1
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Sarma R, Kakati BK. Hydrothermal synthesis of tungsten oxide photo/electrocatalysts: precursor-driven morphological tailoring and electrochemical performance for hydrogen evolution and oxygen reduction reaction application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35607-6. [PMID: 39592533 DOI: 10.1007/s11356-024-35607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
A hydrothermal approach was adopted to synthesize tungsten oxide (WO3) nanocatalysts with tailored morphology, using oxalic acid (H2C2O4) and hydrochloric acid (HCl) as precursors. This precursor-driven method yielded two distinct WO3 catalysts with unique structural and functional properties, viz. rod-shaped WO3-ox and nanoflower-shaped WO3-h. Characterization by FESEM and XRD revealed variations in morphology and crystallite size, contributing to their specialized catalytic applications. UV-Vis spectroscopy confirmed strong UV absorption by WO3-ox at 283.57 nm with an optical band gap of 2.86 eV, making it ideal for photocatalytic activities. Electrochemical analysis demonstrated that WO3-ox effectively drives the hydrogen evolution reaction (HER), while WO3-h is more suitable for the oxygen reduction reaction (ORR), an essential process in microbial fuel cells (MFCs). In practical applications, WO3-ox achieved an 83.9% degradation efficiency of methylene blue (MB) within 3 h, validating its high photocatalytic efficacy for wastewater treatment. Meanwhile, WO3-h, utilized as a cathode catalyst in MFCs, significantly enhanced system performance, elevating chemical oxygen demand (COD) removal efficiency to 78.7% and improving coulombic efficiency by 3%. These findings underscore the potential of precursor-driven hydrothermal synthesis for optimizing WO3 catalysts tailored for energy and environmental applications, specifically in hydrogen production and sustainable wastewater treatment systems.
Collapse
Affiliation(s)
- Rahul Sarma
- Department of Energy, Tezpur University, Tezpur, 784 028, India
| | | |
Collapse
|
3
|
Singh A, Pakhira S. Synergistic Niobium Doped Two-Dimensional Zirconium Diselenide: An Efficient Electrocatalyst for O 2 Reduction Reaction. ACS PHYSICAL CHEMISTRY AU 2024; 4:40-56. [PMID: 38283785 PMCID: PMC10811770 DOI: 10.1021/acsphyschemau.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
The development of high-activity and low-price cathodic catalysts to facilitate the electrochemically sluggish O2 reduction reaction (ORR) is very important to achieve the commercial application of fuel cells. Here, we have investigated the electrocatalytic activity of the two-dimensional single-layer Nb-doped zirconium diselenide (2D Nb-ZrSe2) toward ORR by employing the dispersion corrected density functional theory (DFT-D) method. Through our study, we computed structural properties, electronic properties, and energetics of the 2D Nb-ZrSe2 and ORR intermediates to analyze the electrocatalytic performance of 2D Nb-ZrSe2. The electronic property calculations depict that the 2D monolayer ZrSe2 has a large band gap of 1.48 eV, which is not favorable for the ORR mechanism. After the doping of Nb, the electronic band gap vanishes, and 2D Nb-ZrSe2 acts as a conductor. We studied both the dissociative and the associative pathways through which the ORR can proceed to reduce the oxygen molecule (O2). Our results show that the more favorable path for O2 reduction on the surface of the 2D Nb-ZrSe2 is the 4e- associative path. The detailed ORR mechanisms (both associated and dissociative) have been explored by computing the changes in Gibbs free energy (ΔG). All of the ORR reaction intermediate steps are thermodynamically stable and energetically favorable. The free energy profile for the associative path shows the downhill behavior of the free energy vs the reaction steps, suggesting that all ORR intermediate structures are catalytically active for the 4e- associative path and a high 4e- reduction pathway selectivity. Therefore, 2D Nb-ZrSe2 is a promising catalyst for the ORR, which can be used as an alternative ORR catalyst compared to expensive platinum (Pt).
Collapse
Affiliation(s)
- Ashok Singh
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Department of Physics, Indian
Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore-453552, Madhya Pradesh India
| | - Srimanta Pakhira
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Department of Physics, Indian
Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore-453552, Madhya Pradesh India
- Theoretical
Condensed Matter Physics and Advanced Computational Materials Science
Laboratory, Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road, Indore-453552, Madhya Pradesh India
| |
Collapse
|
4
|
Malik W, Victoria Tafoya JP, Doszczeczko S, Jorge Sobrido AB, Skoulou VK, Boa AN, Zhang Q, Ramirez Reina T, Volpe R. Synthesis of a Graphene-Encapsulated Fe 3C/Fe Catalyst Supported on Sporopollenin Exine Capsules and Its Use for the Reverse Water-Gas Shift Reaction. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15795-15807. [PMID: 37969887 PMCID: PMC10630965 DOI: 10.1021/acssuschemeng.3c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 11/17/2023]
Abstract
Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollenin exine capsules (SpECs), a carbon-rich byproduct of pollen grains, composed primarily of polymerized and cross-linked lipids, to synthesize carbon-encapsulated iron nanoparticles via evaporative precipitation and pyrolytic treatments. The composition and morphology of the macroparticles were influenced by the precursor iron acetate concentration. Most significantly, the formation of crystalline phases (Fe3C, α-Fe, and graphite) detected via X-ray diffraction spectroscopy showed a critical dependence on iron loading. Significantly, the characteristic morphology and structure of the SpECs were largely preserved after high-temperature pyrolysis. Analysis of Brunauer-Emmett-Teller surface area, the D and G bands from Raman spectroscopy, and the relative ratio of the C=C to C-C bonding from high-resolution X-ray photoelectron spectroscopy suggests that porosity, surface area, and degree of graphitization were easily tuned by varying the Fe loading. A mechanism for the formation of crystalline phases and meso-porosity during the pyrolysis process is also proposed. SpEC-Fe10% proved to be highly active and selective for the reverse water-gas shift reaction at high temperatures (>600 °C).
Collapse
Affiliation(s)
- Waqas Malik
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Campus, E1 4NS London, U.K.
| | - Jorge Pavel Victoria Tafoya
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Campus, E1 4NS London, U.K.
| | - Szymon Doszczeczko
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Campus, E1 4NS London, U.K.
| | - Ana Belen Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Campus, E1 4NS London, U.K.
| | | | - Andrew N. Boa
- Department
of Chemistry, University of Hull, Hull HU6 7RX, U.K.
| | - Qi Zhang
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford, Surrey GU2 7XH, U.K.
| | - Tomas Ramirez Reina
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford, Surrey GU2 7XH, U.K.
| | - Roberto Volpe
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Campus, E1 4NS London, U.K.
| |
Collapse
|
5
|
Švarc T, Zadravec M, Jelen Ž, Majerič P, Kamenik B, Rudolf R. Study of Ni/Y 2O 3/Polylactic Acid Composite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5162. [PMID: 37512436 PMCID: PMC10383844 DOI: 10.3390/ma16145162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
This study demonstrates the successful synthesis of Ni/Y2O3 nanocomposite particles through the application of ultrasound-assisted precipitation using the ultrasonic spray pyrolysis technique. They were collected in a water suspension with polyvinylpyrrolidone (PVP) as the stabiliser. The presence of the Y2O3 core and Ni shell was confirmed with transmission electron microscopy (TEM) and with electron diffraction. The TEM observations revealed the formation of round particles with an average diameter of 466 nm, while the lattice parameter on the Ni particle's surface was measured to be 0.343 nm. The Ni/Y2O3 nanocomposite particle suspensions were lyophilized, to obtain a dried material that was suitable for embedding into a polylactic acid (PLA) matrix. The resulting PLA/Ni/Y2O3 composite material was extruded, and the injection was moulded successfully. Flexural testing of PLA/Ni/Y2O3 showed a slight average decrease (8.55%) in flexural strength and a small decrease from 3.7 to 3.3% strain at the break, when compared to the base PLA. These findings demonstrate the potential for utilising Ni/Y2O3 nanocomposite particles in injection moulding applications and warrant further exploration of their properties and new applications in various fields.
Collapse
Affiliation(s)
- Tilen Švarc
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Matej Zadravec
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Žiga Jelen
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Peter Majerič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Blaž Kamenik
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Xu Y, Zhang X, Liu Y, Wei Y, Lan F, Wang R, Yang Y, Chen J. Trace N-doped manganese dioxide cooperated with Ping-pong chrysanthemum-like NiAl-layered double hydroxide on cathode for improving bioelectrochemical performance of microbial fuel cell. BIORESOURCE TECHNOLOGY 2023; 381:129139. [PMID: 37169200 DOI: 10.1016/j.biortech.2023.129139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Trace N-doped manganese dioxide (MnO2) nanoparticles were attached to NiAl-layered double hydroxide (LDH) nano sheets by a simple two-step hydrothermal reaction, and N-MnO2@NiAl-LDH was successfully prepared as cathode catalyst of microbial fuel cell (MFC). N-MnO2@NiAl-LDH was Ping-pong chrysanthemum-like structure formed by overlapping lamellar structures, with spherical MnO2 particles attached on. The unique Ping-pong chrysanthemum-like structure and pore size distribution provided large number of electrochemical active sites. The recombination of trace N and MnO2 reduced the charge transfer resistance, accelerated the electron transfer rate, and N-MnO2@NiAl-LDH showed high oxygen reduction reaction (ORR) capability. The maximum output power density of N-MnO2@NiAl-LDH-MFC was 698 mW/m2, about 4.59 times of NiAl-LDH (152.1 mW/m2). The maximum voltage was about 320 mV, and the stability was good for about 7 d. This would provide technical reference for the utilization of cathode catalyst for fuel cells.
Collapse
Affiliation(s)
- Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Xinyi Zhang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Feng Lan
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
7
|
Chen X, Luo L, Zhang Y, Zhao X. Theoretical Screening of Highly Efficient Single-Atom Catalysts Based on Covalent Triazine Frameworks for Oxygen Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6905-6913. [PMID: 37134210 DOI: 10.1021/acs.langmuir.3c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Covalent triazine frameworks (CTFs) obtained from the trimerization of aromatic nitriles are expected to be the preferred carrier for single-atom catalysts (SACs). Using density functional theory methods, the oxygen reduction reaction (ORR) performance of a series of 3d, 4d, and 5d transition metals supported on the 6N or 9N pore of the CTF system [M-CTF(6N) or M-CTF(9N)] is explored. At first, 32 kinds of M-CTF(6N) and M-CTF(9N) are screened out with high thermodynamic and electrochemical stability. The binding energy of ORR intermediates and the change of Gibbs free energy in each step of the ORR are calculated. The overpotential of Pd-CTF(6N) is the lowest, which is 0.38 V. Considering that the ORR activity of M-CTFs is mainly limited by the strong binding of *OH, M-CTF(6N) and M-CTF(9N) are further modified by the OH ligand, namely, M-OH-CTF(6N) and M-OH-CTF(9N). After being modified by the OH ligand, due to the weakened binding strength of *OH, all these screened M-CTFs exhibit better ORR activity. Among them, the η values of Cu-OH-CTF(6N), Pd-OH-CTF(6N), Rh-OH-CTF(6N), Ir-OH-CTF(6N), Rh-OH-CTF(9N), and Ir-OH-CTF(9N) are 0.39, 0.38, 0.24, 0.30, 0.31, and 0.33 V, respectively, which possess better ORR activity than the Pt(111) surface (η = 0.45 V). This work highlights the great potential of CTFs as an efficient carrier for SACs.
Collapse
Affiliation(s)
- Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
- Key Laboratory of Fine Chemical Application Technology of Luzhou, Luzhou 646099, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Liang Luo
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yizhen Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
8
|
Tan H, Liu X, Wang M, Huang H, Huang P. Co 3O 4 Supported on Graphene-like Carbon by One-Step Calcination of Cobalt Phthalocyanine for Efficient Oxygen Reduction Reaction under Alkaline Medium. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1241. [PMID: 37049334 PMCID: PMC10097344 DOI: 10.3390/nano13071241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Exploiting cost-effective and durable non-platinum electrocatalysts for oxygen reduction reaction (ORR) is of great significance for the development of abundant renewable energy conversion and storage technologies. Herein, a series of Co3O4 supported on graphene-like carbon (Co3O4/C) samples were firstly effectively synthesized by one-step calcination of cobalt phthalocyanine and their electrocatalytic performances were measured for ORR under an alkaline medium. By systematically adjusting the calcination temperature of cobalt phthalocyanine, we found that the material pyrolyzed at 750 °C (Co3O4/C-750) shows the best ORR electrocatalytic performance (half-wave potentials of 0.77 V (vs. RHE) in 0.1 M KOH) among all the control samples. Moreover, it displays better stability and superior methanol tolerance than commercial 20% Pt/C. The further electrochemical test results reveal that the process is close in characteristics to the four-electron ORR process on Co3O4/C-750. In addition, Co3O4/C-750 applied in the zinc-air battery presents 1.34 V of open circuit potential. Based on all the characterizations, the enhanced electrocatalytic performances of Co3O4/C-750 composite should be ascribed to the synergistic effect between Co3O4 and the graphene-like carbon layer structure produced by pyrolysis of cobalt phthalocyanine, as well as its high specific surface area.
Collapse
Affiliation(s)
- Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China
| | - Xunyu Liu
- Jinduicheng Molybdenum Group Company Limited, Weinan 714102, China
| | - Miaohui Wang
- School of Physics and Information Technology, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, No. 620, West Chang’an Avenue, Chang’an District, Xi’an 710119, China
| |
Collapse
|
9
|
Moradbeigi N, Bahari A, Ghasemi S. Effect of molybdenum doping on the catalytic activity of VS 2/CNT for the oxygen reduction reaction in alkaline media. NEW J CHEM 2023. [DOI: 10.1039/d2nj04721g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study shows that chemical doping is a promising technique to improve the electrocatalytic activity of TMDs. The Mo-VS2-15/CNT/GCE catalyst with significant ORR activity could be an excellent alternative for platinum.
Collapse
Affiliation(s)
- Nasrin Moradbeigi
- Department of Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Ali Bahari
- Department of Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
10
|
Ahmed MT, Abdullah H, Kuo DH. Highly efficient photocatalytic H 2O 2 generation over dysprosium oxide-integrated g-C 3N 4 nanosheets with nitrogen deficiency. CHEMOSPHERE 2022; 307:135910. [PMID: 35940410 DOI: 10.1016/j.chemosphere.2022.135910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 07/30/2022] [Indexed: 05/25/2023]
Abstract
The increasing global crisis considers energy as the fundamental cause to conduct extensive research work to find clean alternative methods with high capabilities such as H2O2 synthesis. Photocatalytic H2O2 production can tackle this growing issue by maintaining environmental remediation. In this work, dysprosium oxide (Dy-oxide)-integrated g-C3N4 has been synthesized and characterized with XRD, SEM, TEM, XPS, EPR, DRS, PL, and electrochemical analyses. Simulated solar light irradiation implemented photocatalytic H2O2 production using the as-prepared catalysts. The facile preparation technique in the Ar atmosphere raises more N deficiency in the g-C3N4 matrix. N-deficient g-C3N4 nanosheets with an exceptionally high photocatalytic performance can be further enhanced by integrating well-dispersed Dysprosium oxide (Dy2O3) particles onto g-C3N4. This study reports bandgap narrowing and various surface defects on g-C3N4 with trace amounts of Dy2O3. Undoped g-C3N4 (Dy0) yielded 20.27 mM⋅g-1⋅h-1, while the optimized photocatalyst Dy15 showed high performance of H2O2 production up to 48.36 mM⋅g-1⋅h-1. It is approximately 2.4 times higher than the pristine g-C3N4. Dy15 proves the positive impact of Dy-oxide on enhancing the N-deficient g-C3N4 performance towards photocatalytic H2O2 production. This work highlights the oxygen reduction reaction (ORR) through a mixed pathway of well-known two-step one-electron and one-step two-electron processes in H2O2 generation.
Collapse
Affiliation(s)
- Mohamed Tarek Ahmed
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan; Department of Industrial Engineering, Universitas Prima Indonesia, Medan, Indonesia.
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan; Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan.
| |
Collapse
|
11
|
Mahmoud M, Hassan AM, El-Aziz A. Said A, Taha T. Structural, Magnetic, and Catalytic Studies of Microwave-Combustion/Ball-Mill Synthesized Zinc Ferrite Nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Zarattini M, Dun C, Isherwood LH, Felten A, Filippi J, Gordon MP, Zhang L, Kassem O, Song X, Zhang W, Ionescu R, Wittkopf JA, Baidak A, Holder H, Santoro C, Lavacchi A, Urban JJ, Casiraghi C. Synthesis of 2D anatase TiO 2 with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS 2 nanosheets. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:13884-13894. [PMID: 35872702 PMCID: PMC9255669 DOI: 10.1039/d1ta06695a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) anatase titanium dioxide (TiO2) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO2 is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO2 with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS2 for the production of single crystalline 2D anatase TiO2, exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO2 nanoparticles. Because of the strong potential of TiO2 in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO2 with well controlled and highly reactive exposed facets.
Collapse
Affiliation(s)
- Marco Zarattini
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Liam H Isherwood
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
- Dalton Cumbrian Facility, University of Manchester, Westlakes Science and Technology Park Moor Row Cumbria UK CA24 3HA, UK
| | - Alexandre Felten
- Physics Department, Université de Namur Rue de Bruxelles Namur Belgium
| | - Jonathan Filippi
- ICCOM-CNR Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| | - Madeleine P Gordon
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Applied Science and Technology Graduate Group, University of California Berkeley CA 94720 USA
| | - Linfei Zhang
- School of Automotive Engineering, Guangdong Polytechnic of Science and Technology Zhuhai P. R. China
| | - Omar Kassem
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| | - Xiuju Song
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 P. R. China
| | - Robert Ionescu
- HP Laboratories 1501 Page Mill Road Palo Alto California 94304 USA
| | | | - Aliaksandr Baidak
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
- Dalton Cumbrian Facility, University of Manchester, Westlakes Science and Technology Park Moor Row Cumbria UK CA24 3HA, UK
| | - Helen Holder
- HP Laboratories 1501 Page Mill Road Palo Alto California 94304 USA
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca Via Cozzi 5 20125 Milano Italy
| | | | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester Oxford Road Manchester UK M13 9PL
| |
Collapse
|
13
|
Shah SSA, Najam T, Bashir MS, Javed MS, Rahman AU, Luque R, Bao SJ. Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106279. [PMID: 35338585 DOI: 10.1002/smll.202106279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Recent progress in synthetic strategies, analysis techniques, and computational modeling assist researchers to develop more active catalysts including metallic clusters to single-atom active sites (SACs). Metal coordinated N-doped carbons (M-N-C) are the most auspicious, with a large number of atomic sites, markedly performing for a series of electrochemical reactions. This perspective sums up the latest innovative and computational comprehension, while giving credit to earlier/pioneering work in carbonaceous assembly materials towards robust electrocatalytic activity for proton exchange membrane fuel cells via inclusive performance assessment of the oxygen reduction reaction (ORR). M-Nx -Cy are exclusively defined active sites for ORR, so there is a unique possibility to intellectually design the relatively new catalysts with much improved activity, selectivity, and durability. Moreover, some SACs structures provide better performance in fuel cells testing with long-term durability. The efforts to understand the connection in SACs based M-Nx -Cy moieties and how these relate to catalytic ORR performance are also conveyed. Owing to comprehensive practical application in the field, this study has covered very encouraging aspects to the current durability status of M-N-C based catalysts for fuel cells followed by degradation mechanisms such as macro-, microdegradation, catalytic poisoning, and future challenges.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Aziz-Ur Rahman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, Cordoba, E14014, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str, Moscow, 117198, Russian Federation
| | - Shu-Juan Bao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
14
|
Farooqi ZH, Begum R, Naseem K, Wu W, Irfan A. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2020.1807797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Khalida Naseem
- Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
15
|
Pt-Based Multimetal Electrocatalysts and Potential Applications: Recent Advancements in the Synthesis of Nanoparticles by Modified Polyol Methods. CRYSTALS 2022. [DOI: 10.3390/cryst12030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In our review, we have presented a summary of the research accomplishments of nanostructured multimetal-based electrocatalysts synthesized by modified polyol methods, especially the special case of Pt-based nanoparticles associated with increasing potential applications for batteries, capacitors, and fuel cells. To address the problems raised in serious environmental pollution, disease, health, and energy shortages, we discuss and present an improved polyol process used to synthesize nanoparticles from Pt metal to Pt-based bimetal, and Pt-based multimetal catalysts in the various forms of alloy and shell core nanostructures by practical experience, experimental skills, and the evidences from the designed polyol processes. In their prospects, there are the micro/nanostructured variants of hybrid Pt/nanomaterials, typically such as Pt/ABO3-type perovskite, Pt/AB2O4-type ferrite, Pt/CoFe2O4, Pt/oxide, or Pt/ceramic by modified polyol processes for the development of electrocatalysis and energy technology. In the future, we suggest that both the polyol and the sol-gel processes of diversity and originality, and with the use of various kinds of water, alcohols, polyols, other solvents, reducing agents, long-term capping and stabilizing agents, and structure- and property-controlling agents, are very effectively used in the controlled synthesis of micro/nanoparticles and micro/nanomaterials. It is understood that at the levels of controlling and modifying molecules, ions, atoms, and nano/microscales, the polyol or sol-gel processes, and their technologies are effectively combined in bottom-up and top-down approaches, as are the simplest synthetic methods of physics, chemistry, and biology from the most common aqueous solutions as well as possible experimental conditions.
Collapse
|
16
|
Chen G, Zhong H, Feng X. Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chem Sci 2021; 12:15802-15820. [PMID: 35024105 PMCID: PMC8672718 DOI: 10.1039/d1sc05867c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022] Open
Abstract
The electrocatalytic oxygen reduction reaction (ORR) is the vital process at the cathode of next-generation electrochemical storage and conversion technologies, such as metal-air batteries and fuel cells. Single-metal-atom and nitrogen co-doped carbonaceous electrocatalysts (M-N-C) have emerged as attractive alternatives to noble-metal platinum for catalyzing the kinetically sluggish ORR due to their high electrical conductivity, large surface area, and structural tunability at the atomic level, however, their application is limited by the low intrinsic activity of the metal-nitrogen coordination sites (M-N x ) and inferior site density. In this Perspective, we summarize the recent progress and milestones relating to the active site engineering of single atom carbonous electrocatalysts for enhancing the ORR activity. Particular emphasis is placed on the emerging strategies for regulating the electronic structure of the single metal site and populating the site density. In addition, challenges and perspectives are provided regarding the future development of single atom carbonous electrocatalysts for the ORR and their utilization in practical use.
Collapse
Affiliation(s)
- Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics Weinberg 2 Halle (Saale) D-06120 Germany
| |
Collapse
|
17
|
Duan X, Wu Y, Lai Y, Li Z, Lin S. Synthesis of Pt–MoOx/graphene composite and its electro–photo synergistic catalysis for oxygen reduction reaction. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01622-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ahmad S, Nawaz T, Ullah A, Ahmed M, Khan MO, Saher S, Qamar A, Sikandar MA. Thermal optimization of manganese dioxide nanorods with enhanced ORR activity for alkaline membrane fuel cell. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Shahbaz Ahmad
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Tahir Nawaz
- U.S.‐Pakistan Center for Advanced Studies in Energy National University of Sciences and Technology Islamabad Pakistan
| | - Abid Ullah
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Mushtaq Ahmed
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - M. Owais Khan
- Department Of Mechanical Engineering University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Saim Saher
- Ariston Energy Solutions Peshawar Pakistan
- Advanced Materials Laboratory (AML) Peshawar Pakistan
| | - Affaq Qamar
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Ali Sikandar
- Department of Civil Engineering CECOS University of IT & Emerging Sciences Peshawar Pakistan
| |
Collapse
|
19
|
Enhanced Performance of Pt Nanoparticles on Ni-N Co-Doped Graphitized Carbon for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11080909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the reaction rate and cost for cathodic catalyst in polymer electrolyte membrane fuel cells are obstacles for commercialization, the high-performance catalyst for oxygen reduction reaction is necessary. The Ni encapsulated with N-doped graphitic carbon (Ni@NGC) prepared with ethylenediamine and carbon black is employed as an efficient support for the oxygen reduction reaction. Characterizations show that the Ni@NGC has a large surface area and mesoporous structure that is suitable to the support for the Pt catalyst. The catalyst structure is identified and the size of Pt nanoparticles distributed in the narrow range of 2–3 nm. Four different nitrogen species are doped properly into graphitic carbon structure. The Pt/Ni@NGC shows higher performance than the commercial Pt/C catalyst in an acidic electrolyte. The mass activity of the Pt/Ni@NGC in fuel cell tests exhibits over 1.5 times higher than that of commercial Pt/C catalyst. The Pt/Ni@NGC catalyst at low Pt loading exhibits 47% higher maximum power density than the Pt/C catalyst under H2-air atmosphere. These results indicate that the Ni@NGC as a support is significantly beneficial to improving activity.
Collapse
|
20
|
Yusoff F, Suresh K, Khairul WM, Noorashikin MS. Electrocatalytic Reduction of Oxygen on Reduced Graphene Oxide/Iron Oxide (rGO/Fe3O4) Composite Electrode. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421040282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Dong Y, Li J, Yang F, Wang Y, Zhang Z, Wang J, Long Y, Wang X. Bioresorbable Primary Battery Anodes Built on Core-Double-Shell Zinc Microparticle Networks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14275-14282. [PMID: 33729760 DOI: 10.1021/acsami.1c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioresorbable implantable electronics require power sources that are also bioresorbable with controllable electrical output and lifetime. In this paper, we report a bioresorbable zinc primary battery anode filament based on a zinc microparticle (MP) network coated with chitosan and Al2O3 double shells. When discharged in 0.9% NaCl saline, a Zn MP filament with a 0.17 × 2 mm2 cross-sectional area exhibited a stable voltage output of 0.55 V at a current of 0.01 mA. Covered by chitosan and Al2O3 double shells, the zinc MP filament exhibited a directional dissolution behavior with a tunable lifetime approximately linear to its length. A stable 200 h discharging time was achieved with a 15 mm Zn MP filament. The maximum output power was found to be 12 μW at 0.03 mA for one filament. The linearity relationship between the current output and the filament cross-sectional area suggested a facile strategy to raise the power output at constant discharging voltage. The filaments could also be connected in series and in parallel to boost its overall voltage and current output, demonstrating their excellent integration capability. This work presents a promising pathway toward bioresorbable transient batteries with controllable lifetime and power output, demonstrating a great potential for powering transient implantable biomedical devices.
Collapse
Affiliation(s)
- Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yizhan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jingyu Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Bae D, Park K, Kwon H, Won D, Ling N, Baik H, Yang J, Park HJ, Cho J, Yang H, Jeong S, Cho S. Mitrofanovite, Layered Platinum Telluride, for Active Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2437-2446. [PMID: 33350809 DOI: 10.1021/acsami.0c16098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) layered catalysts have been considered as a class of ideal catalysts for hydrogen evolution reaction (HER) because of their abundant active sites with almost zero Gibbs energy change for hydrogen adsorption. Despite the promising performance, the design of stable and economic electrochemical catalyst based on 2D materials remains to be resolved for industrial-scale hydrogen production. Here, we report layered platinum tellurides, mitrofanovite Pt3Te4, which serves as an efficient and stable catalyst for HER with an overpotential of 39.6 mV and a Tafel slope of 32.7 mV/dec together with a high current density exceeding 7000 mA/cm2. Pt3Te4 was synthesized as nanocrystals on a metallic molybdenum ditelluride (MoTe2) template by a rapid electrochemical method. X-ray diffraction and high-resolution transmission microscopy revealed that the Pt3Te4 nanocrystals have a unique layered structure with repeated monolayer units of PtTe and PtTe2. Theoretical calculations exhibit that Pt3Te4 with numerous edges shows near-zero Gibbs free-energy change of hydrogen adsorption, which shows the excellent HER performance as well as the extremely large exchange current density for massive hydrogen production.
Collapse
Affiliation(s)
- Dongyeon Bae
- Division of Chemical Engineering and Materials Science, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Karam Park
- Department of Physics and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hagyeong Kwon
- Division of Chemical Engineering and Materials Science, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dongyeun Won
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ning Ling
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hionsuck Baik
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Jayoon Yang
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Hee Jung Park
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Jiung Cho
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Heejun Yang
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sukmin Jeong
- Department of Physics and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Suyeon Cho
- Division of Chemical Engineering and Materials Science, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Anantharaj S, Pitchaimuthu S, Noda S. A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv Colloid Interface Sci 2021; 287:102331. [PMID: 33321333 DOI: 10.1016/j.cis.2020.102331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Electrochemical hydrogen peroxide synthesis using two-electron oxygen electrochemistry is an intriguing alternative to currently dominating environmentally unfriendly and potentially hazardous anthraquinone process and noble metals catalysed direct synthesis. Electrocatalytic two-electron oxygen reduction reaction (ORR) and water oxidation reaction (WOR) are the source of electrochemical hydrogen peroxide generation. Various electrocatalysts have been used for the same and were characterized using several electroanalytical, chemical, spectroscopic and chromatographic tools. Though there have been a few reviews summarizing the recent developments in this field, none of them have unified the approaches in catalysts' design, criticized the ambiguities and flaws in the methods of evaluation, and emphasized the role of electrolyte engineering. Hence, we dedicated this review to discuss the recent trends in the catalysts' design, performance optimization, evaluation perspectives and their appropriateness and opportunities with electrolyte engineering. In addition, particularized discussions on fundamental oxygen electrochemistry, additional methods for precise screening, and the role of solution chemistry of synthesized hydrogen peroxide are also presented. Thus, this review discloses the state-of-the-art in an unpresented view highlighting the challenges, opportunities, and alternative perspectives.
Collapse
|
24
|
Synthesis and characterization of anion-exchange multi-block-copolymer membranes containing highly densified cationic functional groups. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Fauziyah M, Widiyastuti W, Setyawan H. Nitrogen-Doped Carbon Aerogels Prepared by Direct Pyrolysis of Cellulose Aerogels Derived from Coir Fibers Using an Ammonia–Urea System and Their Electrocatalytic Performance toward the Oxygen Reduction Reaction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mar’atul Fauziyah
- Department of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Widiyastuti Widiyastuti
- Department of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Heru Setyawan
- Department of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| |
Collapse
|
26
|
Sideri IK, Tagmatarchis N. Noble-Metal-Free Doped Carbon Nanomaterial Electrocatalysts. Chemistry 2020; 26:15397-15415. [PMID: 32931046 DOI: 10.1002/chem.202003613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 11/08/2022]
Abstract
Electrocatalytic processes, such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2 RR), play key roles in various sustainable energy storage and production devices and their optimization in an ecological manner is of paramount importance for mankind. In this inclusive Review, we aspire to set the scene on doped carbon-based nanomaterials and their hybrids as precious-metal alternative electrocatalysts for these critical reactions in order for the research community not only to stay up-to-date, but also to get inspired and keep pushing forward towards their practical application in energy conversion.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| |
Collapse
|
27
|
Using black carbon modified with NbMo and NbPd oxide nanoparticles for the improvement of H2O2 electrosynthesis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Nugraha AF, Kim S, Shin SH, Lee H, Shin D, Bae B. Chemically Durable Poly(phenylene- co-arylene ether) Multiblock Copolymer-Based Anion Exchange Membranes with Different Hydrophobic Moieties for Application in Fuel Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Adam F. Nugraha
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
- Renewable Energy Engineering, Korea University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Songmi Kim
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
- Department of Chemical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Sung-Hee Shin
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Hyejin Lee
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Dongwon Shin
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Byungchan Bae
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, South Korea
- Renewable Energy Engineering, Korea University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
29
|
Amin A, El-dissouky A. One-step synthesis of novel Cu2ZnNiO3 complex oxide nanowires with tuned band gap for photoelectrochemical water splitting. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720012200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although alloying and nanostructuring offer a great opportunity for enhancing photoelectrochemical behavior and band gap tuning, these methods have not been investigated extensively. This article reports the synthesis of Cu2ZnNiO3 complex oxide nanowires (∼200 nm) grown on German silver alloy via a one-step optimized hydrothermal route and their utilization to split water photoelectrochemically. Surface characterizations were used to elucidate the formation mechanism of the Cu2ZnNiO3 complex oxide nanowires. The nanowires exhibited an exceptional visible light absorption extending from 400 to 1400 nm wavelengths with a tuned band gap of ∼2.88 eV calculated from the corresponding Tauc plot. In tests to split water photoelectrochemically, the nanowires generated a significant photocurrent of up to −2.5 mA cm−2 at −0.8 V versus Ag/AgCl and exhibited an exceptional photostability which exceeded 2 h under light-off conditions with no photocurrent decay. Band edge positions related to water redox potentials were estimated via Mott–Schottky and diffuse reflectance spectroscopy analysis with the density of charge carriers reaching as high as 5.15 × 1018 cm−3. Moreover, the nanowires generated ∼1100 µmol of H2 in 5 h. These photoelectrochemical results are much higher than the reported values for similar structures of copper oxide, zinc oxide and nickel oxide separately under the same conditions, which can be attributed to the advantages of Cu, Zn and Ni oxides (such as visible light absorption, photostability, and efficient charge carrier generation and transport) being combined in one single material. These promising results make German silver a robust material toward photoelectrochemical water splitting.
Collapse
|
30
|
Eliyahu M, Korin E, Bettelheim A. Tuning the electrocatalytic 2- and 4-electron reduction of oxygen by electrodeposited hybrid graphene-Co/Mn porphyrin coatings. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Mladenović D, Vujković M, Mentus S, Santos DMF, Rocha RP, C. Sequeira CA, Figueiredo JL, Šljukić B. Carbon-Supported Mo 2C for Oxygen Reduction Reaction Electrocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1805. [PMID: 32927755 PMCID: PMC7557865 DOI: 10.3390/nano10091805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022]
Abstract
Molybdenum carbide (Mo2C)-based electrocatalysts were prepared using two different carbon supports, commercial carbon nanotubes (CNTs) and synthesised carbon xerogel (CXG), to be studied from the point of view of both capacitive and electrocatalytic properties. Cation type (K+ or Na+) in the alkaline electrolyte solution did not affect the rate of formation of the electrical double layer at a low scan rate of 10 mV s-1. Conversely, the different mobility of these cations through the electrolyte was found to be crucial for the rate of double-layer formation at higher scan rates. Molybdenum carbide supported on carbon xerogel (Mo2C/CXG) showed ca. 3 times higher double-layer capacity amounting to 75 mF cm-2 compared to molybdenum carbide supported on carbon nanotubes (Mo2C/CNT) with a value of 23 mF cm-2 due to having more than double the surface area size. The electrocatalytic properties of carbon-supported molybdenum carbides for the oxygen reduction reaction in alkaline media were evaluated using linear scan voltammetry with a rotating disk electrode. The studied materials demonstrated good electrocatalytic performance with Mo2C/CXG delivering higher current densities at more positive onset and half-wave potential. The number of electrons exchanged during oxygen reduction reaction (ORR) was calculated to be 3, suggesting a combination of four- and two-electron mechanism.
Collapse
Affiliation(s)
- Dušan Mladenović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.M.); (M.V.); (S.M.)
| | - Milica Vujković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.M.); (M.V.); (S.M.)
| | - Slavko Mentus
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.M.); (M.V.); (S.M.)
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Diogo M. F. Santos
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (C.A.C.S.)
| | - Raquel P. Rocha
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.P.R.); (J.L.F.)
| | - Cesar A. C. Sequeira
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (C.A.C.S.)
| | - Jose Luis Figueiredo
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.P.R.); (J.L.F.)
| | - Biljana Šljukić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.M.); (M.V.); (S.M.)
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (C.A.C.S.)
| |
Collapse
|
32
|
Abdelwahab A, Carrasco-Marín F, Pérez-Cadenas AF. Binary and Ternary 3D Nanobundles Metal Oxides Functionalized Carbon Xerogels as Electrocatalysts toward Oxygen Reduction Reaction. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3531. [PMID: 32785141 PMCID: PMC7476007 DOI: 10.3390/ma13163531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
A series of carbon xerogels doped with cobalt, nickel, and iron have been prepared through the sol-gel method. The doped carbon xerogels were further functionalized with binary and ternary transition metal oxides containing Co, Ni, and Zn oxides by the hydrothermal method. A development in the mesopore volume is achieved for functionalized carbon xerogel doped with iron. However, in the functionalization of carbon xerogel with ternary metal oxides, a reduction in pore diameter and mesopore volume is found. In addition, all functionalized metal oxides/carbon are in the form of 3D nanobundles with different lengths and widths. The prepared samples have been tested as electrocatalysts for oxygen reduction reaction (ORR) in basic medium. All composites showed excellent oxygen reduction reaction activity; the low equivalent series resistance of the Zn-Ni-Co/Co-CX composite was especially remarkable, indicating high electronic conductivity. It has been established that the role of Zn in this type of metal oxides nanobundles-based ORR catalyst is not only positive, but its effect could be enhanced by the presence of Ni.
Collapse
Affiliation(s)
- Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Francisco Carrasco-Marín
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain;
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| | - Agustín F. Pérez-Cadenas
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain;
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071 Granada, Spain
| |
Collapse
|
33
|
Nugraha AF, Kim S, Wijaya F, Bae B, Shin D. Synthetic Approaches for Poly(Phenylene) Block Copolymers via Nickel Coupling Reaction for Fuel Cell Applications. Polymers (Basel) 2020; 12:E1614. [PMID: 32698517 PMCID: PMC7407201 DOI: 10.3390/polym12071614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/16/2022] Open
Abstract
Several methods to synthesize poly(phenylene) block copolymers through the nickel coupling reaction were attempted to reduce the use of expensive nickel catalysts in polymerization. The model reaction for poly(phenylene) having different types of dichlorobenzene derivative monomers illustrated the potential use of cost-effective catalysts, such as NiBr2 and NiCl2, as alternatives to more expensive catalysts (e.g., bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2)). By catalyzing the polymerization of multi-block poly(phenylene) with NiBr2 and NiCl2, random copolymers with similar molecular weights could be prepared. However, these catalysts did not result in a high-molecular-weight polymer, limiting their wide scale application. Further, the amount of Ni(COD)2 could be reduced in this study by approximately 50% to synthesize poly(phenylene) multi-block copolymers, representing significant cost savings. Gel permeation chromatography and nuclear magnetic resonance results showed that the degree of polymerization and ion exchange capacity of the copolymers were almost the same as those achieved through conventional polymerization using 2.5 times as much Ni(COD)2. The flexible quaternized membrane showed higher chloride ion conductivity than commercial Fumatech membranes with comparable water uptake and promising chemical stability.
Collapse
Affiliation(s)
- Adam F. Nugraha
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; (A.F.N.); (S.K.); (F.W.); (B.B.)
- Department of Renewable Energy Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Songmi Kim
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; (A.F.N.); (S.K.); (F.W.); (B.B.)
- Department of Chemical Engineering, Yonsei University, Seoul 03722, Korea
| | - Farid Wijaya
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; (A.F.N.); (S.K.); (F.W.); (B.B.)
- Department of Renewable Energy Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Byungchan Bae
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; (A.F.N.); (S.K.); (F.W.); (B.B.)
- Department of Renewable Energy Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Dongwon Shin
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; (A.F.N.); (S.K.); (F.W.); (B.B.)
| |
Collapse
|
34
|
Tyagi A, Kar KK, Yokoi H. Atomically dispersed Ni/NixSy anchored on doped mesoporous networked carbon framework: Boosting the ORR performance in alkaline and acidic media. J Colloid Interface Sci 2020; 571:285-296. [DOI: 10.1016/j.jcis.2020.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
|
35
|
Nickel nanoparticles decorated on carbon quantum dots as a novel non-platinum catalyst for methanol oxidation; a green, low-cost, electrochemically-synthesized electrocatalyst. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Chaika MY, Volkov VV, Kravchenko TA, Konev DV, Gorshkov VS, Krysanov VA, Bosyachenko AA. Oxygen Electroreduction on the Anthraquinone-Modified Thin-Film Carbon–Polymer Composite in Alkaline Solution. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s102319351911003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Effect of Hybrid mono/bimetallic Nanocomposites for an enhancement of Catalytic and Antimicrobial Activities. Sci Rep 2020; 10:2586. [PMID: 32054936 PMCID: PMC7018773 DOI: 10.1038/s41598-020-59491-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/20/2020] [Indexed: 11/08/2022] Open
Abstract
Exploring the new catalytic systems for the reduction of organic and inorganic pollutants from an indispensable process in chemical, petrochemical, pharmaceutical and food industries, etc. Hence, in the present work, authors motivated to synthesize bare reduced graphene oxide (rGO), polyaniline (PANI), three different ratios of rGO-PANI(80:20,50:50, 10:90) composites and rGO-PANI(80:20,50:50, 10:90) supported mono (Pd) & bimetallic [Pd: Au(1:1,1:2, 2:1)] nanocomposite by a facile chemical reduction method. Also, it investigated their catalytic performances for the reduction of organic/inorganic pollutants and antimicrobial activities. All the freshly prepared bare rGO, PANI, three different ratios of rGO-PANI(80:20, 50:50,10:90) composites and rGO-PANI(80:20, 50:50,10:90)/Pd & Pd: Au(1:1, 1:2,2:1) nanocomposite hybrid catalysts were characterized using UV-Vis, FT-IR, SEM, FE-SEM, EDAX, HR-TEM, XRD, XPS and Raman spectroscopy analysis. Among them, an optimized best composition of rGO-PANI(80:20)/Pd: Au(1:1) bimetallic nanocomposite hybrid catalyst exhibits better catalytic reduction and antimicrobial activities than other composites, as a result of strong electrostatic interactions between rGO, PANI and bimetal (Pd: Au) NPs through a synergistic effect. Hence, an optimized rGO-PANI(80:20)/Pd:Au(1:1) bimetallic nanocomposite catalyst would be considered as a suitable catalyst for the reduction of different nitroarenes, organic dyes, heavy metal ions and also significantly inhibit the growth of S. aureus, S. Typhi as well as Candida albicans and Candida kruesi in wastewater.
Collapse
|
38
|
Kwon S, Lee JH. A cobalt hydroxide nanosheet-mediated synthesis of core-shell-type Mn 0.005Co 2.995O 4 spinel nanocubes as efficient oxygen electrocatalysts. Dalton Trans 2020; 49:1652-1659. [PMID: 31950121 DOI: 10.1039/c9dt04009a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a topotatic growth method involving an exfoliated cobalt hydroxide nanosheet, which allows water-based mild reaction conditions (90 °C) for the formation of the homogeneous cubic structure of MnxCo3-xO4 spinel oxides with Mn(ii)/Co(ii) salts. The size of the nanocubes increased as the Mn content increased, e.g., 13 nm (x = 0.0), 23 nm (x = 0.005), 50 nm (x = 0.05), and 140 nm (x = 1.0). The incorporation of Mn into Co3O4 dramatically increased the ORR performance because the catalytically active Mn cations exclusively substitute the less active Co2+ in the MnxCo3-xO4 structure. We effectively reduced the Mn content in the spinel Co3O4 structure to a value of 0.005, representing the Mn0.005Co2.995O4 spinel nanocubes that unexpectedly exhibited the best ORR activity among the samples. In addition, the XPS and ICP characterizations suggest an Mn-rich shell/Co-rich core for the MnxCo3-xO4 nanocubes.
Collapse
Affiliation(s)
- Sunglun Kwon
- Department of Chemistry, The Catholic University of Korea, Bucheon, 14662, South Korea.
| | | |
Collapse
|
39
|
Cao H, Cao J, Wang F, Zhu H, Pu M. A mesoporous carbon-based catalyst derived from cobalt and boron co-doped melamine formaldehyde gel for oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Peng H, Duan D, Tan X, Hu F, Ma J, Zhang K, Xu F, Li B, Sun L. A One‐Pot Method to Synthesize a Co‐Based Graphene‐Like Structure Doped Carbon Material for the Oxygen Reduction Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongliang Peng
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Diancheng Duan
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiyou Tan
- Supervisory Office of the Joint Logistics Department of Guangzhou Military Region Guangzhou 510000 China
| | - Fang Hu
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Jiaojun Ma
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Kexiang Zhang
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Bin Li
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Material, School of Material Science and EngineeringGuilin University of Electronic Technology Guilin 541004 P. R. China
| |
Collapse
|
41
|
Biemolt J, Rothenberg G, Yan N. Understanding the roles of amorphous domains and oxygen-containing groups of nitrogen-doped carbon in oxygen reduction catalysis: toward superior activity. Inorg Chem Front 2020. [DOI: 10.1039/c9qi00983c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The secret to high ORR activity lies in tuning the oxygen functionalities and the amount of graphitic vs. amorphous domains in nitrogen-doped carbons.
Collapse
Affiliation(s)
- Jasper Biemolt
- Van't Hoff Institute for Molecular Sciences (HIMS)
- University of Amsterdam
- Amsterdam
- The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences (HIMS)
- University of Amsterdam
- Amsterdam
- The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences (HIMS)
- University of Amsterdam
- Amsterdam
- The Netherlands
- School of Physics and Technology
| |
Collapse
|
42
|
Noori MT, Ghangrekar MM, Mukherjee CK, Min B. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol Adv 2019; 37:107420. [PMID: 31344446 DOI: 10.1016/j.biotechadv.2019.107420] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
The occurrence of biofouling in MFC can cause severe problems such as hindering proton transfer and increasing the ohmic and charge transfer resistance of cathodes, which results in a rapid decline in performance of MFC. This is one of the main reasons why scaling-up of MFCs has not yet been successfully accomplished. The present review article is a wide-ranging attempt to provide insights to the biofouling mechanisms on surfaces of MFC, mainly on proton exchange membranes and cathodes, and their effects on performance of MFC based on theoretical and practical evidence. Various biofouling mitigation techniques for membranes are discussed, including preparation of antifouling composite membranes, modification of the physical and chemical properties of existing membranes, and coating with antifouling agents. For cathodes of MFC, use of Ag nanoparticles, Ag-based composite nanoparticles, and antifouling chemicals is outlined in considerable detail. Finally, prospective techniques for mitigation of biofouling are discussed, which have not been given much previous attention in the field of MFC research. This article will help to enhance understanding of the severity of biofouling issues in MFCs and provides up-to-date solutions. It will be beneficial for scientific communities for further strengthening MFC research and will also help in progressing this cutting-edge technology to scale-up, using the most efficient methods as described here.
Collapse
Affiliation(s)
- Md T Noori
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Republic of Korea
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, 721302, India
| | - C K Mukherjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, 721302, India
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Republic of Korea.
| |
Collapse
|
43
|
Marinoiu A, Raceanu M, Carcadea E, Varlam M, Stefanescu I. Iodinated carbon materials for oxygen reduction reaction in proton exchange membrane fuel cell. Scalable synthesis and electrochemical performances. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Core-Shell Fe3O4@NCS-Mn Derived from Chitosan-Schiff Based Mn Complex with Enhanced Catalytic Activity for Oxygen Reduction Reaction. Catalysts 2019. [DOI: 10.3390/catal9080692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A core-shell type of Fe3O4/NCS-Mn composite was prepared by pyrolyzing a precursor fabricated by coating a chitosan-Schiff base Mn complex on Fe3O4 cores. For comparison purposes, the Fe3O4@NCS sample in the absence of Mn and the Fe3O4@NC sample derived from just chitosan coating Fe3O4 were also prepared. Among the three catalysts, Fe3O4@NCS-Mn demonstrates the best electrocatalytic activity compared to commercial Pt/C (20%) for oxygen reduction reaction (ORR). The average of the transferred electron number (n) approached 3.6 in the range of −0.3 to −0.8 V (vs. Ag/AgCl). Moreover, the catalyst exhibited high stability and durability against methanol and may potentially be a promising ORR catalyst for fuel cells.
Collapse
|
45
|
Abdelwahab A, Carrasco-Marín F, Pérez-Cadenas AF. Carbon Xerogels Hydrothermally Doped with Bimetal Oxides for Oxygen Reduction Reaction. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2446. [PMID: 31370331 PMCID: PMC6696479 DOI: 10.3390/ma12152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 11/16/2022]
Abstract
A total of two carbon xerogels doped with cobalt and nickel were prepared by the sol-gel method. The obtained carbon xerogels underwent further surface modification with three binary metal oxides namely: nickel cobaltite, nickel ferrite, and cobalt ferrite through the hydrothermal method. The mesopore volumes of these materials ranged between 0.24 and 0.40 cm3/g. Moreover, there was a morphology transformation for the carbon xerogels doped with nickel cobaltite, which is in the form of nano-needles after the hydrothermal process. Whereas the carbon xerogels doped with nickel ferrite and cobalt ferrite maintained the normal carbon xerogel structure after the hydrothermal process. The prepared materials were tested as electrocatalysts for oxygen reduction reaction using 0.1 M KOH. Among the prepared carbon xerogels cobalt-doped carbon xerogel had better electrocatalytic performance than the nickel-doped ones. Moreover, the carbon xerogels doped with nickel cobaltite showed excellent activity for oxygen reduction reaction due to mesoporosity development. NiCo2O4/Co-CX showed to be the best electrocatalyst of all the prepared electrocatalysts for oxygen reduction reaction application, exhibiting the highest electrocatalytic activity, lowest onset potential Eonset of -0.06 V, and the lowest equivalent series resistance (ESR) of 2.74 Ω.
Collapse
Affiliation(s)
- Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Francisco Carrasco-Marín
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, ES18071 Granada, Spain
| | - Agustín F Pérez-Cadenas
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, ES18071 Granada, Spain.
| |
Collapse
|
46
|
Núñez M, Lansford JL, Vlachos DG. Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. Nat Chem 2019; 11:449-456. [DOI: 10.1038/s41557-019-0247-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 03/01/2019] [Indexed: 11/09/2022]
|
47
|
Ding P, Cui L, Li D, Jing W. Innovative Dual-Compartment Flow Reactor Coupled with a Gas Diffusion Electrode for in Situ Generation of H2O2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peipei Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Lele Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Dan Li
- Jiangsu Jiayi Thermal Power Co., Ltd, Changzhou 213200, P.R. China
| | - Wenheng Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| |
Collapse
|
48
|
Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00031-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Shi F, He J, Zhang B, Peng J, Ma Y, Chen W, Li F, Qin Y, Liu Y, Shang W, Tao P, Song C, Deng T, Qian X, Ye J, Wu J. Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts. NANO LETTERS 2019; 19:1371-1378. [PMID: 30620607 DOI: 10.1021/acs.nanolett.8b05053] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxygen reduction reaction (ORR) is of paramount importance in polymer electrolyte membrane fuel cells due to its sluggish kinetics. In this work, a plasmon-induced hot electrons enhancement method is introduced to enhance ORR property of the silver (Ag)-based electrocatalysts. Three types of Ag nanostructures with differently localized surface plasmon resonances have been used as electrocatalysts. The thermal effect of plasmonic-enhanced ORR can be minimized in our work by using graphene as the support of Ag nanoparticles. By tuning the resonance positions and laser power, the enhancement of ORR properties of Ag catalysts has been optimized. Among these catalysts, Ag nanotriangles after excitation show the highest mass activity and reach 0.086 mA/μgAg at 0.8 V, which is almost 17 times that of a commercial Pt/C catalyst after the price is accounted. Our results demonstrate that the hot electrons generated from surface plasmon resonance can be utilized for electrochemical reaction, and tuning the resonance positions by light is a promising and viable approach to boost electrochemical reactions.
Collapse
Affiliation(s)
- Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Jing He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Med-X Engineering Research Center, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Baiyu Zhang
- Department of Materials Science and Engineering, College of Engineering and College of Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Yanling Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Yong Qin
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Yang Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
- Center of Hydrogen Science , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Xiaofeng Qian
- Department of Materials Science and Engineering, College of Engineering and College of Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Med-X Engineering Research Center, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Rd , Shanghai 200240 , People's Republic of China
- Materials Genome Initiative Center , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
- Center of Hydrogen Science , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| |
Collapse
|
50
|
Pham NNT, Park JS, Kim HT, Kim HJ, Son YA, Kang SG, Lee SG. Catalytic performance of graphene quantum dot supported manganese phthalocyanine for efficient oxygen reduction: density functional theory approach. NEW J CHEM 2019. [DOI: 10.1039/c8nj05093g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The thermodynamic free-energy diagrams predict that MnPc/GQD is more active toward ORR than the isolated MnPc, clearly highlighting the effect of the GQD matrix on ORR activity from a thermodynamic perspective.
Collapse
Affiliation(s)
- Nguyet N. T. Pham
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - Jong S. Park
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Hyoung-Juhn Kim
- Fuel Cell Research Center
- Korea Institute of Science and Technology
- Seongbuk-gu
- Republic of Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Sung Gu Kang
- School of Chemical Engineering
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Seung Geol Lee
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan
- Republic of Korea
| |
Collapse
|