1
|
Chondol T, Gago J, Flexas J, Gulías J, Clemente‐Moreno MJ, Binter J, Doležal J. Surviving the Extremes: Seasonal Dynamics of Photochemical Performance in Plants From Cold-Arid Himalayan Mountains. PHYSIOLOGIA PLANTARUM 2025; 177:e70269. [PMID: 40387387 PMCID: PMC12087433 DOI: 10.1111/ppl.70269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/20/2025]
Abstract
Plants in extreme environments face pronounced seasonal variations in abiotic conditions, influencing their growth and carbon gain. However, our understanding of how plants in cold-arid mountains sustain carbon assimilation during short growing seasons remains limited. Here, we investigate seasonal dynamics and interspecific variability in photochemical performance of 310 individuals, comprising 10 different dicotyledon plant species across 3100-5300 m in the NW Himalayas, spanning semi-deserts to subnival zones. From early June to late September, we measured Fv/Fm and ΦPSII, assessing ΦPSII relationships with leaf traits (N, P, C, C:N ratio, LMA, and LDMC) and environmental factors (temperature, soil moisture content, etc.). Our findings revealed that high-Himalayan plants maintained relatively stable photosynthetic performance (Fv/Fm = 0.7-0.85), indicating optimal function even under potential stress. Contrary to our hypothesis that ΦPSII peaks mid-season in alpine and subnival zones and early season in steppes and semi-deserts, it declined by 33% across species and habitats throughout the season. This decline was closely associated with nutrient depletion, leaf senescence, and energy-water limitations. Species exhibited distinct strategies, with some prioritising structural resilience over photosynthesis, while others optimised photochemical performance despite environmental constraints. Alpine and subnival plant performance was constrained more by soil moisture deficits and high temperatures than cold temperatures, while deep-rooted steppe and semi-desert plants were primarily constrained by high temperatures and evaporative forcing rather than soil moisture deficit. These results provide new insights into how Himalayan plants adapt to extreme environmental conditions, highlighting the crucial interplay between moisture and temperature in shaping their performance within cold-arid mountains.
Collapse
Affiliation(s)
- Thinles Chondol
- Department of Functional EcologyInstitute of Botany, Czech Academy of SciencesTřeboňCzechia
- Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
| | - Jorge Gago
- Research Group on Plant Biology Under Mediterranean ConditionsUniversitat de les Illes Balears (UIB) – Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)PalmaSpain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean ConditionsUniversitat de les Illes Balears (UIB) – Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)PalmaSpain
| | - Javier Gulías
- Research Group on Plant Biology Under Mediterranean ConditionsUniversitat de les Illes Balears (UIB) – Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)PalmaSpain
| | - María José Clemente‐Moreno
- Research Group on Plant Biology Under Mediterranean ConditionsUniversitat de les Illes Balears (UIB) – Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)PalmaSpain
| | - Jan Binter
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiří Doležal
- Department of Functional EcologyInstitute of Botany, Czech Academy of SciencesTřeboňCzechia
- Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
| |
Collapse
|
2
|
Tosens T, Alboresi A, van Amerongen H, Bassi R, Busch FA, Consoli G, Ebenhöh O, Flexas J, Harbinson J, Jahns P, Kamennaya N, Kramer DM, Kromdijk J, Lawson T, Murchie EH, Niinemets Ü, Natale S, Nürnberg DJ, Persello A, Pesaresi P, Raines C, Schlüter U, Theeuwen TPJM, Timm S, Tolleter D, Weber APM. New avenues in photosynthesis: from light harvesting to global modeling. PHYSIOLOGIA PLANTARUM 2025; 177:e70198. [PMID: 40231858 DOI: 10.1111/ppl.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025]
Abstract
Photosynthesis underpins life on Earth, serving as the primary energy source while regulating global carbon and water cycles, thereby shaping climate and vegetation. Advancing photosynthesis research is essential for improving crop productivity and refining photosynthesis models across scales, ultimately addressing critical global challenges such as food security and environmental sustainability. This minireview synthesizes a selection of recent advancements presented at the 2nd European Congress of Photosynthesis Research, focusing on improving photosynthesis efficiency and modelling across the scales. We explore strategies to optimize light harvesting and carbon fixation, leading to canopy level improvements. Alongside synthetic biology, we examine recent advances in harnessing natural variability in key photosynthetic traits, considering both methodological innovations and the vast reservoir of opportunities they present. Additionally, we highlight unique insights gained from plants adapted to extreme environments, offering pathways to improve photosynthetic efficiency and resilience simultaneously. We emphasize the importance of a holistic approach, integrating dynamic modeling of metabolic processes to bridge these advancements. Beyond photosynthesis improvements, we discuss the progress of improving photosynthesis simulations, particularly through improved parametrization of mesophyll conductance, crucial for enhancing leaf-to-global scale simulations. Recognizing the need for greater interdisciplinary collaboration to tackle the grand challenges put on photosynthesis research, we highlight two initiatives launched at the congress-an open science platform and a dedicated journal for plant ecophysiology. We conclude this minireview with a forward-looking outline, highlighting key next steps toward achieving meaningful improvements in photosynthesis, yield, resilience and modeling.
Collapse
Affiliation(s)
- Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, WE, The Netherlands
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Florian A Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Giovanni Consoli
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Oliver Ebenhöh
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, WE, The Netherlands
| | - Peter Jahns
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Nina Kamennaya
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research & Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Israel
| | | | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tracy Lawson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- School of Life Sciences, University of Essex, Colchester, Essex, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Sara Natale
- Department of Biology, University of Padova, Padova, Italy
| | - Dennis J Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Andrea Persello
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex, UK
| | - Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Tom P J M Theeuwen
- Jan IngenHouz Institute, Wageningen, PB, Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Stefan Timm
- Department of Plant Physiology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Dimitri Tolleter
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Bellasio C, Stuart‐Williams H, Farquhar GD, Flexas J. Fast dehydration reduces bundle sheath conductance in C 4 maize and sorghum. THE NEW PHYTOLOGIST 2024; 244:2197-2209. [PMID: 39460370 PMCID: PMC11579431 DOI: 10.1111/nph.20167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/07/2024] [Indexed: 10/28/2024]
Abstract
In the face of anthropogenic warming, drought poses an escalating threat to food production. C4 plants offer promise in addressing this threat. C4 leaves operate a biochemical CO2 concentrating mechanism that exchanges metabolites between two partially isolated compartments (mesophyll and bundle sheath), which confers high-productivity potential in hot climates boosting water use efficiency. However, when C4 leaves experience dehydration, photosynthesis plummets. This paper explores the physiological mechanisms behind this decline. In a fast dehydration experiment, we measured the fluxes and isotopic composition of water and CO2 in the gas exchanged by leaves, and we interpreted results using a novel biochemical model and analysis of elasticity. Our findings show that, while CO2 supply to the mesophyll and to the bundle sheath persisted during dehydration, there was a decrease in CO2 conductance at the bundle sheath-mesophyll interface. We interpret this as causing a slowdown of intercellular metabolite exchange - an essential feature of C4 photosynthesis. This would impede the supply of reducing power to the bundle sheath, leading to phosphoglycerate accumulation and feedback inhibition of Rubisco carboxylation. The interplay between this rapid sensitivity and the effectiveness of coping strategies that C4 plants deploy may be an overlooked driver of their competitive performance.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental ScienceUniversity College DublinBelfieldDublin 4D04V1W8Ireland
- Department of Chemistry, Biology and BiotechnologyUniversità Degli Studi Di PerugiaPerugia06123Italy
- Biology of Plants Under Mediterranean Conditions, Department of BiologyUniversity of the Balearic Islands07122PalmaIlles BalearsSpain
- Research School of BiologyAustralian National UniversityActonACT2601Australia
| | | | - Graham D. Farquhar
- Research School of BiologyAustralian National UniversityActonACT2601Australia
| | - Jaume Flexas
- Biology of Plants Under Mediterranean Conditions, Department of BiologyUniversity of the Balearic Islands07122PalmaIlles BalearsSpain
- Agro‐Environmental and Water Economics Research Institute (INAGEA), Complex Balear de Recerca, Desenvolupament Tecnològic i Innovació (Parc Bit)Carrer Blaise Pascal, 607120PalmaIlles BalearsSpain
| |
Collapse
|
4
|
Liu W, Fan R, Yang S, Chen S, Huang Y, Ji W. Carex parva and Carex scabrirostris adopt diverse response strategies to adapt to low-light conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1432539. [PMID: 39469055 PMCID: PMC11513331 DOI: 10.3389/fpls.2024.1432539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Introduction In recent years, the visible light intensity of lawns has significantly decreased due to obstructions caused by urban shading objects. Carex has a competitive advantage over other turfgrass in low-light conditions and extensive management. Therefore, exploring their survival strategy in low-light environments is of great significance. Methods This study focuses on two species of Carex, Carex parva and Carex scabrirostris, and investigates their response to low-light conditions (150 μmol/m2/s) by simulating urban lawn conditions. Biomass allocation characteristics, leaf anatomical features, biochemical parameters, root morphology and photosynthetic parameters were measured. Results (a) Peroxidase activity, specific leaf area, and relative water content are key factors influencing the photosynthetic capacity of the two Carex species. (b) Under low-light conditions, photosynthetic parameters, leaf physiological indicators, and biomass allocation of the two Carex species were significantly affected (p<0.05). Both Carex species increased their investment in leaf biomass, maintained lateral root growth, and cleared reactive oxygen species to maintain their physiological balance. (c) In the simulated urban low-light environment, neither C. parva nor C. scabrirostris produced dauciform roots. Discussion In terms of response strategies, C. scabrirostris is a high-photosynthesis investing species with high productivity under low-light conditions, whereas C. parva exhibits minimal response, indicating a slow investment. C. scabrirostris has greater potential for application in low-light environments compared to C. parva. These results provide a theoretical basis for the cultivation and application of these two Carex species, as well as the expansion of turfgrass germplasm resources.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenli Ji
- College of Landscape Architecture and Art, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Ben Hamed S, Lefi E, Chaieb M. Effect of drought stress and subsequent re-watering on the physiology and nutrition of Pistacia vera and Pistacia atlantica. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37463662 DOI: 10.1071/fp23097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
Arid and semi-arid regions are characterised by extreme conditions including drought stress and salinity. These factors profoundly affect the agricultural sector. The objective of this work is to study the effect of drought and re-watering on leaf gas exchange, chlorophyll fluorescence and mineral nutrition in Pistacia vera and Pistacia atlantica . Water stress was applied to individuals of P. vera and P. atlantica for 23days, followed by rehydration for 7days. The results showed a clear reduction in water relations, leaf gas exchange and chlorophyll content in P. vera . Compared to P. vera , P. atlantica maintained less affected water status, total chlorophyll content, leaf gas exchange and chlorophyll fluorescence, stable Zn and Fe proportion, and even elevated K and Cu. The changes in the chlorophyll fluorescence parameter were manifested particularly at the maximal fluorescence (Fm). In contrast, no change was recorded at the minimal fluorescence (F0). After re-hydration, although water status was fully recovered in both species, stomatal conductance (gs), net photosynthesis (A ) and transpiration rate (E ) remain with lower values than the well-watered seedlings. P. atlantica was better adapted to drought stress than P. vera .
Collapse
Affiliation(s)
- Samouna Ben Hamed
- Laboratory of Plant Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia; and LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Elkadri Lefi
- Laboratory of Plant Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia; and LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Mohamed Chaieb
- LEBIOMAT: Laboratory of Arid Environment and Plant Biology, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Bellasio C, Stuart-Williams H, Farquhar GD, Flexas J. C 4 maize and sorghum are more sensitive to rapid dehydration than C 3 wheat and sunflower. THE NEW PHYTOLOGIST 2023; 240:2239-2252. [PMID: 37814525 DOI: 10.1111/nph.19299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/03/2023] [Indexed: 10/11/2023]
Abstract
The high productive potential, heat resilience, and greater water use efficiency of C4 over C3 plants attract considerable interest in the face of global warming and increasing population, but C4 plants are often sensitive to dehydration, questioning the feasibility of their wider adoption. To resolve the primary effect of dehydration from slower from secondary leaf responses originating within leaves to combat stress, we conducted an innovative dehydration experiment. Four crops grown in hydroponics were forced to a rapid yet controlled decrease in leaf water potential by progressively raising roots of out of the solution while measuring leaf gas exchange. We show that, under rapid dehydration, assimilation decreased more steeply in C4 maize and sorghum than in C3 wheat and sunflower. This reduction was due to a rise of nonstomatal limitation at triple the rate in maize and sorghum than in wheat and sunflower. Rapid reductions in assimilation were previously measured in numerous C4 species across both laboratory and natural conditions. Hence, we deduce that high sensitivity to rapid dehydration might stem from the disturbance of an intrinsic aspect of C4 bicellular photosynthesis. We posit that an obstruction to metabolite transport between mesophyll and bundle sheath cells could be the cause.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Illes Balears, Palma, 07122, Spain
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | | | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Jaume Flexas
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Illes Balears, Palma, 07122, Spain
| |
Collapse
|
7
|
Jiang S, Tang Y, Fan R, Bai S, Wang X, Huang Y, Li W, Ji W. Response of Carex breviculmis to phosphorus deficiency and drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1203924. [PMID: 37496859 PMCID: PMC10366378 DOI: 10.3389/fpls.2023.1203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Introduction The drought and phosphorus deficiency have inevitably become environmental issues globally in the future. The analysis of plants functional trait variation and response strategies under the stress of phosphorus deficiency and drought is important to explore their ability to respond to potential ecological stress. Methods In this study, Carex breviculmis was selected as the research object, and a 14-week pot experiment was conducted in a greenhouse, with two phosphorus treatment (add 0.5mmol/L or 0.05μmol/L phosphorus) and four drought treatment (add 0-5%PEG6000), totaling eight treatments. Biomass allocation characteristics, leaf anatomical characteristics, biochemical parameters, root morphology, chemical element content, and photosynthetic parameters were measured. Results The results showed that the anatomical characteristics, chemical elements, and photosynthetic parameters of Carex breviculmis responded more significantly to main effect of phosphorus deficiency. Stomatal width, leaf phosphorus content and maximum net photosynthetic rate decreased by 11.38%, 59.39%, 38.18% significantly (p<0.05), while the change in biomass was not significant (p>0.05). Biomass allocation characteristics and root morphology responded more significantly to main effect of drought. Severe drought significantly decreased leaf fresh weight by 61% and increased root shoot ratio by 223.3% compared to the control group (p<0.05). The combined effect of severe drought and phosphorus deficiency produced the highest leaf N/P ratio (291.1% of the control) and MDA concentration (243.6% of the control). Correlation analysis and redundancy analysis showed that the contributions of phosphorus and drought to functional trait variation were similar. Lower epidermal cell thickness was positively correlated with maximum net photosynthetic rate, leaf phosphorus, chlorophyll ab, and leaf fresh weight (p<0.05). Discussion In terms of response strategy, Carex breviculmis was affected at the microscopic level under phosphorus deficiency stress, but could maintain the aboveground and underground biomass well through a series of mechanisms. When affected by drought, it adopted the strategy of reducing leaf yield and improving root efficiency to maintain life activities. Carex breviculmis could maintain its traits well under low phosphorus and moderate drought, or better conditions. So it may have good ecological service potential in corresponding areas if promoted. This study also provided a reference for plant response to combined drought and phosphorus deficiency stresses.
Collapse
Affiliation(s)
- Songlin Jiang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yiqing Tang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Rong Fan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shidong Bai
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiaoqi Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yulin Huang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Weizhong Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Wenli Ji
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Perera-Castro AV, Flexas J. The ratio of electron transport to assimilation (ETR/A N): underutilized but essential for assessing both equipment's proper performance and plant status. PLANTA 2023; 257:29. [PMID: 36592261 DOI: 10.1007/s00425-022-04063-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
ETR/AN ratios should be in the range 7.5-10.5 for non-stressed C3 plants. Ratios extremely out of this range can be reflecting both uncontrolled plant status and technical mistakes during measurements. We urge users to explicitly refer to this ratio in future studies as a proof for internal data quality control. For the last few decades, the use of infra-red gas-exchange analysers (IRGAs) coupled with chlorophyll fluorometers that allow for measurements of net CO2 assimilation rate and estimates of electron transport rate over the same leaf area has been popularized. The evaluation of data from both instruments in an integrative manner can result in additional valuable information, such as the estimation of the light respiration, mesophyll conductance and the partitioning of the flux of electrons into carboxylation, oxygenation and alternative processes, among others. In this review, an additional and more 'straight' use of the combination of chlorophyll fluorescence and gas exchange-derived parameters is presented, namely using the direct ratio between two fully independently estimated parameters, electron transport rate (ETR)-determined by the fluorometer-and net CO2 assimilation rate (AN)-determined by the IRGA, i.e., the ETR/AN ratio, as a tool for fast detection of incongruencies in the data and potential technical problems associated with them, while checking for the study plant's status. To illustrate this application, a compilation of 75 studies that reported both parameters for a total of 178 species under varying physiological status is presented. Values of ETR/AN between 7.5 and 10.5 were most frequently found for non-stressed C3 plants. C4 species showed an average ETR/AN ratio of 4.7. The observed ratios were larger for species with high leaf mass per area and for plants subjected to stressful factors like drought or nutritional deficit. Knowing the expected ETR/AN ratio projects this ratio as a routinary and rapid check point for guaranteeing both the correct performance of equipment and the optimal/stress status of studied plants. All known errors associated with the under- or overestimation of ETR or AN are summarized in a checklist that aims to be routinely used by any IRGA/fluorometer user to strength the validity of their data.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, S/N, 38200, La Laguna, Canary Islands, Spain.
| | - Jaume Flexas
- Department of Biology, Agro-Environmental and Water Economics Institute (INAGEA), Universitat de LES Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| |
Collapse
|
9
|
Solarte ME, Solarte Erazo Y, Ramírez Cupacán E, Enríquez Paz C, Melgarejo LM, Lasso E, Flexas J, Gulias J. Photosynthetic Traits of Páramo Plants Subjected to Short-Term Warming in OTC Chambers. PLANTS (BASEL, SWITZERLAND) 2022; 11:3110. [PMID: 36432839 PMCID: PMC9695496 DOI: 10.3390/plants11223110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming and changes in land use are some of the main threats to high mountain species. Both can interact in ways not yet assessed. In this study, we evaluated the photosynthetic responses of six common páramo species within a warming experiment using open-top chambers (OTC) in conserved páramo areas with different land use histories. We did not find significant differences in the photochemical performance of the species as measured through Fv/Fm, ETR, and NPQ in response to passive warming, indicating that warmed plants are not stressed. However, NPQ values were higher in recovering areas, especially in the driest and warmest months. Leaf transpiration, stomatal conductance, and Ci were not affected by the OTC or the land use history. The photosynthetic capacity, maximum photosynthetic capacity, and carboxylation rate of RuBisCO increased in response to warming but only in the area with no anthropogenic intervention. These results suggest that species will respond differently to warming depending on the history of páramo use, and therefore not all páramo communities will respond equally to climate change. In disturbed sites with altered soil conditions, plants could have a lower breadth of physiological response to warming.
Collapse
Affiliation(s)
- María Elena Solarte
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Yisela Solarte Erazo
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Elizabeth Ramírez Cupacán
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Camila Enríquez Paz
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogota 111321, Colombia
| | - Eloisa Lasso
- Grupo de Ecología y Fisiología Vegetal EcoFiv, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogota 111711, Colombia
| | - Jaume Flexas
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| | - Javier Gulias
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| |
Collapse
|
10
|
Wang Y, Xie H, Wang W, Han S, Zhou H, Qiong L, Qiu QS. Plateau plants develop unique features adapting to the alpine environment. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153787. [PMID: 35939893 DOI: 10.1016/j.jplph.2022.153787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Yingdian Wang
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Huichun Xie
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China
| | - Wenying Wang
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China
| | - Shengcheng Han
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - La Qiong
- Department of Life Sciences, College of Science, Tibet University, Tibet University, Lhasa, Tibet, 850000, China
| | - Quan-Sheng Qiu
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|