1
|
Lu Y, Zeng F, Zhang Z, Lv P, Liang B. Differences in growth, ionomic and antioxidative enzymes system responded to neutral and alkali salt exposure in halophyte Haloxylon ammodendron seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109492. [PMID: 39826343 DOI: 10.1016/j.plaphy.2025.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Soil salinity and alkalinity severely suppress plant growth and crop yields. This study compared the effects of neutral and alkaline salt exposure, both individually and mixed, on metal content and morphophysiological responses in halophyte Haloxylon ammodendron. Our results showed that alkaline salt exposure more considerably inhibited the growth and photosynthesis of H. ammodendron than neutral salt exposure. Under neutral salt conditions, Na accumulated significantly, while K and Fe absorption was hindered. In contrast, under alkaline salt stress, Na accumulation was more pronounced, leading to a greater inhibition of K absorption. Additionally, Ca accumulation was promoted, while the transport of Fe, Mg, and Cu from root to shoot was suppressed. Alkaline salt stress also induced more severe osmotic stress, triggering a stronger accumulation of soluble sugars to counteract it. Furthermore, seedlings under alkaline stress showed higher levels of REL, H2O2, and MDA, but lower activities of SOD, POD, CAT, and APX, indicating increased oxidative damage. These findings suggest that H. ammodendron can adapt well to neutral salt stress through efficient antioxidant enzyme systems and osmotic stress regulation. In contrast, alkaline stress severely inhibits the absorption and transport of mineral elements and disrupts the balance of antioxidant enzymes. Besides, the deleterious effects of neutral-alkaline salt mixed stress were significantly less than those of alkaline stress alone, indicating a reciprocal enhancement between neutral and alkaline salt stress was occurred.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, 848300, PR China.
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, 848300, PR China
| | - Zhihao Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, 848300, PR China
| | - Ping Lv
- Xinjiang Production and Construction Corps Forestry and Grassland Work Station, Urumqi, Xinjiang, 830013, PR China
| | - Bin Liang
- Nanjing Forest Police College, Nanjing, Jiangsu, 210023, PR China
| |
Collapse
|
2
|
Lin C, Zheng S, Liu K, Yu R, Guan P, Hu B, Jiang L, Su M, Hu G, Chen Q, Zhang X. Elucidating the molecular basis of salt tolerance in potatoes through miRNA expression and phenotypic analysis. Sci Rep 2025; 15:2635. [PMID: 39838055 PMCID: PMC11751309 DOI: 10.1038/s41598-025-86276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis. Comprehensive evaluation based on morphological, physiological, and biochemical indicators divided the varieties into three categories, identifying Z1264-1, Z700-1, Z943-1, Z1266-1, Z510-1, and Z1076-1 as having strong salt tolerance. Regression equations established stem thickness, root length, and catalase activity as rapid identification markers for salt tolerance in tetraploid potatoes. Transcriptome analysis of the highly tolerant variety Z1076-1 identified 68 differentially expressed miRNAs (DE miRNAs). qRT-PCR validation for eight randomly selected DE miRNAs confirmed consistent expression trends with transcriptome data. Predicted target genes of these miRNAs are involved in calcium channel signaling, osmotic regulation, plant hormone signaling, and reactive oxygen species clearance. Our findings provide valuable insights for the identification and screening of salt-tolerant potato germplasms. The findings also lay the foundation for studying molecular mechanisms of salt tolerance and advancing genetic breeding efforts to cultivate more resilient potato varieties.
Collapse
Affiliation(s)
- Caicai Lin
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Shuangshuang Zheng
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Kui Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Ru Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Peiyan Guan
- Biology Department, Dezhou University, Dezhou, 253023, Shandong, China
| | - Baigeng Hu
- National Engineering Research Center for Potato, Leling, 253600, Shandong, China
| | - Lingling Jiang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Mengyu Su
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.
| | - Xia Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.
| |
Collapse
|
3
|
Wu Y, Liu R, Si W, Zhang J, Yang J, Qiu Z, Luo R, Wang Y. The Growth and Ion Absorption of Sesbania ( Sesbania cannabina) and Hairy Vetch ( Vicia villosa) in Saline Soil Under Improvement Measures. PLANTS (BASEL, SWITZERLAND) 2024; 13:3413. [PMID: 39683206 DOI: 10.3390/plants13233413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Soil salinization is a serious threat to the ecological environment and sustainable agricultural development in the arid regions of northwest China. Optimal soil salinization amelioration methods were eagerly explored under different soil salinity levels. Sesbania and hairy vetch are salt-tolerant plants, and green manure improved the saline environment. In this study, two leguminous halophytic crops, sesbania (Sesbania cannabina) and hairy vetch (Vicia villosa), were planted under different salinity levels, combined with three saline soil improvement measures, namely gravel mulching, manure application, and straw returning. No improvement measures and no salinity treatment was set as the control (CK). This study was conducted to analyze the effects of soil salinization improvement measures on the growth and ion uptake of sesbania and hairy vetch as biological measures under different soil salinity levels. Sesbania under manure application absorbed the highest soil Na+ (2.71 g kg-1) and Cl- (2.66 g kg-1) amounts at a soil salinity of 3.2 g kg-1, which was 14.7% and 10.95% higher than under gravel mulching and straw returning, respectively. Na+ and Cl- absorption of hairy vetch under manure application reached the highest value of 1.39 g kg-1 and 1.38 g kg-1 at a soil salinity of 1.6 g kg-1, which was 24.46% and 22.31% higher than under gravel mulching and straw returning, respectively. Plant height and stem diameter as well as root growth and development of sesbania and hairy vetch were limited at soil salinities greater than 1.6 g kg-1 and 0.8 g kg-1. Overall, sesbania and hairy vetch effectively absorbed both soil Na+ and Cl- under manure application, thus regulating soil salinity and reducing soil salinization. However, soil salinity levels greater than 3.2 g kg-1 and 1.6 g kg-1 not only weakened the ionic absorption capacity but also inhibited the growth and development of sesbania and hairy vetch. This study provides evidence that soil salt ion absorption by sesbania and hairy vetch is promoted effectively, ameliorating soil salinity, under manure application as compared to under gravel mulching and straw returning.
Collapse
Affiliation(s)
- You Wu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Rui Liu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Wei Si
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Jiale Zhang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Jianhua Yang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Zhenxin Qiu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Renlei Luo
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Yu Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
4
|
Zhou X, Wang M, Yang L, Wang W, Zhang Y, Liu L, Chai J, Liu H, Zhao G. Comparative Physiological and Transcriptomic Analyses of Oat ( Avena sativa) Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2238. [PMID: 39204673 PMCID: PMC11359270 DOI: 10.3390/plants13162238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Soil salinity is a major abiotic stress limiting crop production globally. Oat (Avena sativa) is an annual cereal with a strong salt tolerance, a high yield, and nutritional quality, although the mechanisms underlying its salt stress response remain largely unknown. We examined the physiological and transcriptomic responses of A. sativa seedlings to salt stress in tolerant cultivar Qingyongjiu 195 and sensitive cultivar 709. Under salt stress, Qingyongjiu 195 maintained a higher photosynthetic efficiency, antioxidant enzymes activity, and leaf K+ accumulation but a lower Na+ uptake than 709. RNA-seq revealed 6616 differentially expressed genes (DEGs), including 4265 up- and 2351 downregulated. These were enriched in pathways like plant-pathogen interaction, phenylpropanoid biosynthesis, and MAPK signaling. We specifically highlight DEGs involved in photosynthesis (chlG, CP47 psbB, COX2, LHCB) and antioxidants (trxA, GroES). Qingyongjiu 195 also appeared to enhance K+ uptake via KAT1 and AKT2 and sequester Na+ in vacuoles via NHX2. Additionally, HKT restricted Na+ while promoting K+ transport to shoots, maintaining K+/Na+. The expression levels of CAX, ACA, CML, CaM, and CDPK in Qingyongjiu 195 were higher than those in 709. Oats regulated Ca2+ concentration through CAX and ACA after salt stress, decoded Ca2+ signals through CML, and then transferred Ca2+ signals to downstream receptors through the Ca2+ sensors CaM and CDPK, thereby activating K+/Na+ transporters, such as SOS1 and NHX, etc. Our results shed light on plant salt stress response mechanisms and provide transcriptomic resources for molecular breeding in improving salt tolerance in oats.
Collapse
Affiliation(s)
- Xiangrui Zhou
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China;
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Miaomiao Wang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Li Yang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Wenping Wang
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (Under Preparation), Huhhot 010000, China;
| | - Linbo Liu
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Jikuan Chai
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Huan Liu
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| | - Guiqin Zhao
- Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (L.Y.); (W.W.); (L.L.); (J.C.); (H.L.)
| |
Collapse
|
5
|
Zhang MX, Zhao LY, He YY, Hu JP, Hu GW, Zhu Y, Khan A, Xiong YC, Zhang JL. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). BIORESOURCE TECHNOLOGY 2024; 391:129987. [PMID: 37951551 DOI: 10.1016/j.biortech.2023.129987] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Iron (Fe) is one of the essential nutrient elements for plant growth and development. However, the potential roles of iron nanomaterials in regulating growth and nitrogen fixation and modulating rhizomicrobiome in legume plants are poorly known. In this study, we reported that 10 mg L-1 is the optimal concentration for the application of iron nanoparticles (FeNPs) and seed soaking plus leaf spraying is the optimal application method of FeNPs in alfalfa (Medicago sativa L.); FeNPs had more positive effects on the growth and nitrogen fixation capability in alfalfa than FeCl2; FeNPs enhanced the intensity of corporations and competitions among rhizosphere fungal taxa of alfalfa. This work provides insights into the regulation mechanism of FeNPs on growth, nitrogen fixation, and the composition and function of rhizosphere microbial community in legume plants as well as the potential application value of FeNPs in agriculture system.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ling-Yu Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan-Yuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guo-Wen Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
6
|
Ahmed S, Patel R, Rana M, Kumar N, I I, Choudhary M, Chand S, Singh AK, Ghosh A, Singhal RK. Effect of salt, alkali and combined stresses on root system architecture and ion profiling in a diverse panel of oat ( Avena spp.). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37743054 DOI: 10.1071/fp23031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The co-occurrence of salinisation and alkalisation is quite frequent in problematic soils and poses an immediate threat to food, feed and nutritional security. In the present study, root system architectural traits (RSAs) and ion profiling were evaluated in 21 genotypes of Avena species to understand the effect of salinity-alkalinity stress. The oat genotypes were grown on germination paper and 5-day-old seedlings were transferred to a hydroponic system for up to 30days. These seedlings were subjected to seven treatments: T0 , treatment control (Hoagland solution); T1 , moderate salinity (50mM); T2 , high salinity (100mM); T3 , moderate alkalinity (15mM); T4 , high alkalinity (30mM); T5 , combined moderate salinity-alkalinity (50mM+15mM); and T6 , combined high salinity-alkalinity (100mM and 30mM) by using NaCl+Na2 SO4 (saline) and NaHCO3 +Na2 CO3 (alkaline) salts equivalently. The root traits, such as total root area (TRA), total root length (TRL), total root diameter (TRD), total root volume (TRV), root tips (RT), root segments (RS), root fork (RF) and root biomass (RB) were found to be statistically significant (P + and K+ content analysis in root and shoot tissues revealed the ion homeostasis capacity of different Avena accessions under stress treatments. Principal component analysis (PCA) covered almost 83.0% of genetic variation and revealed that the sharing of TRA, RT, RS and RF traits was significantly high. Biplot analysis showed a highly significant correlation matrix (P <0.01) between the pairs of RT and RS, TRL and RS, and RT and RF. Based on PCA ranking and relative value for stress tolerance, IG-20-1183, IG-20-894, IG-20-718 and IG-20-425 expressed tolerance to salinity (T2), IG-20-425 (alkalinity; T4) and IG-20-1183, IG-20-894 and IG-20-1004 were tolerant to salt-alkali treatment (T6). Multi-trait stability index (MTSI) analysis identified three stable oat genotypes (IG-20-714, IG-20-894 and IG-20-425) under multiple environments and these lines can be used in salinity-alkalinity affected areas after yield trials or as donor lines for combined stresses in future breeding programs.
Collapse
Affiliation(s)
- Shahid Ahmed
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Richa Patel
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Maneet Rana
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Neeraj Kumar
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Indu I
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Mukesh Choudhary
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Subhash Chand
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Amit Kumar Singh
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Avijit Ghosh
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Rajesh Kumar Singhal
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| |
Collapse
|
7
|
Song W, Gao X, Li H, Li S, Wang J, Wang X, Wang T, Ye Y, Hu P, Li X, Fu B. Transcriptome analysis and physiological changes in the leaves of two Bromus inermis L. genotypes in response to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1313113. [PMID: 38162311 PMCID: PMC10755925 DOI: 10.3389/fpls.2023.1313113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Soil salinity is a major factor threatening the production of crops around the world. Smooth bromegrass (Bromus inermis L.) is a high-quality grass in northern and northwestern China. Currently, selecting and utilizing salt-tolerant genotypes is an important way to mitigate the detrimental effects of salinity on crop productivity. In our research, salt-tolerant and salt-sensitive varieties were selected from 57 accessions based on a comprehensive evaluation of 22 relevant indexes, and their salt-tolerance physiological and molecular mechanisms were further analyzed. Results showed significant differences in salt tolerance between 57 genotypes, with Q25 and Q46 considered to be the most salt-tolerant and salt-sensitive accessions, respectively, compared to other varieties. Under saline conditions, the salt-tolerant genotype Q25 not only maintained significantly higher photosynthetic performance, leaf relative water content (RWC), and proline content but also exhibited obviously lower relative conductivity and malondialdehyde (MDA) content than the salt-sensitive Q46 (p < 0.05). The transcriptome sequencing indicated 15,128 differentially expressed genes (DEGs) in Q46, of which 7,885 were upregulated and 7,243 downregulated, and 12,658 DEGs in Q25, of which 6,059 were upregulated and 6,599 downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the salt response differences between Q25 and Q46 were attributed to the variable expression of genes associated with plant hormone signal transduction and MAPK signaling pathways. Furthermore, a large number of candidate genes, related to salt tolerance, were detected, which involved transcription factors (zinc finger proteins) and accumulation of compatible osmolytes (glutathione S-transferases and pyrroline-5-carboxylate reductases), etc. This study offers an important view of the physiological and molecular regulatory mechanisms of salt tolerance in two smooth bromegrass genotypes and lays the foundation for further identification of key genes linked to salt tolerance.
Collapse
Affiliation(s)
- Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Huiping Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Jing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tongrui Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yunong Ye
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Pengfei Hu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Fu X, Bai M, Xu Y, Wang T, Hui Z, Hu X. Cultivars identification of oat ( Avena sativa L.) seed via multispectral imaging analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1113535. [PMID: 36824197 PMCID: PMC9941542 DOI: 10.3389/fpls.2023.1113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 05/24/2023]
Abstract
Cultivar identification plays an important role in ensuring the quality of oat production and the interests of producers. However, the traditional methods for discrimination of oat cultivars are generally destructive, time-consuming and complex. In this study, the feasibility of a rapid and nondestructive determination of cultivars of oat seeds was examined by using multispectral imaging combined with multivariate analysis. The principal component analysis (PCA), linear discrimination analysis (LDA) and support vector machines (SVM) were applied to classify seeds of 16 oat cultivars according to their morphological features, spectral traits or a combination thereof. The results demonstrate that clear differences among cultivars of oat seeds could be easily visualized using the multispectral imaging technique and an excellent discrimination could be achieved by combining data of the morphological and spectral features. The average classification accuracy of the testing sets was 89.69% for LDA, and 92.71% for SVM model. Therefore, the potential of a new method for rapid and nondestructive identification of oat cultivars was provided by multispectral imaging combined with multivariate analysis.
Collapse
Affiliation(s)
- Xiuzhen Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mengjie Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yawen Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenning Hui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaowen Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Wang Y, Zhang N, Wu A, Lv Z, Li Y. Effect of benomyl-mediated mycorrhizal association on the salinity tolerance of male and monoecious mulberry clones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:67-76. [PMID: 36603450 DOI: 10.1016/j.plaphy.2022.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Mulberry is an economically important crop for sericulture in China. Mulberry plantations are shifting inland, where they face high salinity. Arbuscular mycorrhizal fungi (AMF) reportedly enhance mulberry's tolerance to salinity. Here, we assessed if additional adaptive advantages against salinity are provided by sex differences beyond those provided by mycorrhizal symbiosis. In a pot experiment, male and monoecious plants were exposed to three salinity regimes (0, 50, and 200 mM NaCl) and two mycorrhiza-suppressed conditions (with or without benomyl application) for more than 16 months. We noticed that salinity alone significantly decreased the mycorrhizal colonization rate, salinity tolerance, K+ concentrations, and the ionic ratios of all plants. Mycorrhizal association mildly ameliorated the salt-induced detrimental effects, especially for monoecious plants, and sex-specific responses were observed. Meanwhile, both sexes had adopted different strategies to enhance their salinity resistance. Briefly, mycorrhizal monoecious plants exhibited a higher net photosynthetic rate and lower translocation of Na+ from root to shoot compared with mycorrhizal males under saline conditions. Their salt tolerance was probably due to the Ca2+/Na+ in roots. In comparison, male plants exhibited lower Na+ acquisition, more Na+ translocated from root to shoot, higher root biomass allocation, and higher N concentrations under harsh saline conditions, and their salt tolerance was mainly related to the K+/Na+ in their shoots. In conclusion, our results highlight that AMF could be a promising candidate for improving plant performance under highest salinity, especially for monoecious plants. Cultivators must be mindful of applying fungicides, such as benomyl, in saline areas.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Aiping Wu
- Ecology Department, College of Resources and Environment, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, 410128, China
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Sun M, Sun S, Jia Z, Ma W, Mao C, Ou C, Wang J, Zhang H, Hong L, Li M, Jia S, Mao P. Genome-Wide Analysis and Expression Profiling of Glutathione Reductase Gene Family in Oat ( Avena sativa) Indicate Their Responses to Abiotic Stress during Seed Imbibition. Int J Mol Sci 2022; 23:ijms231911650. [PMID: 36232950 PMCID: PMC9569478 DOI: 10.3390/ijms231911650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abiotic stress disturbs plant cellular redox homeostasis, inhibiting seed germination and plant growth. This is a crucial limitation to crop yield. Glutathione reductase (GR) is an important component of the ascorbate-glutathione (AsA-GSH) cycle which is involved in multiple plant metabolic processes. In the present study, GRs in A. sativa (AsGRs) were selected to explore their molecular characterization, phylogenetic relationship, and RNA expression changes during seed imbibition under abiotic stress. Seven AsGR genes were identified and mapped on six chromosomes of A, C, and D subgenomes. Phylogenetic analysis and subcellular localization of AsGR proteins divided them into two sub-families, AsGR1 and AsGR2, which were predicted to be mainly located in cytoplasm, mitochondrion, and chloroplast. Cis-elements relevant to stress and hormone responses are distributed in promoter regions of AsGRs. Tissue-specific expression profiling showed that AsGR1 genes were highly expressed in roots, leaves, and seeds, while AsGR2 genes were highly expressed in leaves and seeds. Both AsGR1 and AsGR2 genes showed a decreasing-increasing expression trend during seed germination under non-stress conditions. In addition, their responses to drought, salt, cold, copper, H2O2, and ageing treatments were quite different during seed imbibition. Among the seven AsGR genes, AsGR1-A, AsGR1-C, AsGR2-A, and AsGR2-D responded more significantly, especially under drought, ageing, and H2O2 stress. This study has laid the ground for the functional characterization of GR and the improvement of oat stress tolerance and seed vigor.
Collapse
|
11
|
Liu X, Wang P, An Y, Wang CM, Hao Y, Zhou Y, Zhou Q, Wang P. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. FRONTIERS IN PLANT SCIENCE 2022; 13:1007494. [PMID: 36212320 PMCID: PMC9539332 DOI: 10.3389/fpls.2022.1007494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Drought is the most serious adversity faced by agriculture and animal husbandry industries. One strategy that plants use to adapt to water deficits is modifying the root growth and architecture. Root endodermis has cell walls reinforced with apoplastic barriers formed by the Casparian strip (CS) and suberin lamellae (SL) deposits, regulates radial nutrient transport and protects the vascular cylinder from abiotic threats. Elymus sibiricus is an economically important meso-xerophytic forage grass, characterized by high nutritional quality and strong environmental adaptability. The purpose of this study was to evaluate the drought tolerance of E. sibiricus genotypes and investigate the root structural adaptation mechanism of drought-tolerant genotypes' responding to drought. Specifically, a drought tolerant (DT) and drought sensitive (DS) genotype were screened out from 52 E. sibiricus genotypes. DT showed less apoplastic bypass flow of water and solutes than DS under control conditions, as determined with a hydraulic conductivity measurement system and an apoplastic fluorescent tracer, specifically PTS trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). In addition, DT accumulated less Na, Mg, Mn, and Zn and more Ni, Cu, and Al than DS, regardless of osmotic stress. Further study showed more suberin deposition in DT than in DS, which could be induced by osmotic stress in both. Accordingly, the CS and SL were deposited closer to the root tip in DT than in DS. However, osmotic stress induced their deposition closer to the root tips in DS, while likely increasing the thickness of the CS and SL in DT. The stronger and earlier formation of endodermal barriers may determine the radial transport pathways of water and solutes, and contribute to balance growth and drought response in E. sibiricus. These results could help us better understand how altered endodermal apoplastic barriers in roots regulate water and mineral nutrient transport in plants that have adapted to drought environments. Moreover, the current findings will aid in improving future breeding programs to develop drought-tolerant grass or crop cultivars.
Collapse
Affiliation(s)
- Xin Liu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Hao
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
12
|
Wang D, Gong Y, Li Y, Nie S. Genome-wide analysis of the homeodomain-leucine zipper family in Lotus japonicus and the overexpression of LjHDZ7 in Arabidopsis for salt tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:955199. [PMID: 36186025 PMCID: PMC9515785 DOI: 10.3389/fpls.2022.955199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) family participates in plant growth, development, and stress responses. Here, 40 HD-Zip transcription factors of Lotus japonicus were identified and gave an overview of the phylogeny and gene structures. The expression pattern of these candidate genes was determined in different organs and their response to abiotic stresses, including cold, heat, polyethylene glycol and salinity. The expression of the LjHDZ7 was strongly induced by abiotic stress, especially salt stress. Subsequently, LjHDZ7 gene was overexpressed in Arabidopsis. The transgenic plants grew obviously better than Col-0 plants under salt stress. Furthermore, LjHDZ7 transgenic lines accumulated higher proline contents and showed lower electrolyte leakage and MDA contents than Col-0 plants under salt stress. Antioxidant activities of the LjHDZ7 overexpression lines leaf were significantly higher than those of the Col-0 plants under salt stress. The concentration of Na+ ion in LjHDZ7 overexpression lines was significantly lower than that of Col-0 in leaf and root parts. The concentration of K+ ion in LjHDZ7 overexpression lines was significantly higher than that of Col-0 in the leaf parts. Therefore, these results showed that overexpression of LjHDZ7 increased resistance to salt stress in transgenic Arabidopsis plants, and certain genes of this family can be used as valuable tools for improving abiotic stresses.
Collapse
|