1
|
Davis LM, Hwang M. Metabolic Pathways in Hydrocephalus: Profiling with Proteomics and Advanced Imaging. Metabolites 2024; 14:412. [PMID: 39195508 DOI: 10.3390/metabo14080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorrhagic hydrocephalus is a common pathology in neonates with high mortality and morbidity. Current imaging approaches fail to capture the mechanisms behind its pathogenesis. Here, we discuss the processes underlying this pathology, the metabolic dysfunction that occurs as a result, and the ways in which these metabolic changes inform novel methods of clinical imaging. The imaging advances described allow earlier detection of the cellular and metabolic changes, leading to better outcomes for affected neonates.
Collapse
Affiliation(s)
- Laura May Davis
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Hu WT, Nayyar A, Kaluzova M. Charting the Next Road Map for CSF Biomarkers in Alzheimer's Disease and Related Dementias. Neurotherapeutics 2023; 20:955-974. [PMID: 37378862 PMCID: PMC10457281 DOI: 10.1007/s13311-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical prediction of underlying pathologic substrates in people with Alzheimer's disease (AD) dementia or related dementia syndromes (ADRD) has limited accuracy. Etiologic biomarkers - including cerebrospinal fluid (CSF) levels of AD proteins and cerebral amyloid PET imaging - have greatly modernized disease-modifying clinical trials in AD, but their integration into medical practice has been slow. Beyond core CSF AD biomarkers (including beta-amyloid 1-42, total tau, and tau phosphorylated at threonine 181), novel biomarkers have been interrogated in single- and multi-centered studies with uneven rigor. Here, we review early expectations for ideal AD/ADRD biomarkers, assess these goals' future applicability, and propose study designs and performance thresholds for meeting these ideals with a focus on CSF biomarkers. We further propose three new characteristics: equity (oversampling of diverse populations in the design and testing of biomarkers), access (reasonable availability to 80% of people at risk for disease, along with pre- and post-biomarker processes), and reliability (thorough evaluation of pre-analytical and analytical factors influencing measurements and performance). Finally, we urge biomarker scientists to balance the desire and evidence for a biomarker to reflect its namesake function, indulge data- as well as theory-driven associations, re-visit the subset of rigorously measured CSF biomarkers in large datasets (such as Alzheimer's disease neuroimaging initiative), and resist the temptation to favor ease over fail-safe in the development phase. This shift from discovery to application, and from suspended disbelief to cogent ingenuity, should allow the AD/ADRD biomarker field to live up to its billing during the next phase of neurodegenerative disease research.
Collapse
Affiliation(s)
- William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA.
- Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Ashima Nayyar
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| | - Milota Kaluzova
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| |
Collapse
|
3
|
Horowitz A, Saugier-Veber P, Gilard V. Inference of Diagnostic Markers and Therapeutic Targets From CSF Proteomics for the Treatment of Hydrocephalus. Front Cell Neurosci 2020; 14:576028. [PMID: 33192320 PMCID: PMC7609871 DOI: 10.3389/fncel.2020.576028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arie Horowitz
- Normandy University, UNIROUEN, INSERM U1245, Rouen, France
| | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Rouen, France
| | - Vianney Gilard
- Department of Neurosurgery, Normandy University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
4
|
Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020; 42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hazel L Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 2017; 12:e0172353. [PMID: 28212403 PMCID: PMC5315300 DOI: 10.1371/journal.pone.0172353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Hydrocephalus is a complex neurological disorder with a pervasive impact on the central nervous system. Previous work has demonstrated derangements in the biochemical profile of cerebrospinal fluid (CSF) in hydrocephalus, particularly in infants and children, in whom neurodevelopment is progressing in parallel with concomitant neurological injury. The objective of this study was to examine the CSF of children with congenital hydrocephalus (CHC) to gain insight into the pathophysiology of hydrocephalus and identify candidate biomarkers of CHC with potential diagnostic and therapeutic value. Methods CSF levels of amyloid precursor protein (APP) and derivative isoforms (sAPPα, sAPPβ, Aβ42), tau, phosphorylated tau (pTau), L1CAM, NCAM-1, aquaporin 4 (AQP4), and total protein (TP) were measured by ELISA in 20 children with CHC. Two comparative groups were included: age-matched controls and children with other neurological diseases. Demographic parameters, ventricular frontal-occipital horn ratio, associated brain malformations, genetic alterations, and surgical treatments were recorded. Logistic regression analysis and receiver operating characteristic curves were used to examine the association of each CSF protein with CHC. Results CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or TP were increased in untreated CHC. CSF TP and normalized L1CAM levels were associated with FOR in CHC subjects, while normalized CSF tau levels were associated with FOR in control subjects. Predictive ability for CHC was strongest for sAPPα, especially in subjects ≤12 months of age (p<0.0001 and AUC = 0.99), followed by normalized sAPPβ (p = 0.0001, AUC = 0.95), tau, APP, and L1CAM. Among subjects ≤12 months, a normalized CSF sAPPα cut-point of 0.41 provided the best prediction of CHC (odds ratio = 528, sensitivity = 0.94, specificity = 0.97); these infants were 32 times more likely to have CHC. Conclusions CSF proteins such as sAPPα and related proteins hold promise as biomarkers of CHC in infants and young children, and provide insight into the pathophysiology of CHC during this critical period in neurodevelopment.
Collapse
|
6
|
Abstract
Hydrocephalus is a common disorder of cerebral spinal fluid (CSF) physiology resulting in abnormal expansion of the cerebral ventricles. Infants commonly present with progressive macrocephaly whereas children older than 2 years generally present with signs and symptoms of intracranial hypertension. The classic understanding of hydrocephalus as the result of obstruction to bulk flow of CSF is evolving to models that incorporate dysfunctional cerebral pulsations, brain compliance, and newly characterised water-transport mechanisms. Hydrocephalus has many causes. Congenital hydrocephalus, most commonly involving aqueduct stenosis, has been linked to genes that regulate brain growth and development. Hydrocephalus can also be acquired, mostly from pathological processes that affect ventricular outflow, subarachnoid space function, or cerebral venous compliance. Treatment options include shunt and endoscopic approaches, which should be individualised to the child. The long-term outcome for children that have received treatment for hydrocephalus varies. Advances in brain imaging, technology, and understanding of the pathophysiology should ultimately lead to improved treatment of the disorder.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - David D Limbrick
- Division of Neurosurgery, St Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Abstract
Years of research in the field of neurotrauma have led to the concept of applying systems biology as a tool for biomarker discovery in traumatic brain injury (TBI). Biomarkers may lead to understanding mechanisms of injury and recovery in TBI and can be potential targets for wound healing, recovery, and increased survival with enhanced quality of life. The literature available on neurotrauma studies from both animal and clinical studies has provided rich insight on the molecular pathways and complex networks of TBI, elucidating the proteomics of this disease for the discovery of biomarkers. With such a plethora of information available, the data from the studies require databases with tools to analyze and infer new patterns and associations. The role of different systems biology tools and their use in biomarker discovery in TBI are discussed in this chapter.
Collapse
|
8
|
McAllister JP, Williams MA, Walker ML, Kestle JRW, Relkin NR, Anderson AM, Gross PH, Browd SR. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg 2015; 123:1427-38. [PMID: 26090833 DOI: 10.3171/2014.12.jns132352] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Building on previous National Institutes of Health-sponsored symposia on hydrocephalus research, "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes" was held in Seattle, Washington, July 9-11, 2012. Plenary sessions were organized into four major themes, each with two subtopics: Causes of Hydrocephalus (Genetics and Pathophysiological Modifications); Diagnosis of Hydrocephalus (Biomarkers and Neuroimaging); Treatment of Hydrocephalus (Bioengineering Advances and Surgical Treatments); and Outcome in Hydrocephalus (Neuropsychological and Neurological). International experts gave plenary talks, and extensive group discussions were held for each of the major themes. The conference emphasized patient-centered care and translational research, with the main objective to arrive at a consensus on priorities in hydrocephalus that have the potential to impact patient care in the next 5 years. The current state of hydrocephalus research and treatment was presented, and the following priorities for research were recommended for each theme. 1) Causes of Hydrocephalus-CSF absorption, production, and related drug therapies; pathogenesis of human hydrocephalus; improved animal and in vitro models of hydrocephalus; developmental and macromolecular transport mechanisms; biomechanical changes in hydrocephalus; and age-dependent mechanisms in the development of hydrocephalus. 2) Diagnosis of Hydrocephalus-implementation of a standardized set of protocols and a shared repository of technical information; prospective studies of multimodal techniques including MRI and CSF biomarkers to test potential pharmacological treatments; and quantitative and cost-effective CSF assessment techniques. 3) Treatment of Hydrocephalus-improved bioengineering efforts to reduce proximal catheter and overall shunt failure; external or implantable diagnostics and support for the biological infrastructure research that informs these efforts; and evidence-based surgical standardization with longitudinal metrics to validate or refute implemented practices, procedures, or tests. 4) Outcome in Hydrocephalus-development of specific, reliable batteries with metrics focused on the hydrocephalic patient; measurements of neurocognitive outcome and quality-of-life measures that are adaptable, trackable across the growth spectrum, and applicable cross-culturally; development of comparison metrics against normal aging and sensitive screening tools to diagnose idiopathic normal pressure hydrocephalus against appropriate normative age-based data; better understanding of the incidence and prevalence of hydrocephalus within both pediatric and adult populations; and comparisons of aging patterns in adults with hydrocephalus against normal aging patterns.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Michael A Williams
- Department of Neurology, The Sandra and Malcolm Berman Brain & Spine Institute and Adult Hydrocephalus Center, Sinai Hospital, Baltimore, Maryland
| | - Marion L Walker
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - John R W Kestle
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - Norman R Relkin
- Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Amy M Anderson
- Department of Neurosurgery, Seattle Children's Hospital, Seattle, Washington; and
| | | | - Samuel R Browd
- Departments of Neurosurgery and Bioengineering, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | | |
Collapse
|
9
|
Samuel N, Remke M, Rutka JT, Raught B, Malkin D. Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. J Neurooncol 2014; 118:225-238. [PMID: 24771250 DOI: 10.1007/s11060-014-1432-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
Abstract
Primary brain tumors cumulatively represent the most common solid tumors of childhood and are the leading cause of cancer related death in this age group. Traditionally, molecular findings and histological analyses from biopsies of resected tumor tissue have been used for diagnosis and classification of these diseases. However, there is a dearth of useful biomarkers that have been validated and clinically implemented for pediatric brain tumors. Notably, diseases of the central nervous system (CNS) can be assayed through analysis of cerebrospinal fluid (CSF) and as such, CSF represents an appropriate medium to obtain liquid biopsies that can be informative for diagnosis, disease classification and risk stratification. Proteomic profiling of pediatric CNS malignancies has identified putative protein markers of disease, yet few effective biomarkers have been clinically validated or implemented. Advances in protein quantification techniques have made it possible to conduct such investigations rapidly and accurately through proteome-wide analyses. This review summarizes the current literature on proteomics in pediatric neuro-oncology and discusses the implications for clinical applications of proteomics research. We also outline strategies for translating effective CSF proteomic studies into clinical applications to optimize the care of this patient population.
Collapse
Affiliation(s)
- Nardin Samuel
- MD/PhD Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| | - Marc Remke
- The Hospital for Sick Children, Toronto, ON, Canada
| | - James T Rutka
- The Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Abstract
The analysis of the cerebrospinal fluid (CSF) proteome in recent years has resulted in a valuable repository of data for targeting and diagnosing a variety of diseases, such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and amyotrophic lateral sclerosis. Human ventricular CSF contains numerous proteins that are unique to CSF due in part to the interaction of the biofluid with the brain. This allows researchers to obtain information from a region that would otherwise be inaccessible except through invasive surgery or during autopsy. Characterization of the CSF proteome requires that strict care be taken so that sample integrity and fidelity are maintained to ensure data reproducibility. Standardized methods in sample collection, storage, preparation, analysis, and data mining must be used for meaningful information to be obtained. The following method describes a simple and robust approach for preparing CSF samples for analysis via reversed-phase liquid chromatography (RPLC) and mass spectrometry (MS).
Collapse
|
11
|
Characterization of the glycated human cerebrospinal fluid proteome. J Proteomics 2012; 75:4766-82. [PMID: 22300578 DOI: 10.1016/j.jprot.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/28/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Protein glycation is a nonenzymatic modification that involves pathological functions in neurological diseases. Despite the high number of studies showing accumulation of advanced end glycation products (AGEs) at clinical stage, there is a lack of knowledge about which proteins are modified, where those modifications occur, and to what extent. The goal of this study was to achieve a comprehensive characterization of proteins modified by early glycation in human cerebrospinal fluid (CSF). Approaches based on glucose diferential labeling and mass spectrometry have been applied to evaluate the glycated CSF proteome at two physiological conditions: native glucose level and in vitro high glucose content. For both purposes, detection of glycated proteins was carried out by HCD-MS2 and CID-MS3 modes after endoproteinase Glu-C digestion and boronate affinity chromatography. The abundance of glycation was assessed by protein labeling with (13)C(6)-glucose incubation. The analysis of native glycated CSF identified 111 glycation sites corresponding to 48 glycated proteins. Additionally, the in vitro high glucose level approach detected 265 glycation sites and 101 glycated proteins. The comparison of glycation levels under native and 15 mM glucose conditions showed relative concentration increases up to ten folds for some glycated proteins. This report revealed for the first time a number of key glycated CSF proteins known to be involved in neuroinflammation and neurodegenerative disorders. Altogether, the present study contains valuable and unique information, which should further help to clarify the pathological role of glycation in central nervous system pathologies. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
|
12
|
Morales DM, Townsend RR, Malone JP, Ewersmann CA, Macy EM, Inder TE, Limbrick DD. Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Mol Cell Proteomics 2011; 11:M111.011973. [PMID: 22186713 DOI: 10.1074/mcp.m111.011973] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurological outcomes of preterm infants with posthemorrhagic hydrocephalus are among the worst in newborn medicine. There remains no consensus regarding the diagnosis or treatment of posthemorrhagic hydrocephalus, and the pathological pathways leading to the adverse neurological sequelae are poorly understood. In the current study, we developed an innovative approach to simultaneously identify potential diagnostic markers of posthemorrhagic hydrocephalus and investigate novel pathways of posthemorrhagic hydrocephalus-related neurological disability. Tandem multi-affinity fractionation for specific removal of plasma proteins from the hemorrhagic cerebrospinal fluid samples was combined with high resolution label-free quantitative proteomics. Analysis of cerebrospinal fluid obtained from infants with posthemorrhagic hydrocephalus demonstrated marked differences in the levels of 438 proteins when compared with cerebrospinal fluid from age-matched control infants. Amyloid precursor protein, neural cell adhesion molecule-L1, neural cell adhesion molecule-1, brevican and other proteins with important roles in neurodevelopment showed profound elevations in posthemorrhagic hydrocephalus cerebrospinal fluid compared with control. Initiation of neurosurgical treatment of posthemorrhagic hydrocephalus resulted in resolution of these elevations. The results from this foundational study demonstrate the significant promise of tandem multi-affinity fractionation-proteomics in the identification and quantitation of protein mediators of neurodevelopment and neurological injury. More specifically, our results suggest that cerebrospinal fluid levels of proteins such as amyloid precursor protein or neural cell adhesion molecule-L1 should be investigated as potential diagnostic markers of posthemorrhagic hydrocephalus. Notably, dysregulation of the levels these and other proteins may directly affect ongoing neurodevelopmental processes in these preterm infants, providing an entirely new hypothesis for the developmental disability associated with posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Diego M Morales
- Department of Neurological Surgery, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kobeissy FH, Guingab-Cagmat JD, Razafsha M, O'Steen L, Zhang Z, Hayes RL, Chiu WT, Wang KK. Leveraging Biomarker Platforms and Systems Biology for Rehabilomics and Biologics Effectiveness Research. PM R 2011; 3:S139-47. [DOI: 10.1016/j.pmrj.2011.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/10/2011] [Indexed: 02/05/2023]
|
14
|
Abdelilah-Seyfried S. Claudin-5a in developing zebrafish brain barriers: another brick in the wall. Bioessays 2010; 32:768-76. [PMID: 20652895 DOI: 10.1002/bies.201000045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Claudins serve essential roles in regulating paracellular permeability properties within occluding junctions. Recent studies have begun to elucidate developmental roles of claudins within immature tissues. This work has uncovered an involvement of several claudins in determining tight junction properties that have an effect on embryonic morphogenesis and physiology. During zebrafish brain morphogenesis, Claudin-5a determines the paracellular permeability of tight junctions within a transient neuroepithelial-ventricular barrier that maintains the hydrostatic fluid pressure required for brain ventricular lumen expansion. However, the roles of Claudins in development may well extend beyond being mere junctional components. Several post-translational modifications of Claudins have been characterized that indicate a direct regulation by developmental signals. This review focuses on the involvement of Claudin-5a in cerebral barrier formation in the zebrafish embryo and includes some speculations about possible modes of regulation.
Collapse
|
15
|
Teng PN, Bateman NW, Hood BL, Conrads TP. Advances in proximal fluid proteomics for disease biomarker discovery. J Proteome Res 2010; 9:6091-100. [PMID: 21028795 DOI: 10.1021/pr100904q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although serum/plasma has been the preferred source for identification of disease biomarkers, these efforts have been met with little success, in large part due the relatively small number of highly abundant proteins that render the reliable detection of low abundant disease-related proteins challenging due to the expansive dynamic range of concentration of proteins in this sample. Proximal fluid, the fluid derived from the extracellular milieu of tissues, contains a large repertoire of shed and secreted proteins that are likely to be present at higher concentrations relative to plasma/serum. It is hypothesized that many, if not all, proximal fluid proteins exchange with peripheral circulation, which has provided significant motivation for utilizing proximal fluids as a primary sample source for protein biomarker discovery. The present review highlights recent advances in proximal fluid proteomics, including the various protocols utilized to harvest proximal fluids along with detailing the results from mass spectrometry- and antibody-based analyses.
Collapse
Affiliation(s)
- Pang-ning Teng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|