-2 from the fungus Neurospora crassa and should be localized in nuclei, where they function as a light-sensitive transcription factor complex. The photoreceptor properties of two further Wc proteins, WcoA and WcoB, remain unclear because of lack of mutants. We propose that WcoA and/or WcoB play essential roles in photoreception by enlarging the dynamic range that help explain complex stimulus-response relationships. Even though red light does not elicit photo-movement or -differentiation in Phycomyces, it affects the effectiveness of blue light which indicates an underlying photochromic receptor. Protein sequence searches show that other fungal red-light receptors are absent in Phycomyces. The solution to the red-light riddle is thus sought in the ability of Wc complexes to generate after blue-light irradiation a neutral flavosemiquinone radical that absorbs red light and functions as primary photochemical signal. Phototropism requires Ras-GAP (MadC) as part of the signal transduction cascade and, we propose, to allocate photoreceptors in the plasmalemma of the growing zone, which allows for receptor dichroism, range adjustment and contrast recognition for spatial orientation. Phototropic signal chains must entail transduction networks between Wc receptors and small G-proteins and their associated Ras-GAP and Ras-GEF proteins. The interactions among these proteins should occur in trans-Golgi vesicles and the plasmalemma of the growing zone.
Collapse
Affiliation(s)
- Paul Galland
- Fachbereich Biologie, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain.
| |
Collapse
|
3
|
Guo AY, Wu WQ, Bai D, Li Y, Xie J, Guo S, Song CP. Recruitment of HAB1 and SnRK2.2 by C2-domain protein CAR1 in plasma membrane ABA signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:237-251. [PMID: 38597817 DOI: 10.1111/tpj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.
Collapse
Affiliation(s)
- Ai-Yu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Di Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jie Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
4
|
Živanović BD, Luković JD, Korać A, Stanić M, Spasić SZ, Galland P. Signal transduction in Phycomyces sporangiophores: columella as a novel sensory organelle mediating auxin-modulated growth rate and membrane potential. PROTOPLASMA 2022; 259:917-935. [PMID: 34595603 DOI: 10.1007/s00709-021-01709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The growing zone (GZ) of the unicellular coenocytic sporangiophore of Phycomyces blakesleeanus represents the site of stimulus reception (light, gravity, gas) and stimulus response, i.e., local modulations of the elongation growth, which may result, in dependence of the stimulus direction, in tropic bending. Until now, evidence for a possible participation of the columella in sensory reception is absent. We confirm with light microscopy earlier studies that show that the GZ and the columella are not separated by a membrane or cell wall, but rather form a spatial continuum that allows free exchange of cytoplasm and organelle transport. Evidence is presented that the columella is responsive to external stimuli. Columellae, from which spores and sporangial cell wall had been removed, respond to exogenous auxin with a local depolarization of the membrane potential and an increased growth rate of the GZ. In contrast, auxin applied to the GZ causes a decrease of the growth rate irrespective of the presence or absence of sporangia. The response pattern is specific and relevant for the sensory reception of Phycomyces, because the light-insensitive mutant C148carAmadC, which lacks the RAS-GAP protein MADC, displays abnormal IAA sensitivity and membrane depolarization. We argue that the traditional concept of the GZ as the only stimulus-sensitive zone should be abandoned in favor of a model in which GZ and columella operate as a single entity capable to orchestrate a multitude of stimulus inputs, including auxin, to modulate the membrane potential and elongation growth of the GZ.
Collapse
Affiliation(s)
- Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, TAS, 7001, Australia.
| | - Jelena Danilović Luković
- Institute for Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade-Zemun, Serbia
| | - Aleksandra Korać
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Singidunum University, Danijelova 32, Belgrade, Serbia
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| |
Collapse
|