1
|
Demico PJ, Oliveira IN, Proença-Hirata VS, Dias SR, Ghirotti HA, Silva EO, Giometti IC, Pacagnelli FL, Torres-Bonilla KA, Hyslop S, Galizio NC, de Morais-Zani K, Pucca MB, Rocha AM, Maciel JB, Sartim MA, Monteiro WM, Floriano RS. Comparative Analysis of the Enzymatic, Coagulant, and Neuromuscular Activities of Two Variants of Crotalus durissus ruruima Venom and Antivenom Efficacy. Pharmaceuticals (Basel) 2025; 18:54. [PMID: 39861117 PMCID: PMC11768973 DOI: 10.3390/ph18010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/27/2025] Open
Abstract
Background: We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow-CDRy and white-CDRw) of Crotalus durissus ruruima venom with a sample of C. d. terrificus (CDT) venom and examined their neutralization by antivenom against CDT venom. Methods: The venoms were screened for enzymatic and coagulant activities using standard assays, and electrophoretic profiles were compared by SDS-PAGE. Neutralization was assessed by preincubating venoms with crotalic antivenom and assaying the residual activity. Results: SDS-PAGE showed that the venoms had similar electrophoretic profiles, with the main bands being phospholipase A2 (PLA2), serine proteinases, L-amino acid oxidase (LAAO), and phosphodiesterase. CDRy venom had the highest proteolytic and LAAO activities, CDRw venom had greater PLA2 and esterolytic activities at the highest quantity tested, and CDT had greater PLA2 activity than CDRy. CDRw and CDT venoms had similar proteolytic and LAAO activities, and CDRy and CDT venoms had comparable esterolytic activity. None of the venoms altered the prothrombin time (PT), but all of them decreased the activated partial thromboplastin time (aPPT); this activity was neutralized by antivenom. The minimum coagulant dose potency was CDRw >> CDRy > CDT. All venoms had thrombin-like activity that was attenuated by antivenom. CDRy and CDRw venoms showed α-fibrinogenolytic activity. All venoms partially cleaved the β-chain. CDRy and CDT venoms caused neuromuscular facilitation (enhanced muscle contractions) followed by complete blockade, whereas CDRw venom caused only blockade. Antivenom neutralized the neuromuscular activity to varying degrees. Conclusions: These findings indicate that while CDR and CDT venoms share similarities, they also differ in some enzymatic and biological activities and in neutralization by antivenom. Some of these differences could influence the clinical manifestations of envenomation by C. d. ruruima and their neutralization by the currently used therapeutic antivenom.
Collapse
Affiliation(s)
- Poliana J. Demico
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Isabele N. Oliveira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Vitória S. Proença-Hirata
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Samuel R. Dias
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Hugo A. Ghirotti
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Elisangela O. Silva
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Inês C. Giometti
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Francis L. Pacagnelli
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| | - Kristian A. Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil; (K.A.T.-B.); (S.H.)
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil; (K.A.T.-B.); (S.H.)
| | - Nathália C. Galizio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05585-000, SP, Brazil; (N.C.G.); (K.d.M.-Z.)
| | - Karen de Morais-Zani
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05585-000, SP, Brazil; (N.C.G.); (K.d.M.-Z.)
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil;
| | - Anderson M. Rocha
- Graduate Program in Tropical Medicine, State University of Amazonas (UEA), Manaus 69850-000, AM, Brazil; (A.M.R.); (J.B.M.); (M.A.S.)
| | - Jéssica B. Maciel
- Graduate Program in Tropical Medicine, State University of Amazonas (UEA), Manaus 69850-000, AM, Brazil; (A.M.R.); (J.B.M.); (M.A.S.)
| | - Marco A. Sartim
- Graduate Program in Tropical Medicine, State University of Amazonas (UEA), Manaus 69850-000, AM, Brazil; (A.M.R.); (J.B.M.); (M.A.S.)
- Department of Research and Development, Nilton Lins Foundation, Manaus 69058-030, AM, Brazil
| | - Wuelton M. Monteiro
- Graduate Program in Tropical Medicine, State University of Amazonas (UEA), Manaus 69850-000, AM, Brazil; (A.M.R.); (J.B.M.); (M.A.S.)
| | - Rafael S. Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil; (P.J.D.); (I.N.O.); (V.S.P.-H.); (S.R.D.); (H.A.G.); (E.O.S.); (I.C.G.); (F.L.P.)
| |
Collapse
|
2
|
Murphy S, Henry M, Meleady P, Ohlendieck K. Utilization of dried and long-term stored polyacrylamide gels for the advanced proteomic profiling of mitochondrial contact sites from rat liver. Biol Methods Protoc 2018; 3:bpy008. [PMID: 32161802 PMCID: PMC6994098 DOI: 10.1093/biomethods/bpy008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 11/25/2022] Open
Abstract
Following subcellular fractionation, the complexity of proteins derived from a particular cellular compartment is often evaluated by gel electrophoretic analysis. For the proteomic cataloguing of these distinct protein populations and their biochemical characterization, gel electrophoretic protein separation can be conveniently combined with liquid chromatography mass spectrometry. Here we describe a gel-enhanced liquid chromatography mass spectrometry (GeLC-MS)/MS approach with a new bioanalytical focus on the proteomic profiling of mitochondrial contact sites from rat liver using the highly sensitive Orbitrap Fusion Tribrid mass spectrometer for optimum protein identification following extraction from dried and long-term stored gels. Mass spectrometric analysis identified 964 protein species in the mitochondrial contact site fraction, whereby 459 proteins were identified by ≥3 unique peptides. This included mitochondrial components of the supramolecular complexes that form the ATP synthase, the respiratory chain, ribosomal subunits and the cytochrome P450 system, as well as crucial components of the translocase complexes translocase of the inner membrane (TIM) and translocase of the outer membrane (TOM) of the two mitochondrial membranes. Proteomics also identified contact site markers, such as glutathione transferase, monoamine oxidase and the pore protein voltage dependent anion channel (VDAC)-1. Hence, this report demonstrates that the GeLC-MS/MS method can be used to study complex mixtures of proteins that have been embedded and stored in dried polyacrylamide gels for a long period of time. Careful re-swelling and standard in-gel digestion is suitable to produce peptide profiles from old gels that can be used to extract sophisticated proteomic maps and enable the subsequent bioinformatics analysis of the distribution of protein function and the determination of potential protein clustering within the contact site system.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Jesupret C, Baumann K, Jackson TNW, Ali SA, Yang DC, Greisman L, Kern L, Steuten J, Jouiaei M, Casewell NR, Undheim EAB, Koludarov I, Debono J, Low DHW, Rossi S, Panagides N, Winter K, Ignjatovic V, Summerhayes R, Jones A, Nouwens A, Dunstan N, Hodgson WC, Winkel KD, Monagle P, Fry BG. Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades. J Proteomics 2014; 105:285-94. [PMID: 24434587 DOI: 10.1016/j.jprot.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/27/2013] [Accepted: 01/04/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as the Oxyuranus venoms analysed include samples from the first coastal taipan (Oxyuranus scutellatus) collected for antivenom production (the snake that killed the collector Kevin Budden), as well as samples from the first Oxyuranus microlepidotus specimen collected after the species' rediscovery in 1976. These results demonstrate that with proper storage techniques, venom samples can retain structural and pharmacological stability. This article is part of a Special Issue entitled: Proteomics of non-model organisms. BIOLOGICAL SIGNIFICANCE
Collapse
Affiliation(s)
- Clémence Jesupret
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Syed Abid Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Daryl C Yang
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Laura Greisman
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia; Monash Venom Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Larissa Kern
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia
| | - Jessica Steuten
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia
| | - Mahdokht Jouiaei
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nicholas R Casewell
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Molecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Eivind A B Undheim
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Dolyce H W Low
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sarah Rossi
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kelly Winter
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3000, Australia; Murdoch Childrens Research Institute, Parkville, Victoria 3052, Australia
| | - Robyn Summerhayes
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Qld 4072, Australia
| | | | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Kenneth D Winkel
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia
| | - Paul Monagle
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
7
|
The Silk Road, Marco Polo, a Bible and its proteome: a detective story. J Proteomics 2012; 75:3365-73. [PMID: 22504796 DOI: 10.1016/j.jprot.2012.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/20/2023]
Abstract
Around the end of XIII century (at the time of young Marco Polo's first trip to China at the court of Khubilai Khan in Khan Baliq) a pocket Bible was delivered by a Franciscan friar to the Mogul Emperor, in the framework of the evangelization program of the Far East. Four centuries later, in 1685, this Bible was rediscovered by the Jesuit Philippe Couplet in the house of a rich Chinese in Nanchin and donated to Cosimo III, Grand Duke of Tuscany. This Bible was recently "unearthed" in the Biblioteca Medicea Laurenziana in Florence, wrapped up in a precious yellow silk cloth, in a rather ruined state. After two years of restoration, the Bible will return to China in 2012 for a celebration of its >700years of life and of its remarkable return trip on the Silk Road. On account of the thinness of the parchment (barely 80μm thickness, the size of each foil being 16.5×11cm) it was widely held that the pages were produced from foetal lambskins. On tiny fragments of the margins of a foil, after several unsuccessful attempts at digesting the vellum, we were able to obtain a tryptic peptide mixture, which, upon mass spectrometry analysis, yielded the identity of 8 unique proteins, belonging to the genus Bos taurus, thus confirming the origin of the vellum from calfskins rather than from foetal lambskins. Our results prove that it is possible to obtain reliable protein extraction and IDs from ancient parchment documents.
Collapse
|