1
|
Pradita T, Chen YJ, Mernie EG, Bendulo SN, Chen YJ. ZIC-cHILIC Functionalized Magnetic Nanoparticle for Rapid and Sensitive Glycopeptide Enrichment from <1 µL Serum. NANOMATERIALS 2021; 11:nano11092159. [PMID: 34578474 PMCID: PMC8470806 DOI: 10.3390/nano11092159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
Due to their unique glycan composition and linkage, protein glycosylation plays significant roles in cellular function and is associated with various diseases. For comprehensive characterization of their extreme structural complexity occurring in >50% of human proteins, time-consuming multi-step enrichment of glycopeptides is required. Here we report zwitterionic n-dodecylphosphocholine-functionalized magnetic nanoparticles (ZIC-cHILIC@MNPs) as a highly efficient affinity nanoprobe for large-scale enrichment of glycopeptides. We demonstrate that ZIC-cHILIC@MNPs possess excellent affinity, with 80-91% specificity for glycopeptide enrichment, especially for sialylated glycopeptide (90%) from biofluid specimens. This strategy provides rapidity (~10 min) and high sensitivity (<1 μL serum) for the whole enrichment process in patient serum, likely due to the rapid separation using magnetic nanoparticles, fast reaction, and high performance of the affinity nanoprobe at nanoscale. Using this strategy, we achieved personalized profiles of patients with hepatitis B virus (HBV, n = 3) and hepatocellular carcinoma (HCC, n = 3) at the depth of >3000 glycopeptides, especially for the large-scale identification of under-explored sialylated glycopeptides. The glycoproteomics atlas also revealed the differential pattern of sialylated glycopeptides between HBV and HCC groups. The ZIC-cHILIC@MNPs could be a generic tool for advancing the glycoproteome analysis, and contribute to the screening of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Tiara Pradita
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
| | - Elias Gizaw Mernie
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
| | - Sharine Noelle Bendulo
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; (T.P.); (Y.-J.C.); (E.G.M.); (S.N.B.)
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-2-5572-8660
| |
Collapse
|
2
|
Quantitative N-glycoproteomics using stable isotopic diethyl labeling. Talanta 2020; 219:121359. [DOI: 10.1016/j.talanta.2020.121359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
|
3
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [PMID: 31145639 DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Warner E, Parikh ND, Lubman DM. Glycoproteomic markers of hepatocellular carcinoma-mass spectrometry based approaches. MASS SPECTROMETRY REVIEWS 2019; 38:265-290. [PMID: 30472795 PMCID: PMC6535140 DOI: 10.1002/mas.21583] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/19/2018] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most-common cause of cancer-related death worldwide. Most cases of HCC develop in patients that already have liver cirrhosis and have been recommended for surveillance for an early onset of HCC. Cirrhosis is the final common pathway for several etiologies of liver disease, including hepatitis B and C, alcohol, and increasingly non-alcoholic fatty liver disease. Only 20-30% of patients with HCC are eligible for curative therapy due primarily to inadequate early-detection strategies. Reliable, accurate biomarkers for HCC early detection provide the highest likelihood of curative therapy and survival; however, current early-detection methods that use abdominal ultrasound and serum alpha fetoprotein are inadequate due to poor adherence and limited sensitivity and specificity. There is an urgent need for convenient and highly accurate validated biomarkers for HCC early detection. The theme of this review is the development of new methods to discover glycoprotein-based markers for detection of HCC with mass spectrometry approaches. We outline the non-mass spectrometry based methods that have been used to discover HCC markers including immunoassays, capillary electrophoresis, 2-D gel electrophoresis, and lectin-FLISA assays. We describe the development and results of mass spectrometry-based assays for glycan screening based on either MALDI-MS or ESI analysis. These analyses might be based on the glycan content of serum or on glycan screening for target molecules from serum. We describe some of the specific markers that have been developed as a result, including for proteins such as Haptoglobin, Hemopexin, Kininogen, and others. We discuss the potential role for other technologies, including PGC chromatography and ion mobility, to separate isoforms of glycan markers. Analyses of glycopeptides based on new technologies and innovative softwares are described and also their potential role in discovery of markers of HCC. These technologies include new fragmentation methods such as EThcD and stepped HCD, which can identify large numbers of glycopeptide structures from serum. The key role of lectin extraction in various assays for intact glycopeptides or their truncated versions is also described, where various core-fucosylated and hyperfucosylated glycopeptides have been identified as potential markers of HCC. Finally, we describe the role of LC-MRMs or lectin-FLISA MRMs as a means to validate these glycoprotein markers from patient samples. These technological advancements in mass spectrometry have the potential to lead to novel biomarkers to improve the early detection of HCC.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| | - Elisa Warner
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| | - Neehar D. Parikh
- Department of Internal Medicine, The University of Michigan, Ann Arbor 48109, Michigan
| | - David M. Lubman
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| |
Collapse
|
5
|
Dahabiyeh LA, Tooth D, Barrett DA. Profiling of 54 plasma glycoproteins by label-free targeted LC-MS/MS. Anal Biochem 2019; 567:72-81. [DOI: 10.1016/j.ab.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023]
|
6
|
Núñez C, Chantada-Vázquez MDP, Bravo SB, Vázquez-Estévez S. Novel functionalized nanomaterials for the effective enrichment of proteins and peptides with post-translational modifications. J Proteomics 2018; 181:170-189. [DOI: 10.1016/j.jprot.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
8
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
9
|
Integrated GlycoProteome Analyzer (I-GPA) for Automated Identification and Quantitation of Site-Specific N-Glycosylation. Sci Rep 2016; 6:21175. [PMID: 26883985 PMCID: PMC4756296 DOI: 10.1038/srep21175] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
Human glycoproteins exhibit enormous heterogeneity at each N-glycosite, but few studies have attempted to globally characterize the site-specific structural features. We have developed Integrated GlycoProteome Analyzer (I-GPA) including mapping system for complex N-glycoproteomes, which combines methods for tandem mass spectrometry with a database search and algorithmic suite. Using an N-glycopeptide database that we constructed, we created novel scoring algorithms with decoy glycopeptides, where 95 N-glycopeptides from standard α1-acid glycoprotein were identified with 0% false positives, giving the same results as manual validation. Additionally automated label-free quantitation method was first developed that utilizes the combined intensity of top three isotope peaks at three highest MS spectral points. The efficiency of I-GPA was demonstrated by automatically identifying 619 site-specific N-glycopeptides with FDR ≤ 1%, and simultaneously quantifying 598 N-glycopeptides, from human plasma samples that are known to contain highly glycosylated proteins. Thus, I-GPA platform could make a major breakthrough in high-throughput mapping of complex N-glycoproteomes, which can be applied to biomarker discovery and ongoing global human proteome project.
Collapse
|
10
|
Jiang H, Yuan H, Qu Y, Liang Y, Jiang B, Wu Q, Deng N, Liang Z, Zhang L, Zhang Y. Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides. Talanta 2016; 146:225-30. [DOI: 10.1016/j.talanta.2015.08.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 12/11/2022]
|
11
|
Song E, Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med 2015; 9:835-44. [PMID: 26330015 DOI: 10.2217/bmm.15.55] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.
Collapse
Affiliation(s)
- Ehwang Song
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Yehia Mechref
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
Huang G, Sun Z, Qin H, Zhao L, Xiong Z, Peng X, Ou J, Zou H. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides. Analyst 2015; 139:2199-206. [PMID: 24615010 DOI: 10.1039/c4an00076e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA-NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA-NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.
Collapse
Affiliation(s)
- Guang Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review. Br J Cancer 2015; 112:1141-56. [PMID: 25826224 PMCID: PMC4385954 DOI: 10.1038/bjc.2015.38] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance.
Collapse
|
14
|
Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. MASS SPECTROMETRY REVIEWS 2015; 34:148-65. [PMID: 24889823 PMCID: PMC4340049 DOI: 10.1002/mas.21428] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| |
Collapse
|
15
|
Liu J, Wang F, Mao J, Zhang Z, Liu Z, Huang G, Cheng K, Zou H. High-Sensitivity N-Glycoproteomic Analysis of Mouse Brain Tissue by Protein Extraction with a Mild Detergent of N-Dodecyl β-D-Maltoside. Anal Chem 2015; 87:2054-7. [DOI: 10.1021/ac504700t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawei Mao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyi Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Huang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
16
|
|
17
|
Song E, Zhu R, Hammoud ZT, Mechref Y. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res 2014; 13:4808-20. [PMID: 25134008 PMCID: PMC4227547 DOI: 10.1021/pr500570m] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Changes
in glycosylation have been shown to have a profound correlation
with development/malignancy in many cancer types. Currently, two major
enrichment techniques have been widely applied in glycoproteomics,
namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry
(HC)-based enrichments. Here we report the LC–MS/MS quantitative
analyses of human blood serum glycoproteins and glycopeptides associated
with esophageal diseases by LAC- and HC-based enrichment. The separate
and complementary qualitative and quantitative data analyses of protein
glycosylation were performed using both enrichment techniques. Chemometric
and statistical evaluations, PCA plots, or ANOVA test, respectively,
were employed to determine and confirm candidate cancer-associated
glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins
(42% overlap) were observed in both enrichment techniques. This overlap
is very similar to previously published studies. The quantitation
and evaluation of significantly changed glycoproteins/glycopeptides
are complementary between LAC and HC enrichments. LC–ESI–MS/MS
analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins
enriched by HC showed significantly different abundances between disease-free
and disease cohorts. Multiple reaction monitoring quantitation resulted
in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by
HC enrichment to be statistically different among disease cohorts.
Collapse
Affiliation(s)
- Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University , Memorial Circle & Boston, Lubbock, Texas 79409, United States
| | | | | | | |
Collapse
|
18
|
Zhang Y, Yu M, Zhang C, Ma W, Zhang Y, Wang C, Lu H. Highly Selective and Ultra Fast Solid-Phase Extraction of N-Glycoproteome by Oxime Click Chemistry Using Aminooxy-Functionalized Magnetic Nanoparticles. Anal Chem 2014; 86:7920-4. [DOI: 10.1021/ac5018666] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Zhang
- Shanghai Cancer Center and Key Laboratory of Glycoconjuates Research
Ministry of Public Health, Fudan University, Shanghai, 200032, People’s Republic of China
- Institutes
of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Meng Yu
- State Key Laboratory of Molecular Engineering of Polymers
and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Cheng Zhang
- Institutes
of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Wanfu Ma
- State Key Laboratory of Molecular Engineering of Polymers
and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Yuting Zhang
- State Key Laboratory of Molecular Engineering of Polymers
and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers
and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Key Laboratory of Glycoconjuates Research
Ministry of Public Health, Fudan University, Shanghai, 200032, People’s Republic of China
- Institutes
of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
19
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
20
|
Modification of sialylation is associated with multidrug resistance in human acute myeloid leukemia. Oncogene 2014; 34:726-40. [PMID: 24531716 DOI: 10.1038/onc.2014.7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Aberrant cell surface sialylation patterns have been shown to correlate with tumor progression and metastasis. However, the role of sialylation regulation of cancer multidrug resistance (MDR) remains poorly understood. This study investigated sialylation in modification on MDR in acute myeloid leukemia (AML). Using mass spectrometry (MS) analysis, the composition profiling of sialylated N-glycans differed in three pairs of AML cell lines. Real-time PCR showed the differential expressional profiles of 20 sialyltransferase (ST) genes in the both AML cell lines and bone marrow mononuclear cells (BMMCs) of AML patients. The expression levels of ST3GAL5 and ST8SIA4 were detected, which were overexpressed in HL60 and HL60/adriamycin-resistant (ADR) cells. The altered levels of ST3GAL5 and ST8SIA4 were found in close association with the MDR phenotype changing of HL60 and HL60/ADR cells both in vitro and in vivo. Further data demonstrated that manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway and its downstream target thus regulated the proportionally mutative expression of P-glycoprotein (P-gp) and MDR-related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or by Akt small interfering RNA resulted in the reduced chemosensitivity of HL60/ADR cells. Therefore, this study indicated that sialylation involved in the development of MDR of AML cells probably through ST3GAL5 or ST8SIA4 regulating the activity of PI3K/Akt signaling and the expression of P-gp and MRP1.
Collapse
|
21
|
Aberrant glycosylation as biomarker for cancer: focus on CD43. BIOMED RESEARCH INTERNATIONAL 2014; 2014:742831. [PMID: 24689054 PMCID: PMC3943294 DOI: 10.1155/2014/742831] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/10/2013] [Indexed: 11/23/2022]
Abstract
Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb) to identify aberrant CD43 glycoforms.
Collapse
|
22
|
Zhao Y, Li Y, Ma H, Dong W, Zhou H, Song X, Zhang J, Jia L. Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol Cell Proteomics 2013; 13:520-36. [PMID: 24255131 DOI: 10.1074/mcp.m113.034025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant sialylation is closely associated with malignant phenotypes of tumor cells, including invasiveness and metastasis. This study investigated sialylation with regard to the modification of invasive properties and chemosensitivity in human hepatocellular carcinoma (HCC) cell lines and the association between the sialyltransferase gene family and clinicopathological characteristics in HCC patients. Using mass spectrometry analysis, we found that the composition profiling of sialylated N-glycans differed between MHCC97H and MHCC97L cells with different metastatic potential. The expressional profiles of 20 sialyltransferase genes showed differential expression in two cell lines, transitional and tumor tissues, from the same patients. Two genes, ST6GAL1 and ST8SIA2, were detected as overexpressed in MHCC97H and MHCC97L cells. The altered expression levels of ST6GAL1 and ST8SIA2 corresponded to a changed invasive phenotype and chemosensitivity of MHCC97H and MHCC97L cells both in vitro and in vivo. Further data indicated that manipulation of the expression of the two genes led to altered activity of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway. Targeting the PI3K/Akt pathway by its specific inhibitor wortmannin or by Akt RNA interference resulted in a reduced capacity for invasion and chemoresistance of MHCC97H cells. Our results imply that sialylation may function as an internal factor, regulating the invasion and chemosensitivity of HCC, probably through ST6GAL1 or ST8SIA2 regulation of the activity of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yongfu Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tian Y, Zhang H. Characterization of disease-associated N-linked glycoproteins. Proteomics 2013; 13:504-11. [PMID: 23255236 DOI: 10.1002/pmic.201200333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 10/13/2012] [Indexed: 12/14/2022]
Abstract
N-linked glycoproteins play important roles in biological processes, including cell-to-cell recognition, growth, differentiation, and programmed cell death. Specific N-linked glycoprotein changes are associated with disease progression and identification of these N-linked glycoproteins has potential for use in disease diagnosis, prognosis, and prediction of treatments. In this review, we summarize common strategies for N-linked glycoprotein characterization and applications of these strategies to identification of glycoprotein changes associated with disease states. We also review the N-linked glycoproteins altered in diseases such as breast cancer, lung cancer, and prostate cancer. Although assays for these glycoproteins have potential clinical utility, research is needed to translate these glycoproteins to clinical biomarkers.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
24
|
Zhang Y, Kuang M, Zhang L, Yang P, Lu H. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles. Anal Chem 2013; 85:5535-41. [PMID: 23659689 DOI: 10.1021/ac400733y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
25
|
Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: The CE–MS experience. Clin Biochem 2013; 46:432-43. [DOI: 10.1016/j.clinbiochem.2012.09.025] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/18/2012] [Accepted: 09/27/2012] [Indexed: 02/08/2023]
|
26
|
Abstract
Serum and plasma from which serum is derived represent a substantial challenge for proteomics due to their complexity. A landmark plasma proteome study was initiated a decade ago by the Human Proteome Organization (HUPO) that had as an objective to examine the capabilities of existing technologies. Given the advances in proteomics and the continued interest in the plasma proteome, it would timely reassess the depth and breadth of analysis of plasma that can be achieved with current methodology and instrumentation. A collaborative project to define the plasma proteome and its variation, with a plan to build a plasma proteome database would be timely.
Collapse
Affiliation(s)
- Samir Hanash
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
27
|
Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. BIOMED RESEARCH INTERNATIONAL 2013; 2013:783131. [PMID: 23586059 PMCID: PMC3613068 DOI: 10.1155/2013/783131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.
Collapse
|
28
|
Liu J, Wang F, Lin H, Zhu J, Bian Y, Cheng K, Zou H. Monolithic Capillary Column Based Glycoproteomic Reactor for High-Sensitive Analysis of N-Glycoproteome. Anal Chem 2013; 85:2847-52. [DOI: 10.1021/ac400315n] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui Lin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Jiang F, Wang C, Li R, Sheng Q, Hu C, Zhang R, Fang Q, Bao Y, Xiang K, Zeng R, Jia W. Serum Proteome Changes in Healthy Subjects with Different Genotypes of NOS1AP in the Chinese Population. J Diabetes Res 2013; 2013:357630. [PMID: 23671866 PMCID: PMC3647583 DOI: 10.1155/2013/357630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/12/2013] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes and its chronic complications have become a worldwide epidemic nowadays. However, its molecular mechanism is still unknown. We have previously identified a novel variant rs12742393 of NOS1AP for type 2 diabetes susceptibility in the Chinese population. In this study, we analyzed the total serum profiling among three genotypes of rs12742393 to discover potential crosstalk under the variant and the disease through proteomic analyses for the first time. We used OFFGEL peptide fractionation, LC-MS/MS analysis, and label-free quantification to profile the fasting human serum samples of the genotypes in rs12742393 (n = 4, for CC, AC, and AA, resp.). Four proteins were identified, including apoA4, alpha1-ACT, HABP2, and keratin 10, with blood levels changed significantly between CC and AA homozygotes of rs12742393. Compared with AA group, the levels of apoA4 increased (P = 0.000265), whereas the concentration of alpha1-ACT, HABP2, and keratin 10 decreased in CC group (P = 0.011116, 0.021175, and 0.015661, resp.). Then we selected additional fasting serum samples for ELISA and western blot validation. However, no significant differences were identified by neither ELISA nor western blot (P > 0.05). The protein profiling changes between the genotypes of rs12742393 indicated that this SNP might play a role in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Rongxia Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Quanhu Sheng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Qichen Fang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Kunsan Xiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, China
- *Weiping Jia:
| |
Collapse
|
31
|
Pan S, Tamura Y, Chen R, May D, McIntosh MW, Brentnall TA. Large-scale quantitative glycoproteomics analysis of site-specific glycosylation occupancy. MOLECULAR BIOSYSTEMS 2012; 8:2850-6. [PMID: 22892896 PMCID: PMC3463725 DOI: 10.1039/c2mb25268f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Disease-associated aberrant glycosylation may be protein specific and glycosylation site specific. Quantitative assessment of glycosylation changes at a site-specific molecular level may represent one of the initial steps for systematically revealing the glycosylation abnormalities associated with a disease or biological state. Comparative quantitative profiling of glycoproteome to provide accurate quantification of site-specific glycosylation occupancy has been a challenging task, requiring a concerted approach drawing from a variety of techniques. In this report, we present a quantitative glycoproteomics method that allows global scale identification and comparative quantification of glycosylation site occupancy using mass spectrometry. We further demonstrated this approach by quantitatively characterizing the N-glycoproteome of human pancreas.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci 2012; 35:2341-72. [DOI: 10.1002/jssc.201200434] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Rainer Bischoff
- Department of Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| |
Collapse
|
33
|
Recent progress in quantitative glycoproteomics. Glycoconj J 2012; 29:249-58. [PMID: 22699565 DOI: 10.1007/s10719-012-9398-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 12/19/2022]
Abstract
Protein glycosylation is acknowledged as one of the major posttranslational modifications that elicit significant effects on protein folding, conformation, distribution, stability, and activity. The changes in glycoprotein abundance, glycosylation degree, and glycan structure are associated with a variety of diseases. Therefore, the quantitative study of glycoproteomics has become a new and popular research topic, and is quickly emerging as an important technique for biomarker discovery. Mass spectrometry-based protein quantification technologies provide a powerful tool for the systematic and quantitative assessment of the quantitative differences in the protein profiles of different samples. Combined with various glycoprotein/glycopeptide enrichment strategies and other glycoprotein analysis methods, these techniques have been further developed for application in quantitative glycoproteomics. A comprehensive quantitative analysis of the glycoproteome in a complex biological sample remains challenging because of the enormous complexity of biological samples, intrinsic characteristics of glycoproteins, and lack of universal quantitative technology. In this review, recently developed technologies in quantitative glycoproteome, especially those focused on two of the most common types of glycosylation (N-linked and O-linked glycoproteome), were summarized. The strengths and weaknesses of the various approaches were also discussed.
Collapse
|
34
|
Fukuda I, Ishihara T, Ohmachi S, Sakikawa I, Morita A, Ikeda M, Yamane S, Toyosaki-Maeda T, Takinami Y, Okamoto H, Numata Y, Fukui N. Potential plasma biomarkers for progression of knee osteoarthritis using glycoproteomic analysis coupled with a 2D-LC-MALDI system. Proteome Sci 2012; 10:36. [PMID: 22672759 PMCID: PMC3514375 DOI: 10.1186/1477-5956-10-36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/21/2012] [Indexed: 01/14/2023] Open
Abstract
Background Although osteoarthritis (OA) is a highly prevalent joint disease, to date, no reliable biomarkers have been found for the disease. In this study, we attempted to identify factors the amounts of which significantly change in association with the progression of knee OA. Methods A total of 68 subjects with primary knee OA were enrolled in the study. These subjects were followed up over an 18-month period, and plasma and serum samples were obtained together with knee radiographs every 6 months, i.e., 0, 6, 12 and 18 months after the enrollment. Progressors and non-progressors were determined from the changes on radiographs, and plasma samples from those subjects were subjected to N-glycoproteomic 2D-LC-MALDI analysis. MS peaks were identified, and intensities for respective peaks were compared between the progressors and non-progressors to find the peak intensities of which differed significantly between the two groups of subjects. Proteins represented by the chosen peaks were identified by MS/MS analysis. Expression of the identified proteins was evaluated in synovial tissues from 10 OA knee joints by in situ hybridization, western blotting analysis and ELISA. Results Among the subjects involved in the study, 3 subjects were determined to be progressors, and 6 plasma and serum samples from these subjects were subjected to the analysis together with another 6 samples from the non-progressors. More than 3000 MS peaks were identified by N-glycoproteomic 2D-LC-MALDI analysis. Among them, 4 peaks were found to have significantly different peak intensities between the progressors and non-progressors. MS/MS analysis revealed that these peaks represented clusterin, hemopexin, alpha-1 acid glycoprotein-2, and macrophage stimulating protein, respectively. The expression of these genes in OA synovium was confirmed by in situ hybridization, and for clusterin and hemopexin, by western blotting analysis and ELISA as well. Conclusions In this study, 4 potential biomarkers were identified as potential prognostic markers for knee OA through N-glycoproteomic analysis. To the best of our knowledge, this is the first report for the use of glycoproteomic technology in exploring potential biomarkers for knee OA.
Collapse
Affiliation(s)
- Isao Fukuda
- Department of Pathomechanisms, Clinical Research Center, National Hospital Organization Sagamihara Hospital, Sagamihara, Kanagawa, 228-8522, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhu J, Wang F, Chen R, Cheng K, Xu B, Guo Z, Liang X, Ye M, Zou H. Centrifugation Assisted Microreactor Enables Facile Integration of Trypsin Digestion, Hydrophilic Interaction Chromatography Enrichment, and On-Column Deglycosylation for Rapid and Sensitive N-Glycoproteome Analysis. Anal Chem 2012; 84:5146-53. [DOI: 10.1021/ac3000732] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Benk AS, Roesli C. Label-free quantification using MALDI mass spectrometry: considerations and perspectives. Anal Bioanal Chem 2012; 404:1039-56. [DOI: 10.1007/s00216-012-5832-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 01/17/2023]
|