1
|
Lu CS, Lai JJ, Fan XT, Liang KM, Yin YH, Ye QH, Shen H, Fu YQ. Unveiling nitrogen preferences in indica rice: a classification study of cultivars in South China. FRONTIERS IN PLANT SCIENCE 2025; 16:1568383. [PMID: 40357152 PMCID: PMC12066440 DOI: 10.3389/fpls.2025.1568383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Introduction Do indica rice cultivars prefer ammonium or nitrate? Understanding this preference is key to optimizing nitrogen use efficiency in rice production. Ammonium and nitrate are crucial for plant nitrogen nutrition, as rice cultivars exhibit varying preferences. However, few studies have classified ammonium and nitrate preferences within indica cultivars. Methods For the first time, this study classifies indica rice cultivars based on their ammonium and nitrate preferences, revealing significant differences in biomass production under various nitrogen treatments. This study investigated the effects of ammonium-only nutrition (100:0), ammonium-nitrate mixed nutrition (75:25), and nitrate-only nutrition (0:100) on the maximum root length, shoot length, SPAD value, and biomass of 24 widely cultivated indica cultivars in South China. Result Compared to ammonium-only nutrition, a mixed ammonium-nitrate treatment significantly boosted root and shoot growth, while nitrate-only nutrition led to a decline in chlorophyll content. Compared with the 100:0 treatment, the maximum root length, shoot length, root dry weight, shoot dry weight, and total dry weight in the 75:25 treatment significantly increased by 29.85%, 4.11%, 7.65%, 1.71% and 3.03% (p < 0.01), respectively; and the SPAD value in the 0:100 treatment significantly decreased by 4.22% (p < 0.01). Discussion These results demonstrate distinct responses of rice cultivars to different nitrogen treatments. Through correlation, principal component, and cluster analyses, the rice cultivars were categorized into three types: ammonium-preferring type (APT), ammonium- and nitrate-preferring type (ANPT), and nitrate-preferring type (NPT). The APT, ANPT, and NPT showed the highest biomass in the 100:0, 75:25, and 0:100 treatments, respectively, with the biomass in the ANPT significantly exceeding that of the APT (p < 0.01). These insights provide a foundation for breeding high-yield indica rice, optimizing nitrogen fertilizer strategies, and improving nitrogen use efficiency in sustainable agriculture.
Collapse
Affiliation(s)
- Chu-sheng Lu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Jia-jun Lai
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Xian-ting Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Kai-ming Liang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
| | - Yuan-hong Yin
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
| | - Qun-huan Ye
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
| | - Hong Shen
- South China Agricultural University, Guangzhou, China
| | - You-qiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of Science and Technology in Rice, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Guangzhou, China
| |
Collapse
|
2
|
Fan X, Lu C, Khan Z, Li Z, Duan S, Shen H, Fu Y. Mixed Ammonium-Nitrate Nutrition Regulates Enzymes, Gene Expression, and Metabolic Pathways to Improve Nitrogen Uptake, Partitioning, and Utilization Efficiency in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:611. [PMID: 40006870 PMCID: PMC11859190 DOI: 10.3390/plants14040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Ammonium and nitrate nitrogen are the two main forms of inorganic nitrogen (N) available to crops. However, it is not clear how mixtures of ammonium and nitrate N affect N uptake and partitioning in major rice cultivars in southern China. This study investigated the effects of different ammonium nitrogen and nitrate nitrogen mixture treatments (100:0, 75:25, 50:50, 25:75, and 0:100) on the growth, photosynthetic characteristics, nitrogen uptake, gene expression, and yield of different rice cultivars (Mei Xiang Zhan NO. 2: MXZ2; Nan Jing Xiang Zhan: NJXZ). Rice root biomass, tiller number, and yield were increased by 69.5%, 42.5%, and 46.8%, respectively, in the 75:25 ammonium-nitrate mixed treatment compared to the 100:0 ammonium-nitrate mixed treatment. The nitrogen content in rice roots, stems, leaves, and grains increased by 69.5%, 64.0%, 65.5%, and 17.5%, respectively. In addition, compared with MXZ2, NJXZ had a greater proportion of N allocated to leaves and grains. Analysis of root enzyme activities revealed that the 75:25 ammonium-nitrate mixed nutrient treatment increased rice root glutamine synthetase activity by an average of 35.0% and glutamate synthetase activity by an average of 52.0%. Transcriptome analysis revealed that the 75:25 mixed ammonium-nitrate nutrient treatment upregulated the expression of genes related to the nitrogen metabolism transporter pathway. Weighted correlation network analysis revealed that some differentially expressed genes (HISX and RPAB5) regulated the activities of nitrogen-metabolizing enzymes in rice and some (SAT2, CYSKP, SYIM, CHI1, and XIP1) modulated amino acid synthesis; greater expression of these genes was detected in the 75:25 ammonium-nitrate mixed nutrient treatment. The expression characteristics of the above genes were further confirmed by RT‒qPCR. Interestingly, the expression levels of the above genes were significantly correlated with the glutamate synthase activity, photosynthetic rate, and root volume. It is noteworthy that increasing the expression of the aforementioned genes coupled with nitrogen uptake was observed in the three main rice cultivars. These results suggest that the 75:25 ammonium-nitrate mixture may have increased nitrogen-metabolizing enzyme activities and promoted nitrogen uptake through the upregulated expression of nitrogen metabolism-related genes, thereby increasing tiller number and improving rice yield.
Collapse
Affiliation(s)
- Xianting Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chusheng Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Zhiming Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of Rice Science and Technology, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang N, Zhan J, Feng K, Qi J, Nan H. Higher yield sustainability and soil quality by reducing chemical fertilizer with organic fertilizer application under a single-cotton cropping system. FRONTIERS IN PLANT SCIENCE 2024; 15:1494667. [PMID: 39610893 PMCID: PMC11602747 DOI: 10.3389/fpls.2024.1494667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/17/2024] [Indexed: 11/30/2024]
Abstract
The integrated application of chemical and organic fertilizers has been demonstrated to enhance soil fertility and the sustainable production of cotton yields. However, the impact of different fertilizer formulations on the sustainability of cotton production and soil quality over time have not been widely discussed. Here, we aimed to systematically evaluate the impact of different fertilization regimes [no fertilizer(CK), single application of chemical fertilizer(CF), 75% chemical fertilizer + 25% organic fertilizer (M1), 50% chemical fertilizer + 50% organic fertilizer (M2), 25% chemical fertilizer + 75% organic fertilizer (M3)] on soil quality, yield and yield sustainability in cotton fields in 2023 through a 10-year (2014-2023) field trial. Results showed that: (1) Compared to the natural state, different fertilization treatments significantly increased the average annual cotton yield and sustainable yield index (SYI) (P< 0.001), with the M1 treatment having the highest yield and the M2 treatment having the highest sustainable yield index (SYI). (2) Soil organic matter, soil total nitrogen, soil ammonium nitrogen, soil alkaline dissolved nitrogen, soil available phosphorus, and soil available potassium content showed the highest increase under the M1 treatment as compared to the natural state (P< 0.001). (3) Soil alkaline phosphatase enzyme activity was significantly increased by different fertilization treatments compared to the natural state (P< 0.05), M1, M2 and M3 treatments significantly increased soil urease enzyme activity and soil catalase enzyme activity (P< 0.001). (4) The random forest analysis showed that soil organic matter, soil nitrogen fractions (soil total nitrogen, soil ammonium nitrogen, soil alkali-hydrolyzable nitrogen, soil nitrate nitrogen), and available potassium content played a pivotal role in determining the yield and yield sustainability of cotton. (5) The highest soil quality index (SQI) value was observed in the M1. A markedly positive correlation was observed between the SQI and SYI (y = 0.03892x + 0.59609, R2 = 0.90379, P < 0.001), highlighting that the SQI constituted a significant factor in the sustainable production of cotton. These findings suggest that long-term application of chemical and organic fertilizers is an effective strategy for improving soil quality and cotton yield in continuous cropping while also contributing toward a more sustainable agricultural system.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jin Zhan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Qi
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Hongyu Nan
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Anwar A, Zheng J, Chen C, Chen M, Xue Y, Wang J, Su W, Chen R, Song S. Effects of NH 4 +-N: NO 3 --N ratio on growth, nutrient uptake and production of blueberry ( Vaccinium spp.) under soilless culture. FRONTIERS IN PLANT SCIENCE 2024; 15:1438811. [PMID: 39502920 PMCID: PMC11536338 DOI: 10.3389/fpls.2024.1438811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Blueberry (Vaccinium corymbosum) is a small pulp shrub, which prefers to grow on a soilless culture. For soilless culture, nutritional management remains typically vital for blueberry production. However, the effect of different nutritional treatments on blueberry growth and production is largely unknown. This study was designed to investigate to formulate a specific nutritional treatment for blueberry. The results showed that NH4 +-N: NO3 --N ratios significantly affected the growth, nutrient uptake, physiological characteristics, and flowering, as well as the fruiting characteristics of blueberry plants. The number of shoots and top projection area was increased considerably by 25:75 treatment. In contrast, 50:50 treatment promotes plant height, shoot length, and stem thickness, increasing chlorophyll contents, photosynthetic capacity, and P, Ca, and Mg in leaves. In contrast, 50:50 treatment promotes the flowering fruiting rate and prolongs the blueberry flowering period. The maximum soluble sugar contents were noted in 25:75, while maximum starch contents were reported in the 50:50 treatment. The treatments 100:0 and 75:25 promote early flowering and accelerate fruit set. Notably, NH4 +-N: NO3 --N ratios; 50:50 treatment significantly encourages plant growth, nutrient uptake, chlorophyll contents, photosynthetic capacity, and fruit setting rate in blueberry plants. These findings suggested that NH4 +-N: NO3 --N ratios 50:50 is the most appropriate treatment that significantly promotes vegetative growth and enhances production in blueberry plants. This study provides valuable information for improved blueberry production under a controlled environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Pélissier PM, Parizot B, Jia L, De Knijf A, Goossens V, Gantet P, Champion A, Audenaert D, Xuan W, Beeckman T, Motte H. Nitrate and ammonium, the yin and yang of nitrogen uptake: a time-course transcriptomic study in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1343073. [PMID: 39246813 PMCID: PMC11377263 DOI: 10.3389/fpls.2024.1343073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Nitrogen is an essential nutrient for plants and a major determinant of plant growth and crop yield. Plants acquire nitrogen mainly in the form of nitrate and ammonium. Both nitrogen sources affect plant responses and signaling pathways in a different way, but these signaling pathways interact, complicating the study of nitrogen responses. Extensive transcriptome analyses and the construction of gene regulatory networks, mainly in response to nitrate, have significantly advanced our understanding of nitrogen signaling and responses in model plants and crops. In this study, we aimed to generate a more comprehensive gene regulatory network for the major crop, rice, by incorporating the interactions between ammonium and nitrate. To achieve this, we assessed transcriptome changes in rice roots and shoots over an extensive time course under single or combined applications of the two nitrogen sources. This dataset enabled us to construct a holistic co-expression network and identify potential key regulators of nitrogen responses. Next to known transcription factors, we identified multiple new candidates, including the transcription factors OsRLI and OsEIL1, which we demonstrated to induce the primary nitrate-responsive genes OsNRT1.1b and OsNIR1. Our network thus serves as a valuable resource to obtain novel insights in nitrogen signaling.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Letian Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vera Goossens
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Antony Champion
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Dominique Audenaert
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
6
|
Wang Z, Zhang W, Ding C, Xia Y, Yuan Z, Guo J, Yu J, Zhang B, Su X. RNA-seq reveals the gene expression in patterns in Populus × euramericana 'Neva' plantation under different precision water and fertilizer-intensive management. BMC PLANT BIOLOGY 2024; 24:759. [PMID: 39118015 PMCID: PMC11312740 DOI: 10.1186/s12870-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, 100023, P.R. China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiangtao Guo
- Heibei Agricultural University, Baoding, 071001, P.R. China
| | - Jinjin Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Sun J, Jin L, Li R, Meng X, Jin N, Wang S, Xu Z, Liu Z, Lyu J, Yu J. Effects of Different Forms and Proportions of Nitrogen on the Growth, Photosynthetic Characteristics, and Carbon and Nitrogen Metabolism in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:4175. [PMID: 38140502 PMCID: PMC10748299 DOI: 10.3390/plants12244175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. This study investigated optimal nitrogen forms and ratios for tomato growth using the 'Jingfan 502' tomato variety. Thirteen treatments were applied with varying proportions of nitrate nitrogen (NN), ammonium nitrogen (AN), and urea nitrogen (UN). Results revealed that the combination of AN and UN inhibited tomato growth and photosynthetic capacity. Conversely, the joint application of NN and UN or NN and AN led to a significant enhancement in tomato plant growth. Notably, the T12 (75%UN:25%NN) and T4 (75%NN:25%AN) treatments significantly increased the gas exchange and chlorophyll fluorescence parameters, thereby promoting the accumulation of photosynthetic products. The contents of fructose, glucose, and sucrose were significantly increased by 121.07%, 206.26%, and 94.64% and by 104.39%, 156.42%, and 61.40%, respectively, compared with those in the control. Additionally, AN favored starch accumulation, while NN and UN favored fructose, sucrose, and glucose accumulation. Gene expression related to nitrogen and sugar metabolism increased significantly in T12 and T4, with T12 showing greater upregulation. Key enzyme activity in metabolism also increased notably. In summary, T12 enhanced tomato growth by upregulating gene expression, increasing enzyme activity, and boosting photosynthesis and sugar accumulation. Growers should consider using NN and UN to reduce AN application in tomato fertilization.
Collapse
Affiliation(s)
- Jianhong Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Zitong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Jinhua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| |
Collapse
|