1
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
2
|
Tsai TC, Wu WT, Lin JJ, Su JH, Wu YJ. Stellettin B Isolated from Stelletta Sp. Reduces Migration and Invasion of Hepatocellular Carcinoma Cells through Reducing Activation of the MAPKs and FAK/PI3K/AKT/mTOR Signaling Pathways. Int J Cell Biol 2022; 2022:4416611. [PMID: 36483979 PMCID: PMC9726252 DOI: 10.1155/2022/4416611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and there is currently a lack of effective treatment options to control the metastasis. This study was performed to examine the mechanisms of the migration and invasion characteristics of HCC, with the aim of reducing metastasis by inhibiting cancer cell migration and invasion. In this study, we used Stellettin B, an active compound isolated from Stelletta sponges, as the experimental drug and evaluated its inhibition effects on cell migration and invasion in human hepatoma cells (HA22T and HepG2). MTT assay, gelatin zymography, and western blotting were employed. The results showed that Stellettin B significantly inhibited the protein expressions of MMP-2, MMP-9, and uPA, while upregulating the protein expressions of TIMP-1 and TIMP-2. The expressions of p-FAK, p-PI3K, p-AKT, p-mTOR, and MAPKs (p-JNK, p-JUN, p-MAPKp38, and p-ERK) were decreased with increasing concentrations of Stellettin B. Our results suggest that Stellettin B-dependent downregulation of MMP-2 and MMP-9 activities could be mediated by FAK/PI3K/AKT/mTOR and MAPKs signaling pathways in HA22T and HepG2 cells, preventing HCC invasion and migration.
Collapse
Affiliation(s)
- Tsung-Chang Tsai
- Department of Nephrology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Wen-Tung Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Jen-Jie Lin
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaohsiung 81363, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaohsiung 81363, Taiwan
| |
Collapse
|
3
|
Nguyen NBA, Chen LY, El-Shazly M, Peng BR, Su JH, Wu HC, Lee IT, Lai KH. Towards Sustainable Medicinal Resources through Marine Soft Coral Aquaculture: Insights into the Chemical Diversity and the Biological Potential. Mar Drugs 2022; 20:md20100640. [PMID: 36286463 PMCID: PMC9604854 DOI: 10.3390/md20100640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In recent decades, aquaculture techniques for soft corals have made remarkable progress in terms of conditions and productivity. Researchers have been able to obtain larger quantities of soft corals, thus larger quantities of biologically active metabolites, allowing them to study their biological activity in many pharmacological assays and even produce sufficient quantities for clinical trials. In this review, we summarize 201 secondary metabolites that have been identified from cultured soft corals in the era from 2002 to September 2022. Various types of diterpenes (eunicellins, cembranes, spatanes, norcembranes, briaranes, and aquarianes), as well as biscembranes, sterols, and quinones were discovered and subjected to bioactivity investigations in 53 different studies. We also introduce a more in-depth discussion of the potential biological effects (anti-cancer, anti-inflammatory, and anti-microbial) and the mechanisms of action of the identified secondary metabolites. We hope this review will shed light on the untapped potential applications of aquaculture to produce valuable secondary metabolites to tackle current and emerging health conditions.
Collapse
Affiliation(s)
- Ngoc Bao An Nguyen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6157)
| |
Collapse
|
4
|
She YY, Lin JJ, Su JH, Chang TS, Wu YJ. 4-Carbomethoxyl-10-Epigyrosanoldie E Extracted from Cultured Soft Coral Sinularia sandensis Induced Apoptosis and Autophagy via ROS and Mitochondrial Dysfunction and ER Stress in Oral Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3017807. [PMID: 36275891 PMCID: PMC9584738 DOI: 10.1155/2022/3017807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
Oral cancer is a malignant neoplasia that is more common in Asian than other regions, and men are at higher risk than women. Currently, clinical treatment for oral cancer consists of radiation therapy combined with chemotherapy. Therefore, it is important to find a drug that can inhibit the growth of cancer cells more effectively and safely. In this study, we examined the cytotoxicity of 4-carbomethoxyl-10-epigyrosanoldie E extracted from cultured soft coral Sinularia sandensis towards oral cancer cells. MTT cell proliferation and colony formation assays were used to evaluate cell survival, and immunofluorescence staining and Western blotting were employed to analyze the effects of 4-carbomethoxyl-10-epigyrosanoldie E on apoptosis and autophagy. 4-Carbomethoxyl-10-epigyrosanoldie E treatment also induced the formation of reactive oxygen species (ROS), which are associated with 4-carbomethoxyl-10-epigyrosanoldie E-induced cell death. In addition, the 4-carbomethoxyl-10-epigyrosanoldie E-induced antiproliferation effects on Ca9-22 and Cal-27 cells were associated with the release of cytochrome c from mitochondria, activation of proapoptotic proteins (such as caspase-3/-9, Bax, and Bad), and inhibition of antiapoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1). 4-Carbomethoxyl-10-epigyrosanoldie E treatment also triggered endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/ATF4/CHOP apoptotic pathway. Moreover, increased expressions of Beclin-1, Atg3, Atg5, Atg7, Atg12, Atg 16, LC3-I, and LC3-II proteins indicated that 4-carbomethoxyl-10-epigyrosanoldie E triggered autophagy in oral cancer cells. In conclusion, our findings demonstrated that 4-carbomethoxyl-10-epigyrosanoldie E suppressed human oral cancer cell proliferation and should be further investigated with regard to its potential use as a chemotherapy drug for the treatment of human oral cancer.
Collapse
Affiliation(s)
- Yun-Ying She
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Taiwan
| | - Jen-Jie Lin
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Ting-Shou Chang
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Taiwan
| | - Yu-Jen Wu
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| |
Collapse
|
5
|
Goan YG, Wu WT, Liu CI, Neoh CA, Wu YJ. Involvement of Mitochondrial Dysfunction, Endoplasmic Reticulum Stress, and the PI3K/AKT/mTOR Pathway in Nobiletin-Induced Apoptosis of Human Bladder Cancer Cells. Molecules 2019; 24:molecules24162881. [PMID: 31398899 PMCID: PMC6719163 DOI: 10.3390/molecules24162881] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Nobiletin (NOB) is a polymethoxylated flavonoid isolated from citrus fruit peel that has been shown to possess anti-tumor, antithrombotic, antifungal, anti-inflammatory and anti-atherosclerotic activities. The main purpose of this study was to explore the potential of using NOB to induce apoptosis in human bladder cancer cells and study the underlying mechanism. Using an MTT assay, agarose gel electrophoresis, a wound-healing assay, flow cytometry, and western blot analysis, this study investigated the signaling pathways involved in NOB-induced apoptosis in BFTC human bladder cancer cells. Our results showed that NOB at concentrations of 60, 80, and 100 μM inhibited cell growth by 42%, 62%, and 80%, respectively. Cells treated with 60 μM NOB demonstrated increased DNA fragmentation, and flow cytometry analysis confirmed that the treatment caused late apoptotic cell death. Western blot analysis showed that mitochondrial dysfunction occurred in NOB-treated BFTC cells, leading to cytochrome C release into cytosol, activation of pro-apoptotic proteins (caspase-3, caspase-9, Bad, and Bax), and inhibition of anti-apoptotic proteins (Mcl-1, Bcl-xl, and Bcl-2). NOB-induced apoptosis was also mediated by regulating endoplasmic reticulum stress via the PERK/elF2α/ATF4/CHOP pathway, and downregulating the PI3K/AKT/mTOR pathway. Our results suggested that the cytotoxic and apoptotic effects of NOB on bladder cancer cells are associated with endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yih-Gang Goan
- Department of Surgery, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 91202, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Wen-Tung Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Chih-I Liu
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Choo-Aun Neoh
- Department of Research, Pingtung Christian Hospital, Pingtung 90059, Taiwan.
| | - Yu-Jen Wu
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan.
- Department of Biological Technology, Meiho University, Pingtung 91202, Taiwan.
- Yu Jun Biotechnology Co., Ltd., Kaohsiung 81363, Taiwan.
| |
Collapse
|
6
|
Chen JL, Hung CT, Keller JJ, Lin HC, Wu YJ. Proteomic analysis of retinal pigment epithelium cells after exposure to UVA radiation. BMC Ophthalmol 2019; 19:168. [PMID: 31375076 PMCID: PMC6679551 DOI: 10.1186/s12886-019-1151-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the primary cause of blindness and severe vision loss in developed countries and is responsible for 8.7% of blindness globally. Ultraviolet radiation can induce DNA breakdown, produce reactive oxygen species, and has been implicated as a risk factor for AMD. This study investigated the effects of UVA radiation on Human retinal pigment epithelial cell (ARPE-19) growth and protein expression. Methods ARPE-19 cells were irradiated with a UVA lamp at different doses (5, 10, 20, 30 and 40 J/cm2) from 10 cm. Cell viability was determined by MTT assay. Visual inspection was first achieved with inverted light microscopy and then the DeadEnd™ Fluorometric TUNEL System was used to observe nuclear DNA fragmentation. Flow cytometry based-Annexin V-FITC/PI double-staining was used to further quantify cellular viability. Mitochondrial membrane potential was assessed with JC-1 staining. 2D electrophoresis maps of exposed cells were compared to nonexposed cells and gel images analyzed with PDQuest 2-D Analysis Software. Spots with greater than a 1.5-fold difference were selected for LC-MS/MS analysis and some confirmed by western blot. We further investigated whether caspase activation, apoptotic-related mitochondrial proteins, and regulators of ER stress sensors were involved in UVA-induced apoptosis. Results We detected 29 differentially expressed proteins (9 up-regulated and 20 down-regulated) in the exposed cells. Some of these proteins such as CALR, GRP78, NPM, Hsp27, PDI, ATP synthase subunit alpha, PRDX1, and GAPDH are associated with anti-proliferation, induction of apoptosis, and oxidative-stress protection. We also detected altered protein expression levels among caspases (caspase 3 and 9) and in the mitochondrial (cytosolic cytochrome C, AIF, Mcl-1, Bcl-2, Bcl-xl, Bax, Bad, and p-Bad) and ER stress-related (p-PERK, p-eIF2α, ATF4 and CHOP) apoptotic pathways. Conclusions UVA irradiation suppressed the proliferation of ARPE-19 cells in a dose-dependent manner, caused quantitative loses in transmembrane potential (ΔΨm), and induced both early and late apoptosis.
Collapse
Affiliation(s)
- Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Tzu Hung
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Joseph Jordan Keller
- College of Medicine, The Ohio State University, Columbus, OH, USA.,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,International Master's Program, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hsien-Chung Lin
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan. .,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
7
|
In Vitro and In Vivo Neuroprotective Effects of Stellettin B Through Anti-Apoptosis and the Nrf2/HO-1 Pathway. Mar Drugs 2019; 17:md17060315. [PMID: 31146323 PMCID: PMC6627894 DOI: 10.3390/md17060315] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pharmaceutical agents for halting the progression of Parkinson’s disease (PD) are lacking. The current available medications only relieve clinical symptoms and may cause severe side effects. Therefore, there is an urgent need for novel drug candidates for PD. In this study, we demonstrated the neuroprotective activity of stellettin B (SB), a compound isolated from marine sponges. We showed that SB could significantly protect SH-SY5Y cells against 6-OHDA-induced cellular damage by inhibiting cell apoptosis and oxidative stress through PI3K/Akt, MAPK, caspase cascade modulation and Nrf2/HO-1 cascade modulation, respectively. In addition, an in vivo study showed that SB reversed 6-OHDA-induced a locomotor deficit in a zebrafish model of PD. The potential for developing SB as a candidate drug for PD treatment is discussed.
Collapse
|
8
|
Cole DW, Svider PF, Shenouda KG, Lee PB, Yoo NG, McLeod TM, Mutchnick SA, Yoo GH, Kaufman RJ, Callaghan MU, Fribley AM. Targeting the unfolded protein response in head and neck and oral cavity cancers. Exp Cell Res 2019; 382:111386. [PMID: 31075256 DOI: 10.1016/j.yexcr.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Many FDA-approved anti-cancer therapies, targeted toward a wide array of molecular targets and signaling networks, have been demonstrated to activate the unfolded protein response (UPR). Despite a critical role for UPR signaling in the apoptotic execution of cancer cells by many of these compounds, the authors are currently unaware of any instance whereby a cancer drug was developed with the UPR as the intended target. With the essential role of the UPR as a driving force in the genesis and maintenance of the malignant phenotype, a great number of pre-clinical studies have surged into the medical literature describing the ability of dozens of compounds to induce UPR signaling in a myriad of cancer models. The focus of the current work is to review the literature and explore the role of the UPR as a mediator of chemotherapy-induced cell death in squamous cell carcinomas of the head and neck (HNSCC) and oral cavity (OCSCC), with an emphasis on preclinical studies.
Collapse
Affiliation(s)
- Daniel W Cole
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter F Svider
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kerolos G Shenouda
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Paul B Lee
- Oakland University William Beaumont School of Medicine, Rochester Hills, Michigan, USA
| | - Nicholas G Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Thomas M McLeod
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sean A Mutchnick
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - George H Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael U Callaghan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrew M Fribley
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
9
|
Lin YC, Su JH, Lin SC, Chang CC, Hsia TC, Tung YT, Lin CC. A Soft Coral-Derived Compound, 11-Dehydrosinulariolide, Induces G2/M Cell Cycle Arrest and Apoptosis in Small Cell Lung Cancer. Mar Drugs 2018; 16:md16120479. [PMID: 30513611 PMCID: PMC6315988 DOI: 10.3390/md16120479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022] Open
Abstract
11-Dehydrosinulariolide, an active compound that is isolated from the cultured soft coral Sinularia flexibilis, has been suggested to show anti-tumor biological characteristics according to previous studies. However, its potential effect on small cell lung cancer (SCLC) remains unknown. The present study investigates the underlying mechanism for the treatment of SCLC in vitro and in vivo. Cell viability was examined using the methyl-thiazol-diphenyl-tetrazolium (MTT) assay. Flow cytometry was applied to evaluate cell cycle distribution and apoptosis. The expression of proteins related to the cell cycle and apoptosis was analyzed by Western blot analysis. Additionally, an in vivo study was performed to determine the anti-SCLC effect on an H1688 subcutaneous tumor in a BALB/c nude mouse model. 11-Dehydrosinulariolide inhibited cell growth, triggered G2/M arrest and induced H1688 cell apoptosis in a dose- and time-dependent manner. Additionally, 11-dehydrosinulariolide caused the accumulation of p53 and Bax, accompanied by the activation of DNA damage-inducing kinases, including ataxia-telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2). Moreover, 11-dehydrosinulariolide increased the activity of caspase-3 and -7, suggesting that caspases are involved in 11-dehydrosinulariolide-induced apoptosis. 11-Dehydrosinulariolide also increased the level of tumor suppressor phosphatase and tensin homolog (PTEN) and inhibited the expression of phosphorylated Akt. In the in vivo study, the intraperitoneal injection of 11-dehydrosinulariolide at a dosage of 10 mg/kg significantly inhibited tumor growth compared with the control treatment. Together, the data indicate that 11-dehydrosinulariolide induces G (2)/M cell cycle arrest and apoptosis through various cellular processes, including the upregulation of p53 and Bax, activation of ATM and Chk2, activation of caspase-3 and -7, and accumulation of PTEN, leading to inhibition of the Akt pathway. These findings suggest that 11-dehydrosinulariolide might serve as a promising chemotherapy drug in the treatment of SCLC.
Collapse
Affiliation(s)
- Yu-Chao Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan.
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Chia-Che Chang
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan.
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan.
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Chi-Chien Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 40227, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| |
Collapse
|
10
|
The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. Int J Mol Sci 2018; 19:ijms19051370. [PMID: 29734677 PMCID: PMC5983650 DOI: 10.3390/ijms19051370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 01/01/2023] Open
Abstract
Bornyl cis-4-hydroxycinnamate, an active compound isolated from Piper betle stems, was investigated in terms of its effects on A2058 and A375 melanoma cell proliferation and protein expression in this study. We used flow cytometric analysis to examine the early stages of apoptosis induced by bornyl cis-4-hydroxycinnamate in the two melanoma cell lines and employed comparative proteomic analysis to investigate the effects of this compound on protein expression in A375 cells. Master maps generated by PDQuest software from two-dimensional electrophoresis (2-DE) analysis of A375 cells showed that the expression levels of 35 proteins were significantly altered, with 18 proteins upregulated and 17 downregulated. The proteomics study identified several proteins that are involved in mitochondrial dysfunction and endoplasmic reticulum stress (ER stress), in addition to apoptosis-associated proteins, including prohibitin, hypoxia-upregulated protein 1, stress 70 protein, 78 kDa glucose-regulated protein (GRP78), and protein deglycase DJ-1 (protein DJ-1) in melanoma cells exposed to bornyl cis-4-hydroxycinnamate. The treatment also resulted in a marked decline of the mitochondrial membrane potential, in cytochrome C release into the cytosol, in the activation of Bcl-2-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad), caspase-3, and caspase-9, and in the decreased expression of p-Bad, B-cell lymphoma 2 (Bcl-2), Bcl-xl, and induced myeloid leukemia cell differentiation protein-1 (Mcl-1), indicating that apoptosis induced by bornyl cis-4-hydroxycinnamate was mediated by the mitochondria through the caspase-dependent pathway. Also, salubrinal (an eukaryotic initiation factor 2α inhibitor; eIF2α inhibitor) was able to protect the cells from bornyl cis-4-hydroxycinnamate-induced apoptosis. Bornyl cis-4-hydroxycinnamate-related cell death also implied that the protein kinase R-like endoplasmic reticulum kinase (PERK)–eIF2α–ATF4–CHOP signal pathways was activated upon bornyl cis-4-hydroxycinnamate treatment. Altogether, our results support the conclusion that bornyl cis-4-hydroxycinnamate-induced apoptosis in melanoma cells is associated with mechanisms correlated with the activation of caspase cascades, mitochondrial dysfunction, and endoplasmic reticulum stress, and indicate that this molecule has the potential to be developed as a chemotherapeutic agent for human melanoma.
Collapse
|
11
|
7-Acetylsinumaximol B Induces Apoptosis and Autophagy in Human Gastric Carcinoma Cells through Mitochondria Dysfunction and Activation of the PERK/eIF2α/ATF4/CHOP Signaling Pathway. Mar Drugs 2018; 16:md16040104. [PMID: 29587440 PMCID: PMC5923391 DOI: 10.3390/md16040104] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
The 7-Acetylsinumaximol B (7-AB), a bioactive cembranoid, was originally discovered from aquaculture soft coral Sinularia sandensis. The current study investigated the anti-proliferative property of 7-AB towards the NCI-N87 human gastric cancer cell line. An MTT cell proliferative assay was applied to evaluate cell survival, and immunofluorescence staining and western blotting were employed to analyze the effects of 7-AB on autophagy and apoptosis. Our results showed that 7-AB exerted a concentration-dependent anti-proliferative effect on NCI-N87 cells, and fluorescence staining indicated that the effect was due to the apoptosis induced by 7-AB. In addition, the 7-AB-induced anti-proliferation towards NCI-N87 cells was associated with the release of cytochrome c from mitochondria, activation of pro-apoptotic proteins (such as caspase-3/-9, Bax and Bad), and inhibition of anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1). The 7-AB treatment also triggered endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/ATF4/CHOP apoptotic pathway. Furthermore, 7-AB initiated autophagy in NCI-N87 cells and induced the expression of autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12, LC3-I, and LC3-II. Taken together, our findings suggested that 7-AB has the potential to be further developed as a useful anti-cancer or adjuvant agent for the treatment of human gastric cancer.
Collapse
|
12
|
Interactome Analysis of 11-Dehydrosinulariolide-Treated Oral Carcinoma Cell Lines Such as Ca9-22 and CAL-27 and Melanoma Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.10096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071523. [PMID: 28708091 PMCID: PMC5536013 DOI: 10.3390/ijms18071523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
Collapse
|
14
|
Lin JJ, Wang RYL, Chen JC, Chiu CC, Liao MH, Wu YJ. Cytotoxicity of 11-epi-Sinulariolide Acetate Isolated from Cultured Soft Corals on HA22T Cells through the Endoplasmic Reticulum Stress Pathway and Mitochondrial Dysfunction. Int J Mol Sci 2016; 17:ijms17111787. [PMID: 27801783 PMCID: PMC5133788 DOI: 10.3390/ijms17111787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/29/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Natural compounds from soft corals have been increasingly used for their antitumor therapeutic properties. This study examined 11-epi-sinulariolide acetate (11-epi-SA), an active compound isolated from the cultured soft coral Sinularia flexibilis, to determine its potential antitumor effect on four hepatocellular carcinoma cell lines. Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the results demonstrated that 11-epi-SA treatment showed more cytotoxic effect toward HA22T cells. Protein profiling of the 11-epi-SA-treated HA22T cells revealed substantial protein alterations associated with stress response and protein synthesis and folding, suggesting that the mitochondria and endoplasmic reticulum (ER) play roles in 11-epi-SA-initiated apoptosis. Moreover, 11-epi-SA activated caspase-dependent apoptotic cell death, suggesting that mitochondria-related apoptosis genes were involved in programmed cell death. The unfolded protein response signaling pathway-related proteins were also activated on 11-epi-SA treatment, and these changes were accompanied by the upregulated expression of growth arrest and DNA damage-inducible protein (GADD153) and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), the genes encoding transcription factors associated with growth arrest and apoptosis under prolonged ER stress. Two inhibitors, namely salubrinal (Sal) and SP600125, partially abrogated 11-epi-SA-related cell death, implying that the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)–activating transcription factor (ATF) 6–CHOP or the inositol-requiring enzyme 1 alpha (IRE1α)–c-Jun N-terminal kinase (JNK)–cJun signal pathway was activated after 11-epi-SA treatment. In general, these results suggest that 11-epi-SA exerts cytotoxic effects on HA22T cells through mitochondrial dysfunction and ER stress cell death pathways.
Collapse
Affiliation(s)
- Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo 33305, Taiwan.
| | - Jiing-Chuan Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ming-Hui Liao
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan.
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan.
| |
Collapse
|
15
|
Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways. Int J Mol Sci 2015. [PMID: 26204832 PMCID: PMC4519960 DOI: 10.3390/ijms160716469] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma.
Collapse
|
16
|
Cheng KC, Hung CT, Cheng KY, Chen KJ, Wu WC, Suen JL, Wu YJ, Chang CH. Proteomic surveillance of putative new autoantigens in thyroid orbitopathy. Br J Ophthalmol 2015; 99:1571-6. [PMID: 26034078 DOI: 10.1136/bjophthalmol-2015-306634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/13/2015] [Indexed: 11/04/2022]
Abstract
AIMS Thyroid orbitopathy (TO) is an autoimmune inflammatory disorder characterised by several ocular manifestations. Several autoantigens have been proposed to be involved in the pathogenesis of TO, but the autoantigen system and the mechanism of TO would be rather complex. In this study, an immunoproteomic method was used to survey novel autoantigens expressed in the orbital fat tissue of patients with TO. METHODS We used immunoproteomic, ELISA and immunohistochemical staining methods to survey novel autoantigens expressed in the orbital fat tissue of patients with TO. RESULTS Six protein spots showing high reactivity with the serum from the patients with TO were detected as candidate orbital autoantigens, and two of them (carbonic anhydrase 1 (CA1) and alcohol dehydrogenase 1B (ADH1B)) were further verified by ELISA and immunohistochemical staining. We found that CA1 and ADH1B could attribute target autoantigens in this autoimmune disease. We discovered anti-CA1 and anti-ADH1B antibody prevalence to be higher in patients with TO (68.57%/51.43%) or Graves' disease (GD) (72%/48%) than in healthy controls respectively. Immunohistochemical staining study revealed the significantly enhanced expressions of CA1 and ADH1B in orbital fat of TO compared with that in healthy controls. CONCLUSIONS We found that CA1 and ADH1B could attribute target autoantigens in this autoimmune disease. The high prevalence of these autoantibodies against CA1 and ADH1B in patients with TO and GD clarifies the potential clinical role for anti-CA1 and anti-ADH1B antibodies as biomarkers for GD and TO.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan Department of Ophthalmology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Tzu Hung
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Kai-Yuan Cheng
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-Jen Chen
- Department of Ophthalmology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Wen-Chuan Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan Department of Ophthalmology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| | - Cheng-Hsien Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan Department of Ophthalmology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan Department of Ophthalmology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
A Survey of Marine Natural Compounds and Their Derivatives with Anti-cancer Activity Reported in 2012. Molecules 2015; 20:7097-142. [PMID: 25903364 PMCID: PMC6272635 DOI: 10.3390/molecules20047097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/15/2022] Open
Abstract
Although considerable effort and progress has been made in the search for new anticancer drugs and treatments in the last several decades, cancer remains a major public health problem and one of the major causes of death worldwide. Many sources, including plants, animals, and minerals, are of interest in cancer research because of the possibility of identifying novel molecular therapeutics. Moreover, structure-activity-relationship (SAR) investigations have become a common way to develop naturally derived or semi-synthetic molecular analogues with improved efficacy and decreased toxicity. In 2012, approximately 138 molecules from marine sources, including isolated compounds and their associated analogues, were shown to be promising anticancer drugs. Among these, 62% are novel compounds. In this report, we review the marine compounds identified in 2012 that may serve as novel anticancer drugs.
Collapse
|
18
|
Proteome demonstration of alpha-1-acid glycoprotein and alpha-1-antichymotrypsin candidate biomarkers for diagnosis of enterovirus 71 infection. Pediatr Infect Dis J 2015; 34:304-10. [PMID: 25170552 DOI: 10.1097/inf.0000000000000534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human enterovirus 71 (EV71) is the major causative agents of hand-foot-and-mouth disease and frequently associated with severe complications such as encephalitis and death. Understanding the host response following enteroviral infection may facilitate the development of biomarkers for EV71 infections. METHODS We implemented two-dimensional gel electrophoresis technology on proteins prepared from serum obtained from 4 mild and 4 severe cases of EV71 infections and 4 healthy control children, to investigate the differentially expressed proteins. The differential expressed proteins were further identified with liquid chromatography-mass spectrometry/mass spectrometry analysis and western blotting validation. RESULTS A total of 27 differentially expressed proteins were picked and identified with liquid chromatography-mass spectrometry/mass spectrometry. Of the 27 identified proteins, 6 proteins were up-regulated in the mild-infected and severe EV71-infected patients in comparison to the healthy control group. Two proteins, alpha-1-acid-glycoprotein (AGP1) and alpha-antichymotrypsin (AACT), were not detected in the EV71-infected patients, but appeared in the control patient. Western blotting analysis demonstrated that AGP1 and AACT proteins were negatively associated with the clinical severity of EV71 infection. Similarly, both of the proteins were not detected in the secretion medium from the EV71-infected neuroblastoma cells, but detected in the mock-infected cells, suggesting that differentially expressed AGP1/AACT protein levels are in response to EV71 infections. CONCLUSIONS Two candidate proteins AGP1 and AACT, whose expression levels were reduced under the EV71 infection pathological condition, provide useful source of information for potential diagnostic biomarkers of EV71 infection in children.
Collapse
|
19
|
Su CC, Chen JYF, Din ZH, Su JH, Yang ZY, Chen YJ, Wang RYL, Wu YJ. 13-acetoxysarcocrassolide induces apoptosis on human gastric carcinoma cells through mitochondria-related apoptotic pathways: p38/JNK activation and PI3K/AKT suppression. Mar Drugs 2014; 12:5295-315. [PMID: 25342459 PMCID: PMC4210900 DOI: 10.3390/md12105295] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022] Open
Abstract
13-acetoxysarcocrassolide (13-AC), an active compound isolated from cultured Formosa soft coral Sarcophyton crassocaule, was found to possess anti-proliferative and apoptosis-inducing activities against AGS (human gastric adenocarcinoma cells) gastric carcinoma cells. The anti-tumor effects of 13-AC were determined by MTT assay, colony formation assessment, cell wound-healing assay, TUNEL/4,6-Diamidino-2-phenylindole (DAPI) staining, Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and flow cytometry. 13-AC inhibited the growth and migration of gastric carcinoma cells in a dose-dependent manner and induced both early and late apoptosis as assessed by flow cytometer analysis. 13-AC-induced apoptosis was confirmed through observation of a change in ΔΨm, up-regulated expression levels of Bax and Bad proteins, down-regulated expression levels of Bcl-2, Bcl-xl and Mcl-1 proteins, and the activation of caspase-3, caspase-9, p38 and JNK. Furthermore, inhibition of p38 and JNK activity by pretreatment with SB03580 (a p38-specific inhibitor) and SP600125 (a JNK-specific inhibitor) led to rescue of the cell cytotoxicity of 13-AC-treated AGS cells, indicating that the p38 and the JNK pathways are also involved in the 13-AC-induced cell apoptosis. Together, these results suggest that 13-AC induces cell apoptosis against gastric cancer cells through triggering of the mitochondrial-dependent apoptotic pathway as well as activation of the p38 and JNK pathways.
Collapse
Affiliation(s)
- Ching-Chyuan Su
- Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan.
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Zhong-Hao Din
- Graduate Institute of Applied Healthy and Biotechnology, Meiho University, Pingtung 91202, Taiwan.
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94446, Taiwan.
| | - Zih-Yan Yang
- Graduate Institute of Food Science, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan.
| | - Yi-Jen Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Robert Y L Wang
- Department of Biomedical Sciences and Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan.
| |
Collapse
|
20
|
Lu CM, Lin JJ, Huang HH, Ko YC, Hsu JL, Chen JC, Din ZH, Wu YJ. A panel of tumor markers, calreticulin, annexin A2, and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis. BMC Cancer 2014; 14:363. [PMID: 24884814 PMCID: PMC4039341 DOI: 10.1186/1471-2407-14-363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022] Open
Abstract
Background Upper tract urothelial carcinoma (UTUC) is a tumor with sizable metastases and local recurrence. It has a worse prognosis than bladder cancer. This study was designed to investigate the urinary potential tumor markers of UTUC. Methods Between January 2008 and January 2009, urine was sampled from 13 patients with UTUC and 20 healthy adults. The current study identified biomarkers for UTUC using non-fixed volume stepwise weak anion exchange chromatography for fractionation of urine protein prior to two-dimensional gel electrophoresis. Results Fifty five differential proteins have been determined by comparing with the 2-DE maps of the urine of UTUC patients and those of healthy people. Western blotting analysis and immunohistochemistry of tumor tissues and normal tissues from patients with UTUC were carried out to further verify five possible UTUC biomarkers, including zinc-alpha-2-glycoprotein, calreticulin, annexin A2, annexin A3 and haptoglobin. The data of western blot and immunohistochemical analysis are consistent with the 2-DE data. Combined the experimental data in the urine and in tumor tissues collected from patients with UTUC, the crucial over-expressed proteins are calreticulin, annexin A2, and annexin A3. Conclusions Calreticulin, annexin A2, and annexin A3 are very likely a panel of biomarkers with potential value for UTUC diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
21
|
Su TR, Lin JJ, Tsai CC, Huang TK, Yang ZY, Wu MO, Zheng YQ, Su CC, Wu YJ. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 2013; 14:20443-58. [PMID: 24129178 PMCID: PMC3821624 DOI: 10.3390/ijms141020443] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 11/17/2022] Open
Abstract
Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions.
Collapse
Affiliation(s)
- Tzu-Rong Su
- Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan; E-Mails: (T.-R.S.); (T.-K.H.); (C.-C.S.)
| | - Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mail:
| | - Chi-Chu Tsai
- Kaohsiung District Agricultural Improvement Station, Pingtung 900, Taiwan; E-Mail:
| | - Tsu-Kei Huang
- Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan; E-Mails: (T.-R.S.); (T.-K.H.); (C.-C.S.)
| | - Zih-Yan Yang
- Graduate Institute of Food Science, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mail:
| | - Ming-O Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mails: (M.-O.W.); (Y.-Q.Z.)
- Graduate Institute of Applied Health and Biotechnology, Meiho University, Pingtung 91202, Taiwan
| | - Yu-Qing Zheng
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mails: (M.-O.W.); (Y.-Q.Z.)
| | - Ching-Chyuan Su
- Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan; E-Mails: (T.-R.S.); (T.-K.H.); (C.-C.S.)
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mails: (M.-O.W.); (Y.-Q.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-8-779-9821 (ext. 8613); Fax: +886-8-779-7821
| |
Collapse
|
22
|
Chen YJ, Su JH, Tsao CY, Hung CT, Chao HH, Lin JJ, Liao MH, Yang ZY, Huang HH, Tsai FJ, Weng SH, Wu YJ. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2α/ATF4/CHOP pathway. Molecules 2013; 18:10146-61. [PMID: 23973991 PMCID: PMC6270604 DOI: 10.3390/molecules180910146] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022] Open
Abstract
Sinulariolide, an active compound isolated from the cultured soft coral Sinularia flexibilis, has potent anti-microbial and anti-tumorigenesis effects towards melanoma and bladder cancer cells. In this study, we investigated the effects of sinulariolide on hepatocellular carcinoma (HCC) cell growth and protein expression. Sinulariolide suppressed the proliferation and colony formation of HCC HA22T cells in a dose-dependent manner and induced both early and late apoptosis according to flow cytometry, Annexin V/PI stain and TUNEL/DAPI stain analyses. A mechanistic analysis demonstrated that sinulariolide-induced apoptosis was activated through a mitochondria-related pathway, showing up-regulation of Bax, Bad and AIF, and down- regulation of Bcl-2, Bcl-xL, MCl-1 and p-Bad. Sinulariolide treatment led to loss of the mitochondrial membrane potential, release of mitochondrial cytochrome c to the cytosol, and activation of both caspase-9 and caspase-3. Sinulariolide-induced apoptosis was significantly blocked by the caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK. The increased expression of cleaved PARP also suggested that caspase-independent apoptotic pathway was involved. In the western blotting; the elevation of ER chaperones GRP78; GRP94; and CALR; as well as up-regulations of PERK/eIF2α/ATF4/CHOP; and diminished cell death with pre-treatment of eIF2α phosphatase inhibitor; salubrinal; implicated the involvement of ER stress-mediated PERK/eIF2α/ATF4/CHOP apoptotic pathway following sinulariolide treatment in hepatoma cells. The current study suggested sinulariolide-induced hepatoma cell cytotoxicity involved multiple apoptotic signal pathways. This may implicate that sinulariolide is a potential compound for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 80761, Taiwan; E-Mail:
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; E-Mail:
| | - Chia-Yu Tsao
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mail:
| | - Chun-Tzu Hung
- Department of Ophthalmology, Yuan’s General Hospital, Kaohsiung 80249, Taiwan; E-Mail:
| | - Hsiang-Hao Chao
- English Division of the Second Faculty of Medicine, Medical University of Warsaw, Warsaw 02091, Poland; E-Mail:
| | - Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mails: (J.-J.L.); (M.-H.L.)
| | - Ming-Hui Liao
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mails: (J.-J.L.); (M.-H.L.)
| | - Zih-Yan Yang
- Graduate Institute of Food Science, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mail:
| | - Han Hisang Huang
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mails: (H.H.H.); (F.-J.T.)
| | - Feng-Jen Tsai
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mails: (H.H.H.); (F.-J.T.)
| | - Shun-Hsiang Weng
- Department of Hospitality Management, Meiho University, Pingtung 91202, Taiwan; E-Mail:
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mails: (H.H.H.); (F.-J.T.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +886-8-779-9821 (ext. 8613); Fax: +886-8-779-7821
| |
Collapse
|
23
|
Li HH, Su JH, Chiu CC, Lin JJ, Yang ZY, Hwang WI, Chen YK, Lo YH, Wu YJ. Proteomic investigation of the sinulariolide-treated melanoma cells A375: effects on the cell apoptosis through mitochondrial-related pathway and activation of caspase cascade. Mar Drugs 2013; 11:2625-42. [PMID: 23880933 PMCID: PMC3736442 DOI: 10.3390/md11072625] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022] Open
Abstract
Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigated the effects of sinulariolide on A375 melanoma cell growth and protein expression. Sinulariolide suppressed the proliferation and migration of melanoma cells in a concentration-dependent manner and was found to induce both early and late apoptosis by flow cytometric analysis. Comparative proteomic analysis was conducted to investigate the effects of sinulariolide at the molecular level by comparison between the protein profiles of melanoma cells treated with sinulariolide and those without treatment. Two-dimensional gel electrophoresis (2-DE) master maps of control and treated A375 cells were generated by analysis with PDQuest software. Comparison between these maps showed up- and downregulation of 21 proteins, seven of which were upregulated and 14 were downregulated. The proteomics studies described here identify some proteins that are involved in mitochondrial dysfunction and apoptosis-associated proteins, including heat shock protein 60, heat shock protein beta-1, ubiquinol cytochrome c reductase complex core protein 1, isocitrate dehydrogenase (NAD) subunit alpha (down-regulated), and prohibitin (up-regulated), in A375 melanoma cells exposed to sinulariolide. Sinulariolide-induced apoptosis is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome c, and activation of Bax, Bad and caspase-3/-9, as well as suppression of p-Bad, Bcl-xL and Bcl-2. Taken together, our results show that sinulariolide-induced apoptosis might be related to activation of the caspase cascade and mitochondria dysfunction pathways. Our results suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human melanoma.
Collapse
Affiliation(s)
- Hsing-Hui Li
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; E-Mails: (H.-H.L.); (J.-H.S.)
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan; E-Mails: (H.-H.L.); (J.-H.S.)
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80761, Taiwan; E-Mail:
| | - Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mail:
| | - Zih-Yan Yang
- Graduate Institute of Food Science, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan; E-Mail:
| | - Wen-Ing Hwang
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan; E-Mails: (W.-I.H.); (Y.-K.C.)
| | - Yu-Kuei Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan; E-Mails: (W.-I.H.); (Y.-K.C.)
| | - Yu-Hsuan Lo
- Excellence Biotech Co., Kaohsiung 80655, Taiwan; E-Mail:
| | - Yu-Jen Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80761, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-8-7799821 (ext. 8613); Fax: +886-8-7797821
| |
Collapse
|
24
|
Duwi Fanata WI, Lee SY, Lee KO. The unfolded protein response in plants: a fundamental adaptive cellular response to internal and external stresses. J Proteomics 2013; 93:356-68. [PMID: 23624343 DOI: 10.1016/j.jprot.2013.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
In eukaryotic cells, proteins that enter the secretory pathway are translated on membrane-bound ribosomes and translocated into the endoplasmic reticulum (ER), where they are subjected to chaperone-assisted folding, post-translational modification and assembly. During the evolution of the eukaryotic cell, a homeostatic mechanism was developed to maintain the functions of the ER in the face of various internal and external stresses. The most severe stresses imposed on eukaryotic cells can induce ER stress that can overwhelm the processing capacity of the ER, leading to the accumulation of unfolded proteins in the ER lumen. To cope with this accumulation of unfolded proteins, the unfolded protein response (UPR) is activated to alter transcriptional programs through inositol-requiring enzyme 1 (IRE1) and bZIP17/28 in plants. In addition to transcriptional induction of UPR genes, quality control (QC), translational attenuation, ER-associated degradation (ERAD) and ER stress-induced apoptosis are also conserved as fundamental adaptive cellular responses to ER stress in plants. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Wahyu Indra Duwi Fanata
- Division of Applied Life Science (BK21 Program) and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 660-701, Republic of Korea
| | | | | |
Collapse
|
25
|
Huang KJ, Chen YC, El-Shazly M, Du YC, Su JH, Tsao CW, Yen WH, Chang WB, Su YD, Yeh YT, Lu MC. 5-Episinuleptolide acetate, a norcembranoidal diterpene from the formosan soft coral Sinularia sp., induces leukemia cell apoptosis through Hsp90 inhibition. Molecules 2013; 18:2924-33. [PMID: 23459302 PMCID: PMC6270000 DOI: 10.3390/molecules18032924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/24/2023] Open
Abstract
5-Episinuleptolide acetate (5EPA), a cytotoxic norcembranoidal diterpene recently identified from the Formosan soft coral Sinularia sp., exhibited potent activity against the K562, Molt 4 and HL 60 cancer cell lines. The antiproliferative assay, as well as the annexin V-FITC/propidium iodide (PI) apoptotic assay, indicated that the HL 60 cell line is the most sensitive one towards 5EPA. This diterpenoid led to caspases -3, -8, and -9 activation as well as PARP cleavage. It also induced ROS generation, calcium accumulation and disruption of mitochondrial membrane potential. Additionally, the expression levels of Hsp90 protein and several client proteins were downregulated in response to 5EPA treatment. These results suggest that 5EPA’s cytotoxic effect on HL 60 cells may be attributed to the inhibition of Hsp90 as well as the induction of mitochondrial stress which finally results in apoptotic cell death.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Department of Life Science, National Dong Hwa University, Hualien, 974, Taiwan
| | - Yu-Cheng Chen
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Ying-Chi Du
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jui-Hsin Su
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
| | - Chia-Wei Tsao
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Wei-Hsuan Yen
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Wen-Been Chang
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
- Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung 944, Taiwan
| | - Yin-Di Su
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung 944, Taiwan
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Mei-Chin Lu
- Department of Life Science, National Dong Hwa University, Hualien, 974, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-8882-5037; Fax: +886-8882-5087
| |
Collapse
|
26
|
Neoh CA, Wang RYL, Din ZH, Su JH, Chen YK, Tsai FJ, Weng SH, Wu YJ. Induction of apoptosis by sinulariolide from soft coral through mitochondrial-related and p38MAPK pathways on human bladder carcinoma cells. Mar Drugs 2012; 10:2893-911. [PMID: 23249971 PMCID: PMC3528132 DOI: 10.3390/md10122893] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/30/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Abstract
Sinulariolide, an isolated compound from the soft coral Sinularia flexibilis, possesses the anti-proliferative, anti-migratory and apoptosis-inducing activities against the TSGH bladder carcinoma cell. The anti-tumor effects of sinulariolide were determined by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, cell migration assay and flow cytometry, respectively. Sinulariolide inhibited the growth and migration of bladder carcinoma cells in a dose-dependent manner, as well as induced both early and late apoptosis as determined by the flow cytometer. Also, the sinulariolide-induced apoptosis is related to the mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome C, activation of caspase-3/-9, Bax and Bad, as well as suppression of Bcl-2/Bcl-xL/Mcl-1. Detection of the PARP-1 cleaved product suggested the partial involvement of caspase-independent pathways. Moreover, inhibition of p38MAPK activity leads to the rescue of the cell cytotoxicity of sinulariolide-treated TSGH cells, indicating that the p38MAPK pathway is also involved in the sinulariolide-induced cell apoptosis. Altogether, these results suggest that sinulariolide induces apoptosis against bladder cancer cells through mitochondrial-related and p38MAPK pathways.
Collapse
Affiliation(s)
- Choo-Aun Neoh
- Department of Research, Pingtung Christian Hospital, Pingtung 90059, Taiwan; E-Mail:
| | - Robert Y.-L. Wang
- Department of Biomedical Sciences and Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan; E-Mail:
| | - Zhong-Hao Din
- Graduate Institute of Applied Healthy and Biotechnology, Meiho University, Pingtung 91202, Taiwan; E-Mail:
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94446, Taiwan; E-Mail:
| | - Yu-Kuei Chen
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan; E-Mail:
| | - Feng-Jen Tsai
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mail:
| | - Shun-Hsiang Weng
- Department of Hospitality Management, Meiho University, Pingtung 91202, Taiwan; E-Mail:
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-8-7799821 (ext. 8613); Fax: +886-8-7797821
| |
Collapse
|