1
|
Rodríguez-Vázquez R, Mesa-Marín J. Plant responses to plant growth promoting bacteria: Insights from proteomics. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154031. [PMID: 37321049 DOI: 10.1016/j.jplph.2023.154031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
| | - Jennifer Mesa-Marín
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain.
| |
Collapse
|
2
|
Yurgel SN, Qu Y, Rice JT, Ajeethan N, Zink EM, Brown JM, Purvine S, Lipton MS, Kahn ML. Specialization in a Nitrogen-Fixing Symbiosis: Proteome Differences Between Sinorhizobium medicae Bacteria and Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1409-1422. [PMID: 34402628 DOI: 10.1094/mpmi-07-21-0180-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using tandem mass spectrometry (MS/MS), we analyzed the proteome of Sinorhizobium medicae WSM419 growing as free-living cells and in symbiosis with Medicago truncatula. In all, 3,215 proteins were identified, over half of the open reading frames predicted from the genomic sequence. The abundance of 1,361 proteins displayed strong lifestyle bias. In total, 1,131 proteins had similar levels in bacteroids and free-living cells, and the low levels of 723 proteins prevented statistically significant assignments. Nitrogenase subunits comprised approximately 12% of quantified bacteroid proteins. Other major bacteroid proteins included symbiosis-specific cytochromes and FixABCX, which transfer electrons to nitrogenase. Bacteroids had normal levels of proteins involved in amino acid biosynthesis, glycolysis or gluconeogenesis, and the pentose phosphate pathway; however, several amino acid degradation pathways were repressed. This suggests that bacteroids maintain a relatively independent anabolic metabolism. Tricarboxylic acid cycle proteins were highly expressed in bacteroids and no other catabolic pathway emerged as an obvious candidate to supply energy and reductant to nitrogen fixation. Bacterial stress response proteins were induced in bacteroids. Many WSM419 proteins that are not encoded in S. meliloti Rm1021 were detected, and understanding the functions of these proteins might clarify why S. medicae WSM419 forms a more effective symbiosis with M. truncatula than S. meliloti Rm1021.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Jennifer T Rice
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Faculty of Technology, University of Jaffna, Sri Lanka
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Joseph M Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Sam Purvine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Mary S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Michael L Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, U.S.A
| |
Collapse
|
3
|
Abstract
Root rot diseases remain a major global threat to the productivity of agricultural crops. They are usually caused by more than one type of pathogen and are thus often referred to as a root rot complex. Fungal and oomycete species are the predominant participants in the complex, while bacteria and viruses are also known to cause root rot. Incorporating genetic resistance in cultivated crops is considered the most efficient and sustainable solution to counter root rot, however, resistance is often quantitative in nature. Several genetics studies in various crops have identified the quantitative trait loci associated with resistance. With access to whole genome sequences, the identity of the genes within the reported loci is becoming available. Several of the identified genes have been implicated in pathogen responses. However, it is becoming apparent that at the molecular level, each pathogen engages a unique set of proteins to either infest the host successfully or be defeated or contained in attempting so. In this review, a comprehensive summary of the genes and the potential mechanisms underlying resistance or susceptibility against the most investigated root rots of important agricultural crops is presented.
Collapse
|
4
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
5
|
Khatabi B, Gharechahi J, Ghaffari MR, Liu D, Haynes PA, McKay MJ, Mirzaei M, Salekdeh GH. Plant-Microbe Symbiosis: What Has Proteomics Taught Us? Proteomics 2020; 19:e1800105. [PMID: 31218790 DOI: 10.1002/pmic.201800105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/04/2019] [Indexed: 11/08/2022]
Abstract
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics-based technologies has broadened our understanding of the molecular aspects of beneficial plant-microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis-specific and symbiosis-related proteins and post-translational modifications that play a critical role in mediating symbiotic plant-microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other "omics" data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis-based "omic" approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant-associated microbial communities is also discussed.
Collapse
Affiliation(s)
- Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, P. R. China
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
6
|
Chaudhary T, Shukla P. Bioinoculant capability enhancement through metabolomics and systems biology approaches. Brief Funct Genomics 2019; 18:159-168. [PMID: 31232454 DOI: 10.1093/bfgp/elz011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/30/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Bioinoculants are eco-friendly microorganisms, and their products are utilized for improving the potential of soil and fulfill the nutrients requirement for the host plant. The agricultural yield has increased due to the use of bioinoculants over chemical-based fertilizers, and thus it generates interest in understanding the innovation process by various methods. By gene-editing tool, the desired gene product can be changed for engineered microbial inoculants. We have also described various modern biotechnological tools like constraint-based modeling, OptKnock, flux balance analysis and modeling of the biological network for enhancing the bioinoculant capability. These fluxes give the fascinating perception of the metabolic network in the absence of comprehensive kinetic information. These tools also help in the stimulation of the metabolic networks by incorporation of enzyme-encoding genes. The present review explains the use of systems biology and gene-editing tools for improving the capability of bioinoculants. Moreover, this review also emphasizes on the challenges and future perspective of systems biology and its multidisciplinary facets.
Collapse
Affiliation(s)
- Twinkle Chaudhary
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
7
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Eldakak M, Das A, Zhuang Y, Rohila JS, Glover K, Yen Y. A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat. Pathogens 2018; 7:E58. [PMID: 29932155 PMCID: PMC6161305 DOI: 10.3390/pathogens7030058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.
Collapse
Affiliation(s)
- Moustafa Eldakak
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Genetics Department, College of Agriculture, Alexandria University, Alexandria 21526, Egypt.
| | - Aayudh Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Yongbin Zhuang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- College of Agronomy, Shandong Agricultural University, Taian 271018, China.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Karl Glover
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
9
|
Leppyanen IV, Kirienko AN, Lobov AA, Dolgikh EA. Differential proteome analysis of pea roots at the early stages of symbiosis with nodule bacteria. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this paper, we have analyzed changes in the proteomic spectrum of pea Pisum sativum L. roots during inoculation with rhizobial bacteria with the aim of revealing new regulators of symbiosis development. To study the changes in the proteome spectrum of pea roots, a differential twodimensional (2-D) electrophoresis was performed using fluorescent labels Cy2 and Cy5. The images obtained made it possible to identify differences between the control variant (uninoculated roots) and the root variant after inoculation with Rhizobium leguminosarum bv. viciae RCAM 1026 (24 hours after treatment). 20 proteins were revealed and identified, the synthesis of which was enhanced during the inoculation of pea roots by nodule bacteria. To identify the proteins, a mass spectrometric analysis of tryptic peptides was performed on a quadrupole-time-of-flight mass spectrometer combined with a high-performance liquid chromatograph. Among such proteins, the beta-subunit of the G protein and the disulfide isomerase/phospholipase C were first found, whose function can be related to the signal regulation of symbiosis. This indicates that G-proteins and phospholipases can play a key role in the development of early stages of symbiosis in peas. Further experiments are expected to show whether the beta-subunit of the G protein interacts with the receptors to Nod factors, and how this affects the further signaling. Other proteins that might be interesting were annexin D8 and D1, protein kinase interacting with calcinerin B, actin-binding protein profilin, GTP-binding protein Ran1. They may be involved in the regulation of reactions with calcium, the reorganization of the actin cytoskeleton and other important processes in plants. The study of the role of such regulatory proteins will later become the basis for understanding the complex system of signal regulation, which is activated in pea plants by interaction with nodule bacteria.
Collapse
Affiliation(s)
- I. V. Leppyanen
- All-Russian Scientific Research Institute of Agricultural Microbiology
| | - A. N. Kirienko
- All-Russian Scientific Research Institute of Agricultural Microbiology
| | - A. A. Lobov
- Resource Center “Development of Molecular and Cellular Technologies”, Science Park, St. Petersburg State University
| | - E. A. Dolgikh
- All-Russian Scientific Research Institute of Agricultural Microbiology
| |
Collapse
|
10
|
Larrainzar E, Wienkoop S. A Proteomic View on the Role of Legume Symbiotic Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:1267. [PMID: 28769967 PMCID: PMC5513976 DOI: 10.3389/fpls.2017.01267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
Abstract
Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Stefanie Wienkoop
| |
Collapse
|
11
|
Wagner K, Krause K, David A, Kai M, Jung EM, Sammer D, Kniemeyer O, Boland W, Kothe E. Influence of zygomycete-derived D'orenone on IAA signalling in T
richoloma
-spruce ectomycorrhiza. Environ Microbiol 2016; 18:2470-80. [DOI: 10.1111/1462-2920.13160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Katharina Wagner
- Institute of Microbiology; Microbial Communication; Friedrich Schiller University Jena; Neugasse 25 07745 Jena Germany
| | - Katrin Krause
- Institute of Microbiology; Microbial Communication; Friedrich Schiller University Jena; Neugasse 25 07745 Jena Germany
| | - Anja David
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 07745 Jena Germany
| | - Marco Kai
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 07745 Jena Germany
- Department of Biochemistry; Institute of Biological Science; University of Rostock; Albert-Einstein Straße 3 18059 Rostock Germany
| | - Elke-Martina Jung
- Institute of Microbiology; Microbial Communication; Friedrich Schiller University Jena; Neugasse 25 07745 Jena Germany
| | - Dominik Sammer
- Institute of Microbiology; Microbial Communication; Friedrich Schiller University Jena; Neugasse 25 07745 Jena Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI); Adolf-Reichwein-Str. 23 07745 Jena Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 07745 Jena Germany
| | - Erika Kothe
- Institute of Microbiology; Microbial Communication; Friedrich Schiller University Jena; Neugasse 25 07745 Jena Germany
| |
Collapse
|
12
|
Rey T, Laporte P, Bonhomme M, Jardinaud MF, Huguet S, Balzergue S, Dumas B, Niebel A, Jacquet C. MtNF-YA1, A Central Transcriptional Regulator of Symbiotic Nodule Development, Is Also a Determinant of Medicago truncatula Susceptibility toward a Root Pathogen. FRONTIERS IN PLANT SCIENCE 2016; 7:1837. [PMID: 27994614 PMCID: PMC5137509 DOI: 10.3389/fpls.2016.01837] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/22/2016] [Indexed: 05/20/2023]
Abstract
Plant NF-Y transcription factors control a wide array of biological functions enabling appropriate reproductive and developmental processes as well as adaptation to various abiotic and biotic environments. In Medicago truncatula, MtNF-YA1 was previously identified as a key determinant for nodule development and establishment of rhizobial symbiosis. Here, we highlight a new role for this protein in compatibility to Aphanomyces euteiches, a root pathogenic oomycete. The Mtnf-ya1-1 mutant plants showed better survival rate, reduced symptoms, and increased development of their root apparatus as compared to their wild-type (WT) background A17. MtNF-YA-1 was specifically up-regulated by A. euteiches in F83005.5, a highly susceptible natural accession of M. truncatula while transcript level remained stable in A17, which is partially resistant. The role of MtNF-YA1 in F83005.5 susceptibility was further documented by reducing MtNF-YA1 expression either by overexpression of the miR169q, a microRNA targeting MtNF-YA1, or by RNAi approaches leading to a strong enhancement in the resistance of this susceptible line. Comparative analysis of the transcriptome of WT and Mtnf-ya1-1 led to the identification of 1509 differentially expressed genes. Among those, almost 36 defense-related genes were constitutively expressed in Mtnf-ya1-1, while 20 genes linked to hormonal pathways were repressed. In summary, we revealed an unexpected dual role for this symbiotic transcription factor as a key player in the compatibility mechanisms to a pathogen.
Collapse
Affiliation(s)
- Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
- *Correspondence: Thomas Rey,
| | - Philippe Laporte
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
| | - Marie-Françoise Jardinaud
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Stéphanie Huguet
- POPS Transcriptomic Platform – Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d’Évry Val-d’Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-SaclayOrsay, France
| | - Sandrine Balzergue
- POPS Transcriptomic Platform – Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d’Évry Val-d’Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-SaclayOrsay, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
| | - Andreas Niebel
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
| |
Collapse
|
13
|
Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:1116. [PMID: 26734026 PMCID: PMC4689856 DOI: 10.3389/fpls.2015.01116] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/25/2015] [Indexed: 05/19/2023]
Abstract
The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these "omics" approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs.
Collapse
Affiliation(s)
- Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna Vienna, Austria
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India; School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
14
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
15
|
Chetouhi C, Panek J, Bonhomme L, ElAlaoui H, Texier C, Langin T, de Bekker C, Urbach S, Demettre E, Missé D, Holzmuller P, Hughes DP, Zanzoni A, Brun C, Biron DG. Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us? INFECTION GENETICS AND EVOLUTION 2015; 33:84-94. [DOI: 10.1016/j.meegid.2015.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
|
16
|
Lozano-Durán R, Robatzek S. 14-3-3 proteins in plant-pathogen interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:511-8. [PMID: 25584723 DOI: 10.1094/mpmi-10-14-0322-cr] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- 1The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 3888 Chenhua Rd, Shanghai 201602, China
| | - Silke Robatzek
- 1The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
17
|
Hu J, Rampitsch C, Bykova NV. Advances in plant proteomics toward improvement of crop productivity and stress resistancex. FRONTIERS IN PLANT SCIENCE 2015; 6:209. [PMID: 25926838 PMCID: PMC4396383 DOI: 10.3389/fpls.2015.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 05/14/2023]
Abstract
Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein-protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Christof Rampitsch
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Natalia V. Bykova
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
- *Correspondence: Natalia V. Bykova, Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
18
|
Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y. In vitro flowering associated protein changes in Dendrocalamus hamiltonii. Proteomics 2014; 15:1291-306. [PMID: 25475561 DOI: 10.1002/pmic.201400049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 10/24/2014] [Accepted: 11/28/2014] [Indexed: 11/07/2022]
Abstract
In Dendrocalamus hamiltonii, conversion of vegetative meristem to a floral meristem was successfully achieved on flower induction medium. A total of 128 differentially expressed proteins were evidenced by 2DE in floral meristem protein profiles. Analysis of 103 proteins through PMF revealed change in abundance in the content of 79 proteins, disappearance and new appearance in the content of 7 and 17 proteins, respectively. MS/MS and subsequent homology search identified 65 proteins that were involved in metabolism (22 proteins), regulatory (11 proteins), signaling and transportation (12 proteins), stress (6 proteins), flowering (8 proteins), and unknown functions (6 proteins). The data suggested that change in metabolism related proteins might be providing nutrient resources for floral initiation in D. hamiltonii. Further, interactive effects of various proteins like bHLH145, B-4c transcription factors (heat stress transcription factor), maturase K, MADS box, zinc finger proteins, and scarecrow-like protein 21 (flowering related), a key enzyme of ethylene biosynthesis SAMS (S-adenosylmethionine synthase) and aminocyclopropane-1-carboxylate synthase, improved calcium signaling related proteins (CML36), and change in phytohormone related proteins such as phosphatase proteins (2c3 and 2c55), which are the positive regulators of gibberellic acid and phytochrome regulation related proteins (DASH, LWD1) might be the possible major regulators of floral transition in this bamboo.
Collapse
Affiliation(s)
- Devinder Kaur
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | | | | | | | | | |
Collapse
|
19
|
Kiirika LM, Schmitz U, Colditz F. The alternative Medicago truncatula defense proteome of ROS-defective transgenic roots during early microbial infection. FRONTIERS IN PLANT SCIENCE 2014; 5:341. [PMID: 25101099 PMCID: PMC4101433 DOI: 10.3389/fpls.2014.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 05/29/2023]
Abstract
ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation.
Collapse
Affiliation(s)
| | | | - Frank Colditz
- Department of Plant Molecular Biology, Institute of Plant Genetics, Leibniz University HannoverHannover, Germany
| |
Collapse
|
20
|
Valadares RBS, Perotto S, Santos EC, Lambais MR. Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. MYCORRHIZA 2014; 24:349-60. [PMID: 24310930 DOI: 10.1007/s00572-013-0547-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/20/2013] [Indexed: 05/10/2023]
Abstract
Mutualistic symbioses between plants and fungi are a widespread phenomenon in nature. Particularly in orchids, association with symbiotic fungi is required for seed germination and seedling development. During the initial stages of symbiotic germination, before the onset of photosynthesis, orchid protocorms are fully mycoheterotrophic. The molecular mechanisms involved in orchid symbiotic germination and development are largely unknown, but it is likely that changes in plant energy metabolism and defense-related responses play a central role in these processes. We have used 2D-LC-MS/MS coupled to isobaric tagging for relative and absolute quantification to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. We identified and quantified 88 proteins, including proteins putatively involved in energy metabolism, cell rescue and defense, molecular signaling, and secondary metabolism. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense-related responses, and phytoalexins and carotenoid biosynthesis. Our results suggest profound metabolic changes in orchid protocorms during the switch from the fully mycoheterotrophic to the photosynthetic stage. Part of these changes may be also related to the obligatory nature of the interaction with the endomycorrhizal fungus.
Collapse
Affiliation(s)
- R B S Valadares
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciência do Solo, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Molesini B, Cecconi D, Pii Y, Pandolfini T. Local and Systemic Proteomic Changes in Medicago Truncatula at an Early Phase of Sinorhizobium meliloti Infection. J Proteome Res 2013; 13:408-21. [DOI: 10.1021/pr4009942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Youry Pii
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| |
Collapse
|
22
|
Mandelc S, Timperman I, Radišek S, Devreese B, Samyn B, Javornik B. Comparative proteomic profiling in compatible and incompatible interactions between hop roots and Verticillium albo-atrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:23-31. [PMID: 23619241 DOI: 10.1016/j.plaphy.2013.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/26/2013] [Indexed: 05/26/2023]
Abstract
Verticillium wilt, caused by the soil borne fungal pathogen Verticillium albo-atrum, is a serious threat to hop (Humulus lupulus L.) production in several hop-growing regions. A proteomic approach was applied to analyse the response of root tissue in compatible and incompatible interactions between hop and V. albo-atrum at 10, 20 and 30 days after inoculation, using two-dimensional difference gel electrophoresis (2D-DIGE) coupled with de novo sequencing of derivatized peptides. Approximately 1200 reproducible spots were detected on the gels, of which 102 were identified. In the compatible interaction, 252 spots showed infection-specific changes in spot abundance and an accumulation of defence-related proteins, such as chitinase, β-glucanase, thaumatin-like protein, peroxidase and germin-like protein, was observed. However, no significant infection-specific changes were detected in the incompatible interaction. The results indicate that resistance in this pathosystem may be conferred by constitutive rather than induced defence mechanisms. The identification and high abundance of two mannose/glucose-specific lectin isoforms present only in the roots of the resistant cultivar suggests function of lectins in hop resistance against V. albo-atrum.
Collapse
Affiliation(s)
- Stanislav Mandelc
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
23
|
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. PLANT PHYSIOLOGY 2012; 159:501-16. [PMID: 22399646 PMCID: PMC3375982 DOI: 10.1104/pp.112.193706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/06/2012] [Indexed: 05/03/2023]
Abstract
RAC/ROP proteins (ρ-related GTPases of plants) are plant-specific small G proteins that function as molecular switches within elementary signal transduction pathways, including the regulation of reactive oxygen species (ROS) generation during early microbial infection via the activation of NADPH oxidase homologs of plants termed RBOH (for respiratory burst oxidase homolog). We investigated the role of Medicago truncatula Jemalong A17 small GTPase MtROP9, orthologous to Medicago sativa Rac1, via an RNA interference silencing approach. Composite M. truncatula plants (MtROP9i) whose roots have been transformed by Agrobacterium rhizogenes carrying the RNA interference vector were generated and infected with the symbiotic arbuscular mycorrhiza fungus Glomus intraradices and the rhizobial bacterium Sinorhizobium meliloti as well as with the pathogenic oomycete Aphanomyces euteiches. MtROP9i transgenic lines showed a clear growth-reduced phenotype and revealed neither ROS generation nor MtROP9 and MtRBOH gene expression after microbial infection. Coincidently, antioxidative compounds were not induced in infected MtROP9i roots, as documented by differential proteomics (two-dimensional differential gel electrophoresis). Furthermore, MtROP9 knockdown clearly promoted mycorrhizal and A. euteiches early hyphal root colonization, while rhizobial infection was clearly impaired. Infected MtROP9i roots showed, in part, extremely swollen noninfected root hairs and reduced numbers of deformed nodules. S. meliloti nodulation factor treatments of MtROP9i led to deformed root hairs showing progressed swelling of its upper regions or even of the entire root hair and spontaneous constrictions but reduced branching effects occurring only at swollen root hairs. These results suggest a key role of Rac1 GTPase MtROP9 in ROS-mediated early infection signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Department III, Plant Molecular Biology, D–30419 Hannover, Germany (L.M.K., C.S., D.W., J.K., U.S., F.C.); University of Bielefeld, Department 7, Proteome and Metabolome Research, D–33615 Bielefeld, Germany (H.F.B., K.N.)
| |
Collapse
|
24
|
Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K. Gel-based and gel-free quantitative proteomics approaches at a glance. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:494572. [PMID: 23213324 PMCID: PMC3508552 DOI: 10.1155/2012/494572] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/12/2012] [Indexed: 05/06/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) is widely applied and remains the method of choice in proteomics; however, pervasive 2-DE-related concerns undermine its prospects as a dominant separation technique in proteome research. Consequently, the state-of-the-art shotgun techniques are slowly taking over and utilising the rapid expansion and advancement of mass spectrometry (MS) to provide a new toolbox of gel-free quantitative techniques. When coupled to MS, the shotgun proteomic pipeline can fuel new routes in sensitive and high-throughput profiling of proteins, leading to a high accuracy in quantification. Although label-based approaches, either chemical or metabolic, gained popularity in quantitative proteomics because of the multiplexing capacity, these approaches are not without drawbacks. The burgeoning label-free methods are tag independent and suitable for all kinds of samples. The challenges in quantitative proteomics are more prominent in plants due to difficulties in protein extraction, some protein abundance in green tissue, and the absence of well-annotated and completed genome sequences. The goal of this perspective assay is to present the balance between the strengths and weaknesses of the available gel-based and -free methods and their application to plants. The latest trends in peptide fractionation amenable to MS analysis are as well discussed.
Collapse
Affiliation(s)
- Cosette Abdallah
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Boite Postal 86510, 21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Boite Postal 86510, 21065 Dijon Cedex, France
| | - Jenny Renaut
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
- *Kjell Sergeant:
| |
Collapse
|
25
|
Abstract
Two-dimensional difference gel electrophoresis is an invaluable technique for the analysis of plant proteomes. However, preparation of protein fractions from plant tissues is challenging due to the special features of plant cells: a robust cell wall, large vacuoles which often contain high concentrations of organic acids and a broad range of secondary metabolites like phenolic compounds and pigments. Therefore, protein preparation for difference gel electrophoresis (DIGE) analyses has to be adapted. Here, we describe both a phenolic protein extraction method for plant tissues and an adapted protocol for DIGE labeling of the generated fractions.
Collapse
|
26
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
27
|
The mitochondrial proteome of the model legume Medicago truncatula. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1658-68. [DOI: 10.1016/j.bbapap.2011.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 11/23/2022]
|
28
|
Cangahuala-Inocente GC, Da Silva MF, Johnson JM, Manga A, van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E. Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. MYCORRHIZA 2011; 21:473-493. [PMID: 21210159 DOI: 10.1007/s00572-010-0352-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/09/2010] [Indexed: 05/08/2023]
Abstract
Although plant biotisation with arbuscular mycorrhizal fungi (AMF) is a promising strategy for improving plant health, a better knowledge regarding the molecular mechanisms involved is required. In this context, we sought to analyse the root proteome of grapevine rootstock Selection Oppenheim 4 (SO4) upon colonisation with two AMF. As expected, AMF colonisation stimulates plant biomass. At the proteome level, changes in protein amounts due to AMF colonisation resulted in 39 differentially accumulated two-dimensional electrophoresis spots in AMF roots relative to control. Out of them, 25 were co-identified in SO4 roots upon colonisation by Glomus irregulare and Glomus mosseae supporting the existence of conserved plant responses to AM symbiosis in a woody perennial species. Among the 18 proteins whose amount was reduced in AMF-colonised roots were proteins involved in glycolysis, protein synthesis and fate, defence and cell rescue, ethylene biosynthesis and purine and pyrimidine salvage degradation. The six co-identified proteins whose amount was increased had functions in energy production, signalling, protein synthesis and fate including proteases. Altogether these data confirmed that a part of the accommodation program of AMF previously characterized in annual plants is maintained within roots of the SO4 rootstock cuttings. Nonetheless, particular responses also occurred involving proteins of carbon metabolism, development and root architecture, defence and cell rescue, anthocyanin biosynthesis and P remobilization, previously reported as induced upon P-starvation. This suggests the occurrence of P reprioritization upon AMF colonization in a woody perennial plant species with agronomical interest.
Collapse
Affiliation(s)
- Gabriela Claudia Cangahuala-Inocente
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Caixa Postal 476, CEP 88034-001, Florianópolis, Santa Catarina, Brazil
| | - Maguida Fabiana Da Silva
- Embrapa-Centro de Pesquisa Agroflorestal do Amapá, Code Postal 10, CEP 68902-280, Macapá, Amapá, Brazil
| | - Jean-Martial Johnson
- UMR INRA 1088, CNRS 5184, U. Bourgogne, PME, INRA, BP 86510, 21065, Dijon Cedex, France
| | - Anicet Manga
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Sénégal
| | - Diederik van Tuinen
- UMR INRA 1088, CNRS 5184, U. Bourgogne, PME, INRA, BP 86510, 21065, Dijon Cedex, France
| | | | - Paulo Emílio Lovato
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Caixa Postal 476, CEP 88034-001, Florianópolis, Santa Catarina, Brazil.
| | - Eliane Dumas-Gaudot
- UMR INRA 1088, CNRS 5184, U. Bourgogne, PME, INRA, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
29
|
Quantitative plant proteomics. Proteomics 2011; 11:756-75. [DOI: 10.1002/pmic.201000426] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/10/2010] [Accepted: 10/13/2010] [Indexed: 01/18/2023]
|
30
|
Colditz F, Braun HP. Medicago truncatula proteomics. J Proteomics 2010; 73:1974-85. [PMID: 20621211 DOI: 10.1016/j.jprot.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.
Collapse
Affiliation(s)
- Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Dept. III, Plant Molecular Biology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|