1
|
Caballero-Campo P, Lira-Albarrán S, Amaral A, Hong C, Shah N, Carles A, Li D, Barrera D, Hernández-Silva G, Ramalho-Santos J, Wang T, Hirst M, Larrea F, Costello J, Rinaudo P, Chirinos M. Integrative Molecular and Functional Analysis of Human Sperm Subpopulations to Identify New Biomarkers of Fertilization Potential. Arch Med Res 2025; 56:103210. [PMID: 40168948 DOI: 10.1016/j.arcmed.2025.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/28/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Human ejaculates are composed of sperm subsets with heterogeneous characteristics. Comparative studies of sperm subpopulations with differences in motility may serve to investigate the functional and molecular features that are crucial for reaching the oocyte and fertilizing. OBJECTIVE To identify functional and molecular markers that characterize sperm subpopulations with high and low motility. MATERIALS AND METHODS Semen samples from 11 donors with proven fertility were processed by density gradient centrifugation to isolate high (F1) and low (F2) motility sperm subpopulations. Besides motility, we evaluated viability, chromatin integrity, mitochondrial membrane potential, capacitation, and acrosomal status. F1 and F2 were subjected to comparative methylome and transcriptome analyses by whole-genome bisulfite sequencing and RNA sequencing, respectively. Further validation of candidate biomarkers at the RNA and protein levels was performed with semen samples from six normozoospermic volunteers using quantitative PCR and Western blotting. RESULTS Spermatozoa from the F1 fractions exhibited higher mitochondrial membrane potential and viability than F2. Comparative methylome and transcriptome analyses of F1 and F2 identified 271 differentially methylated genes and 82 differentially expressed genes. Notably, CEP128 and CSTPP1 were downregulated and differentially methylated in the F2 fraction. Quantitative PCR confirmed the downregulation of these two genes in F2, and the downregulation of CEP128 was further validated at the protein level by Western blotting. CONCLUSION F1 spermatozoa are characterized by elevated mitochondrial membrane potential, viability, and higher expression of CEP128 and CSTPP1. Future studies should evaluate the potential of these functional variables and genes as biomarkers of fertility, either individually or in combination.
Collapse
Affiliation(s)
- Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Fundación Tambre, Madrid, Spain
| | - Saúl Lira-Albarrán
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California School of Medicine, San Francisco, CA, USA
| | - Alexandra Amaral
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Chibo Hong
- Weill Institute for Neurosciences, Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Nakul Shah
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Annaick Carles
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daofeng Li
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joao Ramalho-Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ting Wang
- Department of Genetics, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joe Costello
- Weill Institute for Neurosciences, Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Paolo Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California School of Medicine, San Francisco, CA, USA
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
2
|
Sánchez-Cárdenas C, Oliver EI, Chávez JC, Luque GM, Hernández-Cruz A, Buffone MG, Darszon A, Visconti PE, Romarowski A. Ion channels and transporters involved in calcium flux regulation in mammalian sperm. Curr Top Dev Biol 2025; 162:351-385. [PMID: 40180515 DOI: 10.1016/bs.ctdb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
After ejaculation, mammalian spermatozoa are not capable of fertilizing a metaphase II-arrested egg. They require to undergo a series of biochemical and physiological processes collectively known as capacitation. In all these processes, the regulation of calcium ions fluxes plays essential roles and involves participation of many channels and transporters localized in the plasma membrane as well as in the membrane of intracellular organelles. In mammalian sperm, a fraction of these molecules has been proposed to contribute to mature sperm function. However, in many cases, the evidence for the presence of a given protein is based on the use of agonists and antagonists with more than one target. In this review, we will critically analyze the published evidence supporting the presence of these molecules in mammalian sperm with special emphasis to methods involving tandem mass spectrometry identification, electrophysiological evidence and controlled immunoassays.
Collapse
Affiliation(s)
- Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico.
| | - Enrique I Oliver
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Arturo Hernández-Cruz
- Departamento de Neuropatología Molecular y Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States.
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Elango K, Kekäläinen J. Putting Nose into Reproduction: Influence of Nasal and Reproductive Odourant Signaling on Male Reproduction. Mol Reprod Dev 2025; 92:e70010. [PMID: 39834068 DOI: 10.1002/mrd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Odourant receptors (ORs) are not restricted only to the nose, but also occur in many other organs and tissues, including the reproductive system. In fact, ORs are the most heavily expressed in testis than in any other extra-nasal tissue. Accumulating evidence suggests that olfactory and reproductive systems are both structurally and functionally linked and that these interconnections can influence various aspects of reproduction. In this article, we first review our current understanding of these interconnections and then collate accumulated evidence on the presence of ORs in the male reproductive system and sperm cells. We then investigate the potential role of female reproductive tract odourants in sperm chemotaxis and selection. Finally, since the existing evidence especially for sperm odor sensing capability and its physiological function are controversial, we also review potential reasons for the controversy and propose some ways to resolve the debate. Collectively, we conclude that reproductive odourant signaling may play an important, although currently largely unclear role in many key processes directly related to male fertility. However, since we lack holistic understanding of the functional significance of ORs and odor sensing pathways of the male reproductive system, more empirical research is warranted.
Collapse
Affiliation(s)
- Kamaraj Elango
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
4
|
Zhou XH, Hua MM, Tang JN, Wu BG, Wang XM, Shi CG, Yang Y, Wu J, Wu B, Zhang BL, Sun YS, Zhang TC, Shi HJ. Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411). Asian J Androl 2025; 27:120-128. [PMID: 39091129 PMCID: PMC11784959 DOI: 10.4103/aja202442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Collapse
Affiliation(s)
- Xue-Hai Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Min-Min Hua
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Jia-Nan Tang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Bang-Guo Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Xue-Mei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Chang-Gen Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Yang Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Jun Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Bin Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Bao-Li Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Yi-Si Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Tian-Cheng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Hui-Juan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| |
Collapse
|
5
|
Sawaid Kaiyal R, Mukherjee SD, Panner Selvam MK, Miller AW, Vij SC, Lundy SD. Mitochondrial dysfunction signatures in idiopathic primary male infertility: a validated proteomics-based diagnostic approach. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1479568. [PMID: 39726694 PMCID: PMC11669654 DOI: 10.3389/frph.2024.1479568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Research question Male infertility accounts for almost half of all infertility cases worldwide, with idiopathic male infertility accounting for up to 30% of the cases. Sperm proteomics has revealed critical molecular pathway changes in men with infertility. However, the sperm mitochondrial proteome remains poorly understood. We attempted to answer the following question: Do patients with idiopathic primary male infertility exhibit a proteomic signature associated with mitochondrial dysfunction that could be used as a target for future mechanistic investigations? Design Patients with idiopathic primary infertility (20-40 years old) referred to the Cleveland Clinic between March 2012 and April 2014 were compared with fertile donor controls. Sperm proteins were analyzed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis page (SDS-PAGE) and liquid chromatography-mass spectrometry (LC-MS), and differentially expressed proteins (DEPs) were identified based on significance test results and fold change thresholds. Protein expression was validated using western blotting. Results Proteomic analysis of pooled samples from fertile donors (n = 5) and patients with idiopathic primary infertility (n = 5) identified 1,134 proteins, including 344 DEPs. Mitochondrial dysfunction topped the ingenuity toxicity list. Analysis of expression levels of three mitochondrial proteins known to combat oxidative stress revealed that peroxiredoxin-5 (PRDX5) and superoxide dismutase 2 (SOD2), but not glutathione disulphide reductase, were significantly decreased in patient samples compared with those in fertile-donor samples. Conclusions This study revealed an association of downregulated expression of PRDX5 and SOD2 in sperm samples of patients with idiopathic primary male infertility. Our results support future mechanistic studies and development of advanced diagnostic methods to better identify men with mitochondria-related male infertility.
Collapse
Affiliation(s)
- Raneen Sawaid Kaiyal
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH, United States
| | | | - Aaron W. Miller
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Sarah C. Vij
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Scott D. Lundy
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
6
|
Liu S, Wang T, Liu Y, Wang S, Li F, Chen J, Hu X, Zhang M, Wang J, Li Y, James A, Hou R, Cai K. Dataset of Panda sperm proteome. Data Brief 2024; 57:111052. [PMID: 39525650 PMCID: PMC11546123 DOI: 10.1016/j.dib.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The giant panda (Ailuropoda melanoleuca), a vulnerable species and an icon of wildlife conservation, is still at risk due to habitat fragmentation and a low reproductive rate. To further safeguard the giant panda from extinction, a captive breeding program was established in the mid 1980's, however the growth of this population has been hindered by the poor reproductive ability of captive male giant pandas. To address this, we investigated the sperm proteome of the giant panda as detailed information on sperm proteome is unavailable, as it is a highly specialized area of study. A study of adult panda sperm proteome identified 1921 proteins with enriched domains, including EF-hand, AAA+ ATPase, and WD 40 repeat. A comparison with four other species revealed common sperm proteins related to metabolic processes, especially glycolysis and citrate cycle, which are crucial for sperm energy. Panda-specific proteins were mainly associated with cellular protein metabolism. Serpin domain-related proteins may play a key role in panda semen properties and liquefaction, involving prefoldin beta-like and heat shock chaperonin-binding. This research contributes to understanding giant panda reproduction and aids in conservation efforts.
Collapse
Affiliation(s)
- Siying Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Shenfei Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Xianbiao Hu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Mengshi Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Ayala James
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, Sichuan, China
| |
Collapse
|
7
|
Bhushan V, Ali SA, Parashar A, Kumar S, Mohanty AK. Mapping the proteome landscape of Indian Zebu (Sahiwal) spermatozoa using high-resolution mass spectrometry and in-silico annotation. Anim Biotechnol 2024; 35:2428402. [PMID: 39564716 DOI: 10.1080/10495398.2024.2428402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Proteomic analysis of sperm cells offers significant insights into proteins' structural, functional, and localization aspects within biological systems. Sahiwal, a native Indian cattle breed, is well known for its disease resistance, calving ease, and resilience to drought. This study addressed the gap in Sahiwal's comprehensive sperm proteome profiling data. The research involved the global in-silico quantitative high-resolution mass spectrometry-based protein profiling of Indian Zebu sperm, identifying 4651 sperm proteins. Beyond mere identification, the study characterized these proteins at a sub-organellar level to facilitate a better understanding of their functional attributes. Gene Ontology analysis of sperm proteins facilitated the segregation of proteins based on their function, localization, and mode of action. The study revealed that despite the limited number of organelles, sperm cells encapsulate a wide array of crucial proteins, compensating for the deficiency of organelles through the presence of multifunctional proteins. Most identified sperm proteins actively participate in spermatogenesis, motility, acrosome reaction, capacitation, and seminal plasma binding, directly or indirectly. Notably, the results not only present the highest number of identified bovine sperm proteins but also hold the potential to pave the way for empirical research on sperm functionality, egg-sperm interaction, sperm-sex sorting biomarkers, sperm quality, and bull fertility.
Collapse
Affiliation(s)
- Vanya Bhushan
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Abhishek Parashar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
8
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
9
|
López-González I, Oseguera-López I, Castillo R, Darszon A. Influence of extracellular ATP on mammalian sperm physiology. Reprod Fertil Dev 2024; 36:RD23227. [PMID: 38870344 DOI: 10.1071/rd23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - I Oseguera-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - R Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
10
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
11
|
Zhang J, Zheng L, Chen Y, Luo T, Zeng X, Kang H. LRRC52 is likely a functional component of human KSper†. Biol Reprod 2024; 110:711-721. [PMID: 38267364 DOI: 10.1093/biolre/ioae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Completion of fertilization is orchestrated by various ion channels in sperm membrane. Hyperpolarization of membrane potential, an indispensable event during the capacitation process, is dominated by sperm potassium channel (KSper). In addition to sperm-specific SLO3, which forms the channel pore, the auxiliary subunit leucine-rich-repeat-containing protein 52 (LRRC52) is required to form mKSper to function under physiological conditions. However, in human sperm, although most evidence supports that hSLO3 is the pore-forming subunit, whether hLRRC52 contributes to hKSper conductance and modulates sperm function remains to be understood. Here, using an extracellular segment that is homologous between mice and humans as an antigen, we developed a polyclonal antibody designed as LID1 that specifically detected mLRRC52 and performed co-immunoprecipitation with mSLO3. Additionally, patch-clamp recordings of mouse sperm showed that, physiological activation of mKSper and sperm functions were dramatically attenuated after treatment with LID1, indicating that LID1 functionally disrupted the regulation of mLRRC52 on mKSper. Next, LID1 was used to investigate the significance of hLRRC52 for hKSper activation. As a result, hLRRC52 was expressed in human sperm and might be assembled with hSLO3. More importantly, LID1 inhibited hKSper currents and depolarized sperm membrane potential, supporting essential modulation of hLRRC52 in hKSper. Ca2+ signaling of human sperm was also compromised in the presence of LID1, which impaired sperm motility and acrosome reaction. Because LID1 specifically inhibited both mKSper and hKSper but not mCatSper or hCatSper, our results suggest that hLRRC52 functions as an important component of hKSper and regulates sperm physiological functions.
Collapse
Affiliation(s)
- Jiali Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liping Zheng
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Chen
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Luo
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Hang Kang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
13
|
Jreijiri F, Cavarocchi E, Amiri-Yekta A, Cazin C, Hosseini SH, El Khouri E, Patrat C, Thierry-Mieg N, Ray PF, Dulioust E, Whitfield M, Touré A. CCDC65, encoding a component of the axonemal Nexin-Dynein regulatory complex, is required for sperm flagellum structure in humans. Clin Genet 2024; 105:317-322. [PMID: 37975235 DOI: 10.1111/cge.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Sperm flagella share an evolutionary conserved microtubule-based structure with motile cilia expressed at the surface of several cell types, such as the airways epithelial cells. As a result, male infertility can be observed as an isolated condition or a syndromic trait, illustrated by Primary Cilia Dyskinesia (PCD). We report two unrelated patients showing multiple morphological abnormalities of the sperm flagella (MMAF) and carrying distinct homozygous truncating variants in the PCD-associated gene CCDC65. We characterized one of the identified variants (c.1208del; p.Asn403Ilefs*9), which induces the near absence of CCDC65 protein in patient sperm. In Chlamydomonas, CCDC65 ortholog (DRC2, FAP250) is a component of the Nexin-Dynein Regulatory complex (N-DRC), which interconnects microtubule doublets and coordinates dynein arms activity. In sperm cells from the patient, we also show the loss of GAS8, another component of the N-DRC, supporting a structural/functional link between the two proteins. Our work indicates that, similarly to ciliary axoneme, CCDC65 is required for sperm flagellum structure. Importantly, our work provides first evidence that mutations in the PCD-associated gene CCDC65 also cause asthenozoospermia.
Collapse
Affiliation(s)
- Fadwa Jreijiri
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amir Amiri-Yekta
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Caroline Cazin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, Grenoble, France
| | - Seyedeh-Hanieh Hosseini
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elma El Khouri
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Catherine Patrat
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
- Biologie de la Reproduction - APHP Centre-Université Paris Cité, Cochin, Paris, France
| | | | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
- Biologie de la Reproduction - APHP Centre-Université Paris Cité, Cochin, Paris, France
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Khanal S, Jaiswal A, Chowdanayaka R, Puente N, Turner K, Assefa KY, Nawras M, Back ED, Royfman A, Burkett JP, Cheong SH, Fisher HS, Sindhwani P, Gray J, Ramachandra NB, Avidor-Reiss T. The evolution of centriole degradation in mouse sperm. Nat Commun 2024; 15:117. [PMID: 38168044 PMCID: PMC10761967 DOI: 10.1038/s41467-023-44411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Centrioles are subcellular organelles found at the cilia base with an evolutionarily conserved structure and a shock absorber-like function. In sperm, centrioles are found at the flagellum base and are essential for embryo development in basal animals. Yet, sperm centrioles have evolved diverse forms, sometimes acting like a transmission system, as in cattle, and sometimes becoming dispensable, as in house mice. How the essential sperm centriole evolved to become dispensable in some organisms is unclear. Here, we test the hypothesis that this transition occurred through a cascade of evolutionary changes to the proteins, structure, and function of sperm centrioles and was possibly driven by sperm competition. We found that the final steps in this cascade are associated with a change in the primary structure of the centriolar inner scaffold protein FAM161A in rodents. This information provides the first insight into the molecular mechanisms and adaptive evolution underlying a major evolutionary transition within the internal structure of the mammalian sperm neck.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rajanikanth Chowdanayaka
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru, India
| | - Nahshon Puente
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Mohamad Nawras
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ezekiel David Back
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi S Fisher
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
15
|
Castillo J, de la Iglesia A, Leiva M, Jodar M, Oliva R. Proteomics of human spermatozoa. Hum Reprod 2023; 38:2312-2320. [PMID: 37632247 DOI: 10.1093/humrep/dead170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomic methodologies offer a robust approach to identify and quantify thousands of proteins from semen components in both fertile donors and infertile patients. These strategies provide an unprecedented discovery potential, which many research teams are currently exploiting. However, it is essential to follow a suitable experimental design to generate robust data, including proper purification of samples, appropriate technical procedures to increase identification throughput, and data analysis following quality criteria. More than 6000 proteins have been described so far through proteomic analyses in the mature sperm cell, increasing our knowledge on processes involved in sperm function, intercommunication between spermatozoa and seminal fluid, and the transcriptional origin of the proteins. These data have been complemented with comparative studies to ascertain the potential role of the identified proteins on sperm maturation and functionality, and its impact on infertility. By comparing sperm protein profiles, many proteins involved in the acquisition of fertilizing ability have been identified. Furthermore, altered abundance of specific protein groups has been observed in a wide range of infertile phenotypes, including asthenozoospermia, oligozoospermia, and normozoospermia with unsuccessful assisted reproductive techniques outcomes, leading to the identification of potential clinically useful protein biomarkers. Finally, proteomics has been used to evaluate alterations derived from semen sample processing, which might have an impact on fertility treatments. However, the intrinsic heterogeneity and inter-individual variability of the semen samples have resulted in a relatively low overlap among proteomic reports, highlighting the relevance of combining strategies for data validation and applying strict criteria for proteomic data analysis to obtain reliable results. This mini-review provides an overview of the most critical steps to conduct robust sperm proteomic studies, the most relevant results obtained so far, and potential next steps to increase the impact of sperm proteomic data.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina Leiva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Dacheux D, Martinez G, Broster Reix CE, Beurois J, Lores P, Tounkara M, Dupuy JW, Robinson DR, Loeuillet C, Lambert E, Wehbe Z, Escoffier J, Amiri-Yekta A, Daneshipour A, Hosseini SH, Zouari R, Mustapha SFB, Halouani L, Jiang X, Shen Y, Liu C, Thierry-Mieg N, Septier A, Bidart M, Satre V, Cazin C, Kherraf ZE, Arnoult C, Ray PF, Toure A, Bonhivers M, Coutton C. Novel axonemal protein ZMYND12 interacts with TTC29 and DNAH1, and is required for male fertility and flagellum function. eLife 2023; 12:RP87698. [PMID: 37934199 PMCID: PMC10629824 DOI: 10.7554/elife.87698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.
Collapse
Affiliation(s)
- Denis Dacheux
- University of Bordeaux, CNRSBordeauxFrance
- Bordeaux INP, Microbiologie Fondamentale et PathogénicitéBordeauxFrance
| | | | | | - Julie Beurois
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Patrick Lores
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris CiteParisFrance
| | | | | | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Zeina Wehbe
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECRTehranIslamic Republic of Iran
| | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | | | - Lazhar Halouani
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain NordTunisTunisia
| | - Xiaohui Jiang
- Human Sperm Bank, West China Second University Hospital of Sichuan UniversitySichuanChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversitySichuanChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuanChina
| | - Ying Shen
- NHC Key Laboratory of Chronobiology, Sichuan UniversitySichuanChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuanChina
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, Fudan UniversityFudanChina
| | | | | | - Marie Bidart
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et OncologieGrenobleFrance
| | - Véronique Satre
- CHU Grenoble-Alpes, UM de Génétique ChromosomiqueGrenobleFrance
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Caroline Cazin
- CHU Grenoble-Alpes, UM de Génétique ChromosomiqueGrenobleFrance
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
- CHU de Grenoble, UM GI-DPIGrenobleFrance
| | - Aminata Toure
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team Physiology and Pathophysiology of Sperm cellsGrenobleFrance
| | | | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Team Genetics Epigenetics and Therapies of InfertilityGrenobleFrance
| |
Collapse
|
17
|
Al Khodair KM, Moqbel MS, Elseory AMA, Elsebaei MG, Al-Thnaian TA, Elhassan MMO. Immunolocalization and expression of Siglec5 protein in the male reproductive tract of dromedary camel during rutting season. Anat Histol Embryol 2023; 52:874-881. [PMID: 37431856 DOI: 10.1111/ahe.12944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
Lectins are carbohydrate-binding proteins that are highly selective for sugar groups on other molecules. Siglec5 is a cell-surface lectin that belongs to the sialic acid-binding Ig-like lectins (Siglecs) and acts as a suppressor of immune responses. In this study, immunohistochemistry, western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of Siglec5 in the male reproductive tract of dromedary camels during the rutting season. Siglec5 displayed strong immunostaining in the cranial and caudal testicular regions and moderate immunostaining in the rete testis. Different parts of the epididymis showed varying immunoreactions to Siglec5. The spermatozoa in the testes and epididymis also showed positive immunostaining for Siglec5, whereas, the vas deferens showed negative immunostaining for the protein. The results obtained by western blotting confirmed the immunohistochemical detection of the protein in the testicular and epididymal tissues. The results of qRT-PCR showed that Siglec mRNA was expressed differently in each part of the testis and epididymis; the highest levels of expression were observed in the caudal part of the testis and in the head of the epididymis. In conclusion, the present study revealed that Siglec5 is mainly located in the testis and epididymis, where sperm production and maturation occur. Therefore, this protein may play an essential role in the development, maturation and protection of camel sperm.
Collapse
Affiliation(s)
- Khalid Mohamed Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammed Salem Moqbel
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelrahman Mohamed Ali Elseory
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Gamil Elsebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thnaian A Al-Thnaian
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mortada M O Elhassan
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum, Sudan
| |
Collapse
|
18
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
19
|
Lee W, Zamudio-Ochoa A, Buchel G, Podlesniy P, Marti Gutierrez N, Puigròs M, Calderon A, Tang HY, Li L, Mikhalchenko A, Koski A, Trullas R, Mitalipov S, Temiakov D. Molecular basis for maternal inheritance of human mitochondrial DNA. Nat Genet 2023; 55:1632-1639. [PMID: 37723262 PMCID: PMC10763495 DOI: 10.1038/s41588-023-01505-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Uniparental inheritance of mitochondrial DNA (mtDNA) is an evolutionary trait found in nearly all eukaryotes. In many species, including humans, the sperm mitochondria are introduced to the oocyte during fertilization1,2. The mechanisms hypothesized to prevent paternal mtDNA transmission include ubiquitination of the sperm mitochondria and mitophagy3,4. However, the causative mechanisms of paternal mtDNA elimination have not been defined5,6. We found that mitochondria in human spermatozoa are devoid of intact mtDNA and lack mitochondrial transcription factor A (TFAM)-the major nucleoid protein required to protect, maintain and transcribe mtDNA. During spermatogenesis, sperm cells express an isoform of TFAM, which retains the mitochondrial presequence, ordinarily removed upon mitochondrial import. Phosphorylation of this presequence prevents mitochondrial import and directs TFAM to the spermatozoon nucleus. TFAM relocalization from the mitochondria of spermatogonia to the spermatozoa nucleus directly correlates with the elimination of mtDNA, thereby explaining maternal inheritance in this species.
Collapse
Affiliation(s)
- William Lee
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gina Buchel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Calderon
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Hsin-Yao Tang
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Li Li
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
22
|
Alagundagi DB, Ghate SD, Shetty P, Gollapalli P, Shetty P, Patil P. Integrated molecular-network analysis reveals infertility-associated key genes and transcription factors in the non-obstructive azoospermia. Eur J Obstet Gynecol Reprod Biol 2023; 288:183-190. [PMID: 37549510 DOI: 10.1016/j.ejogrb.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Male infertility is a multifactorial reproductive health problem with complex causes. Non-obstructive azoospermia (NOA) is characterized by failure of spermatogenesis, leading to the absence of spermatozoa in ejaculates. The molecular mechanism underlying the NOA is still not well understood. OBJECTIVES This study aims to identify the key genes involved in male infertility that could be a potential biomarker in the diagnosis and prognosis of azoospermia. STUDY DESIGN The microarray expression profiles dataset GSE45885 and GSE45887 were downloaded from the NCBI's Gene Expression Omnibus (GEO) database and analyzed for male infertility-associated differentially expressed genes (DEGs) using the GEO2R tool. The common DEGs between the two datasets were combined and their protein-protein interaction (PPI) network was constructed using Cytoscape to reveal the hub genes by topology and module analysis. In addition, transcription factors (TFs) and protein kinases regulating the hub genes were identified using the X2K tool. Then, the expression of the hub genes was validated by analyzing the GSE190752 microarray dataset. Further, the PPI network was screened for biological roles and enriched pathways using DAVID software. RESULTS About 256 DEGs associated with NOA were identified and constructed the PPI network to find the infertility-associated proteins. The biological processes linked with these proteins were spermatogenesis, cell differentiation, flagellated sperm motility, and spermatid development. The topology and module analysis of the infertility-associated protein network identified the hub genes TEX38, FAM71F, PRR30, FAM166A, LYZL6, TPPP2, ARMC12, SPACA4, and FAM205A, which were found to be upregulated in the non-obstructive azoospermia. In addition, a total of 23 transcription factors and 3 protein kinases that are regulating these key hub genes were identified. Further these hub genes expression was validated using the microarray data and found that their expression was increased in the testicular biopsies obtained from NOA subjects, compared to healthy individuals. CONCLUSION The identified key genes and its associated transcription factors are known to regulate the infertility-related processes in the non-obstructive azoospermia. Also, the clinical sample-based microarray data validation for the expression of these key hub genes indicates their potentiality to develop them as diagnostic or prognostic biomarkers for NOA.
Collapse
Affiliation(s)
- Dhananjay B Alagundagi
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India.
| | - Sudeep D Ghate
- Center for Bioinformatics and Biostatistics, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India.
| | - Prasannakumar Shetty
- Department of Obstetrics and Gynecology, Justice K S Hegde Charitable Hospital, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India.
| | - Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India.
| | - Praveenkumar Shetty
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India; Department of Biochemistry, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India.
| | - Prakash Patil
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru 575018, Karnataka, India.
| |
Collapse
|
23
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
24
|
Vaquer CC, Suhaiman L, Pavarotti MA, Arias RJ, Pacheco Guiñazú AB, De Blas GA, Belmonte SA. The pair ceramide 1-phosphate/ceramide kinase regulates intracellular calcium and progesterone-induced human sperm acrosomal exocytosis. Front Cell Dev Biol 2023; 11:1148831. [PMID: 37065849 PMCID: PMC10102357 DOI: 10.3389/fcell.2023.1148831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Before fertilization, spermatozoa must undergo calcium-regulated acrosome exocytosis in response to physiological stimuli such as progesterone and zona pellucida. Our laboratory has elucidated the signaling cascades accomplished by different sphingolipids during human sperm acrosomal exocytosis. Recently, we established that ceramide increases intracellular calcium by activating various channels and stimulating the acrosome reaction. However, whether ceramide induces exocytosis on its own, activation of the ceramide kinase/ceramide 1-phosphate (CERK/C1P) pathway or both is still an unsolved issue. Here, we demonstrate that C1P addition induces exocytosis in intact, capacitated human sperm. Real-time imaging in single-cell and calcium measurements in sperm population showed that C1P needs extracellular calcium to induce [Ca2+]i increase. The sphingolipid triggered the cation influx through voltage-operated calcium (VOC) and store-operated calcium (SOC) channels. However, it requires calcium efflux from internal stores through inositol 3-phosphate receptors (IP3R) and ryanodine receptors (RyR) to achieve calcium rise and the acrosome reaction. We report the presence of the CERK in human spermatozoa, the enzyme that catalyzes C1P synthesis. Furthermore, CERK exhibited calcium-stimulated enzymatic activity during the acrosome reaction. Exocytosis assays using a CERK inhibitor demonstrated that ceramide induces acrosomal exocytosis, mainly due to C1P synthesis. Strikingly, progesterone required CERK activity to induce intracellular calcium increase and acrosome exocytosis. This is the first report, implicating the bioactive sphingolipid C1P in the physiological progesterone pathway leading to the sperm acrosome reaction.
Collapse
Affiliation(s)
- Cintia C. Vaquer
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laila Suhaiman
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Martín A. Pavarotti
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Rodolfo J. Arias
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anahí B. Pacheco Guiñazú
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Gerardo A. De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Silvia A. Belmonte, ,
| |
Collapse
|
25
|
Otčenášková T, Macíčková E, Vondráková J, Frolíková M, Komrskova K, Stopková R, Stopka P. Proteomic analysis of the mouse sperm acrosome - towards an understanding of an organelle with diverse functionality. Eur J Cell Biol 2023; 102:151296. [PMID: 36805822 DOI: 10.1016/j.ejcb.2023.151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The acrosome located within the mammalian sperm head is essential for successful fertilization, as it enables the sperm to penetrate the extracellular layers of the oocyte and fuse with oolemma. However, the mammalian acrosomal vesicle is no longer considered to contain only hydrolytic enzymes. Using label-free nano-scale liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics, we identified a total of 885 proteins in the acrosome isolated from spermatozoa obtained from cauda epididymis of free-living house mice Mus musculus musculus contains a total of 885 proteins. Among these, 334 proteins were significantly enriched in the acrosome thus representing 27.3% of the whole proteome of the intact sperm. Importantly, we have detected a total of nine calycins while eight of them belong to the lipocalin protein family. In mice, lipocalins are involved in multi-level chemical communication between individuals including pheromone transport and odor perception. Using an indirect immunofluorescence assay, we demonstrated that lipocalin 5 (LCN5) is expressed in the mouse germ cells, and after completing spermatogenesis, it remains localized in the sperm acrosome until the last step of the extratesticular maturation, the acrosome reaction. The presence of lipocalins in the acrosome and acrosome-reacted sperm suggests their original role as chelators of organic and potentially toxic compounds resulting from ongoing spermiogenesis. Along with this evidence, detected mitochondrial (e.g., a subunit of the cytochrome c oxidase MTCO1) and proteasomal proteins (subunits of both 20 S core proteasome [PSMA2, PSMBs] and 19 S regulatory particle [PSMDs]) in acrosomes provide further evidence that acrosomes could also function as `waste baskets` after testicular sperm maturation.
Collapse
Affiliation(s)
- Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Eliška Macíčková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Jana Vondráková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Michaela Frolíková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Katerina Komrskova
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
26
|
Zheng QY, Lu QF, Liu J, Liu N, Huang XL, Huang F, Hu CH, Xu CL. Effect of MnTBAP on sperm ultra-rapid freezing and its proteomics study. Cryobiology 2023:S0011-2240(23)00004-4. [PMID: 36642193 DOI: 10.1016/j.cryobiol.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
MnTBAP is a new synthetic antioxidant that has been used for the cryopreservation of sperm. However, the exact mechanism of its cryoprotection at the molecular level is largely unknown. Therefore, in this study, normal human semen samples were selected and MnTBAP (0, 5, 10, 20, 40 μM) was added to sperm freezing medium to assess changes in kinetics parameters, apoptosis, reactive oxygen species (ROS), and DNA fragmentation index (DFI) after sperm ultra-rapid freezing. The tandem masstagging (TMT) proteomics technique was used to further investigate the changes in proteins after sperm ultra-rapid freezing. The kinetic parameters of sperm after ultra-rapid freezing and thawing were significantly reduced and apoptosis, ROS production and DFI were significantly increased. The addition of 40 μM MnTBAP improved the kinetic parameters, while it reduced apoptosis, ROS production, and DFI of sperm after ultra-rapid freezing and thawing (P < 0.05). Compared with the fresh semen, 1978 differential proteins were identified in the frozen-thawed sperm without MnTBAP and 1888 differential proteins were identified in the frozen-thawed sperm with MnTBAP (40 μM) added. The proteins affected during ultra-rapid freezing were mainly related to sperm metabolism, flagellar structure motility, apoptosis, intracellular signaling, capacitation and fertilization, while the addition of MnTBAP reduced the alterations of these proteins.
Collapse
Affiliation(s)
- Qi-Yuan Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qing-Fang Lu
- Medical College, Guangxi University, Nanning, China
| | - Juan Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Nian Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xi-Ling Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fang Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chuan-Huo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China.
| | - Chang-Long Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China.
| |
Collapse
|
27
|
Proteomic Landscape of Human Spermatozoa: Optimized Extraction Method and Application. Cells 2022; 11:cells11244064. [PMID: 36552826 PMCID: PMC9776871 DOI: 10.3390/cells11244064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Human spermatozoa proteomics exposed to some physical, biological or chemical stressors is being explored. However, there is a lack of optimized sample preparation methods to achieve in-depth protein coverage for sperm cells. Meanwhile, it is not clear whether antibiotics can regulate proteins to affect sperm quality. Here, we systematically compared a total of six different protein extraction methods based the combination of three commonly used lysis buffers and physical lysis strategies. The urea buffer combined with ultrasonication (UA-ultrasonication) produced the highest protein extraction rate, leading to the deepest coverage of human sperm proteome (5685 protein groups) from healthy human sperm samples. Since the antibiotics, amoxicillin and clarithromycin, have been widely used against H. pylori infection, we conduct a longitudinal study of sperm proteome via data-independent acquisition tandem mass spectrometry (DIA-MS/MS) on an infected patient during on and off therapy with these two drugs. The semen examination and morphological analysis were performed combined with proteomics analysis. Our results indicated that antibiotics may cause an increase in the sperm concentration and the rate of malformed sperm and disrupt proteome expression in sperm. This work provides an optimized extraction method to characterize the in-depth human sperm proteome and to extend its clinical applications.
Collapse
|
28
|
Bisconti M, Leroy B, Gallagher MT, Senet C, Martinet B, Arcolia V, Wattiez R, Kirkman-Brown JC, Simon JF, Hennebert E. The ribosome inhibitor chloramphenicol induces motility deficits in human spermatozoa: A proteomic approach identifies potentially involved proteins. Front Cell Dev Biol 2022; 10:965076. [PMID: 36120567 PMCID: PMC9478589 DOI: 10.3389/fcell.2022.965076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mature spermatozoa are almost completely devoid of cytoplasm; as such it has long been believed that they do not contain ribosomes and are therefore not capable of synthesising proteins. However, since the 1950s, various studies have shown translational activity within spermatozoa, particularly during their in vitro capacitation. But the type of ribosomes involved (cytoplasmic or mitochondrial) is still debated. Here, we investigate the presence and activity of the two types of ribosomes in mature human spermatozoa. By targeting ribosomal RNAs and proteins, we show that both types of ribosomes are localized in the midpiece as well as in the neck and the base of the head of the spermatozoa. We assessed the impact of cycloheximide (CHX) and chloramphenicol (CP), inhibitors of cytoplasmic and mitochondrial ribosomes, respectively, on different sperm parameters. Neither CHX, nor CP impacted sperm vitality, mitochondrial activity (measured through the ATP content), or capacitation (measured through the content in phosphotyrosines). However, increasing CP concentrations induced a decrease in total and progressive motilities as well as on some kinematic parameters while no effect was observed with CHX. A quantitative proteomic analysis was performed by mass spectrometry in SWATH mode to compare the proteomes of spermatozoa capacitated in the absence or presence of the two ribosome inhibitors. Among the ∼700 proteins identified in the different tested conditions, 3, 3 and 25 proteins presented a modified abundance in the presence of 1 and 2 mg/ml of CHX, and 1 mg/ml of CP, respectively. The observed abundance variations of some CP-down regulated proteins were validated using Multiple-Reaction Monitoring (MRM). Taken together, our results are in favor of an activity of mitochondrial ribosomes. Their inhibition by CP results in a decrease in the abundance of several proteins, at least FUNDC2 and QRICH2, and consequently induces sperm motility deficits.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Coralie Senet
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Vanessa Arcolia
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Jackson C. Kirkman-Brown
- Institute of Metabolism and Systems Research, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jean-François Simon
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- *Correspondence: Elise Hennebert,
| |
Collapse
|
29
|
Targeted Analysis of HSP70 Isoforms in Human Spermatozoa in the Context of Capacitation and Motility. Int J Mol Sci 2022; 23:ijms23126497. [PMID: 35742939 PMCID: PMC9224233 DOI: 10.3390/ijms23126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s constitute a family of chaperones, some isoforms of which appear to play a role in sperm function. Notably, global proteomic studies analyzing proteins deregulated in asthenozoospermia, a main cause of male infertility characterized by low sperm motility, showed the dysregulation of some HSP70 isoforms. However, to date, no clear trend has been established since the variations in the abundance of HSP70 isoforms differed between studies. The HSPA2 isoform has been reported to play a key role in fertilization, but its dysregulation and possible relocation during capacitation, a maturation process making the spermatozoon capable of fertilizing an oocyte, is debated in the literature. The aim of the present study was to investigate the fate of all sperm HSP70 isoforms during capacitation and in relation to sperm motility. Using Multiple-Reaction Monitoring (MRM) mass spectrometry, we showed that the relative abundance of all detected isoforms was stable between non-capacitated and capacitated spermatozoa. Immunofluorescence using two different antibodies also demonstrated the stability of HSP70 isoform localization during capacitation. We also investigated spermatozoa purified from 20 sperm samples displaying various levels of total and progressive sperm motility. We showed that the abundance of HSP70 isoforms is not correlated to sperm total or progressive motility.
Collapse
|
30
|
Zhang J, Zhou X, Wan D, Yu L, Chen X, Yan T, Wu Z, Zheng M, Zhu F, Zhu H. TMPRSS12 Functions in Meiosis and Spermiogenesis and Is Required for Male Fertility in Mice. Front Cell Dev Biol 2022; 10:757042. [PMID: 35547804 PMCID: PMC9081376 DOI: 10.3389/fcell.2022.757042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases are involved in many physiological activities as initiators of proteolytic cascades, and some members have been reported to play roles in male reproduction. Transmembrane serine protease 12 (TMPRSS12) has been shown to regulate sperm motility and uterotubal junction migration in mice, but its role in the testis remains unknown. In this study, we verified that TMPRSS12 was expressed in the spermatocytes and spermatids of testis and the acrosome of sperm. Mice deficient in Tmprss12 exhibited male sterility. In meiosis, TMPRSS12 was demonstrated to regulate synapsis and double-strand break repair; spermatocytes of Tmprss12−/− mice underwent impaired meiosis and subsequent apoptosis, resulting in reduced sperm counts. During spermiogenesis, TMPRSS12 was found to function in the development of mitochondria; abnormal mitochondrial structure in Tmprss12−/− sperm led to reduced availability of ATP, impacting sperm motility. The differential protein expression profiles of testes in Tmprss12−/− and wild-type mice and further molecule identification revealed potential targets of TMPRSS12 related to meiosis and mitochondrial function. Besides, TMPRSS12 was also found to be involved in a series of sperm functions, including capacitation, acrosome reaction and sperm-egg interaction. These data imply that TMPRSS12 plays a role in multiple aspects of male reproduction.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Prenatal Diagnosis, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xinli Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Danyang Wan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Li Yu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tong Yan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhu Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Meimei Zheng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Reproductive Medicine Center of No. 960 Hospital of PLA, Jinan, China
| | - Feng Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Pathology, The First People’s Hospital of Changzhou, Changzhou, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- *Correspondence: Hui Zhu,
| |
Collapse
|
31
|
Zhang H, Situ C, Guo X. Recent progress of proteomic analysis on spermatogenesis. Biol Reprod 2022; 107:109-117. [DOI: 10.1093/biolre/ioac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Testis, the only organ responsible for generating sperm, is by far the organ with the largest variety of proteins and tissue-specific proteins in humans. In testis, spermatogenesis is a multi-step complex process well-accepted that protein and mRNA are decoupled in certain stages of spermatogenesis. With the fast development of mass spectrometry-based proteomics, it is possible to systemically study protein abundances and modifications in testis and sperm to help us understand the molecular mechanisms of spermatogenesis. This review provides an overview of the recent progress of proteomics analysis on spermatogenesis, including protein expression and multiple PTMs, such as phosphorylation, glycosylation, ubiquitylation, and acetylation.
Collapse
Affiliation(s)
- Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
32
|
Ravula AR, Yenugu S. Transgenerational effects on the fecundity and sperm proteome in rats exposed to a mixture of pyrethroids at doses similar to human consumption. CHEMOSPHERE 2022; 290:133242. [PMID: 34896426 DOI: 10.1016/j.chemosphere.2021.133242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Pyrethroid based pesticide usage for crop protection resulted in percolation of these compounds into the food chain. Toxicological studies that reflect exposure to pyrethroids through food in the human settings are rare. We conducted animal experimentations using a mixture of pyrethroids that is equivalent to the amount consumed by average individual through rice and vegetables in the Indian context. Male rats treated with a mixture of pyrethroids for 1-12 months displayed decreased transgenerational fecundity, sperm count, activities of 3β- and 17β-HSD and perturbed hormonal profile. At the transcriptome level, the expression of genes involved in spermatogenesis, steroidogenesis, germ cell epigenetic modulators and germ cell apoptosis were altered in the testis. In the sperm lysates of control rats, 506 proteins identified by mass spectrometry. The differential expression of these proteins (treated/control ratio) in the pyrethroid exposed rats was analyzed. Among the 506 proteins, 153 had a ratio of 0; 41 had a ratio ranging from >0 to <0.5; and 10 had a ratio >2.0. Interestingly, the differential expression was transgenerational. 26 proteins that were differentially expressed in the sperm of F0 treated rats continued to remain the same in the F1, F2 and F3 generations, while the differential expression was maintained up to F2 and F1 generations for 46 and 2 proteins respectively. Some of the proteins that continued to be differentially expressed in the later generations are reported to have critical roles in male reproduction. These results indicate that the reduced fecundity observed in the later generations could be due to the continued differential expression that was initiated by pyrethroid treatment in the F0 rats. Results of our study, for the first time, provide evidence that long-term exposure to pyrethroids affects transgenerational fecundity manifested by changes in sperm proteome.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
33
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
34
|
Favia M, Gerbino A, Notario E, Tragni V, Sgobba MN, Dell’Aquila ME, Pierri CL, Guerra L, Ciani E. The Non-Gastric H+/K+ ATPase (ATP12A) Is Expressed in Mammalian Spermatozoa. Int J Mol Sci 2022; 23:ijms23031048. [PMID: 35162971 PMCID: PMC8835340 DOI: 10.3390/ijms23031048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific β subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the β1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.
Collapse
|
35
|
Amargant F, Pujol A, Ferrer-Vaquer A, Durban M, Martínez M, Vassena R, Vernos I. The human sperm basal body is a complex centrosome important for embryo preimplantation development. Mol Hum Reprod 2021; 27:6377343. [PMID: 34581808 PMCID: PMC8561016 DOI: 10.1093/molehr/gaab062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The mechanism of conversion of the human sperm basal body to a centrosome after fertilization, and its role in supporting human early embryogenesis, has not been directly addressed so far. Using proteomics and immunofluorescence studies, we show here that the human zygote inherits a basal body enriched with centrosomal proteins from the sperm, establishing the first functional centrosome of the new organism. Injection of human sperm tails containing the basal body into human oocytes followed by parthenogenetic activation, showed that the centrosome contributes to the robustness of the early cell divisions, increasing the probability of parthenotes reaching the compaction stage. In the absence of the sperm-derived centrosome, pericentriolar material (PCM) components stored in the oocyte can form de novo structures after genome activation, suggesting a tight PCM expression control in zygotes. Our results reveal that the sperm basal body is a complex organelle which converts to a centrosome after fertilization, ensuring the early steps of embryogenesis and successful compaction. However, more experiments are needed to elucidate the exact molecular mechanisms of centrosome inheritance in humans.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN-Eugin Group, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aïda Pujol
- Centro de Infertilidad y Reproducción Humana (CIRH)-Eugin Group, Barcelona, Spain
| | | | | | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
36
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
37
|
Chen B, Wang S, Inglis BM, Ding H, Suo A, Qiu S, Duan Y, Li X, Li S, Sun WQ, Si W. Improving Sperm Cryopreservation With Type III Antifreeze Protein: Proteomic Profiling of Cynomolgus Macaque ( Macaca fascicularis) Sperm. Front Physiol 2021; 12:719346. [PMID: 34671271 PMCID: PMC8521148 DOI: 10.3389/fphys.2021.719346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
Antifreeze protein III (AFP III) is used for the cryopreservation of germ cells in various animal species. However, the exact mechanism of its cryoprotection is largely unknown at the molecular level. In this study, we investigated the motility, acrosomal integrity, and mitochondrial membrane potential (MMP), as well as proteomic change, of cynomolgus macaque sperm after cryopreservation. Sperm motility, acrosomal integrity, and MMP were lower after cryopreservation (p < 0.001), but significant differences in sperm motility and MMP were observed between the AFP-treated sperm sample (Cryo+AFP) and the non-treated sample (Cryo-AFP) (p < 0.01). A total of 141 and 32 differentially expressed proteins were, respectively, identified in cynomolgus macaque sperm cryopreserved without and with 0.1 μg/ml AFP III compared with fresh sperm. These proteins were mainly involved in the mitochondrial production of reactive oxygen species (ROS), glutathione (GSH) synthesis, and cell apoptosis. The addition of AFP III in the sperm freezing medium resulted in significant stabilization of cellular molecular functions and/or biological processes in sperm, as illustrated by the extent of proteomic changes after freezing and thawing. According to the proteomic change of differentially expressed proteins, we hypothesized a novel molecular mechanism for cryoprotection that AFP III may reduce the release of cytochrome c and thereby reduce sperm apoptosis by modulating the production of ROS in mitochondria. The molecular mechanism that AFP III acts with sperm proteins for cellular protection against cryoinjuries needs further study.
Collapse
Affiliation(s)
- Bingbing Chen
- Institute of Biothermal Science and Technology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Briauna Marie Inglis
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Hao Ding
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Angbaji Suo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuai Qiu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shanshan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
38
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
39
|
Shen Q, Martinez G, Liu H, Beurois J, Wu H, Amiri-Yekta A, Liang D, Kherraf ZE, Bidart M, Cazin C, Celse T, Satre V, Thierry-Mieg N, Whitfield M, Touré A, Song B, Lv M, Li K, Liu C, Tao F, He X, Zhang F, Arnoult C, Ray PF, Cao Y, Coutton C. Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Hum Genet 2021; 140:1367-1377. [PMID: 34255152 DOI: 10.1007/s00439-021-02313-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, suggesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and inner dynein arm. Immunostaining experiments in the patient's sperm cells demonstrated the absence of WDR66 and RSPH1 proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR-Cas9 technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional, structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI. Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional defects of the sperm flagellum that may also cause ICSI failures.
Collapse
Affiliation(s)
- Qunshan Shen
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Guillaume Martinez
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Julie Beurois
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Huan Wu
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Dan Liang
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Marie Bidart
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,Unité Médicale de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Pôle Biologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Caroline Cazin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Tristan Celse
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Véronique Satre
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Nicolas Thierry-Mieg
- Université Grenoble Alpes, CNRS UMR 5525, TIMC-IMAG/BCM, 38000, Grenoble, France
| | - Marjorie Whitfield
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Bing Song
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Mingrong Lv
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Kuokuo Li
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Christophe Arnoult
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Yunxia Cao
- Reproductive Medicine Center, Human Sperm Bank, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China. .,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Charles Coutton
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France. .,Laboratoire de Génétique Chromosomique, Hôpital Couple-Enfant, CHU de Grenoble, 38043, Grenoble, France.
| |
Collapse
|
40
|
Liang J, Zheng Y, Zeng W, Chen L, Yang S, Du P, Wang Y, Yu X, Zhang X. Proteomic Profile of Sperm in Infertile Males Reveals Changes in Metabolic Pathways. Protein J 2021; 40:929-939. [PMID: 34213690 PMCID: PMC8593027 DOI: 10.1007/s10930-021-10013-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to investigate the differences in the proteomic profiles of sperm from infertile males with severe oligoasthenoteratozoospermia requiring intracytoplasmic sperm injection (ICSI) and normal control sperm from fertile males. Isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry was performed for identifying proteins in the sperm of infertile and fertile males. Differentially expressed proteins were analyzed via the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases through the Database for Annotation, Visualization, and Integrated Discovery, and protein-protein networks were produced using the Search Tool for Retrieval of Interacting Genes. Immunofluorescence and western blotting verified the differential expression of Y-box-binding protein 1(YBX1), adenylate kinase 1 (AK1), and aconitase 2, mitochondrial (ACO2) proteins. Altogether, 3444 proteins were identified in the sperm of infertile and fertile males, and 938 were differentially expressed between the two groups. Pairwise comparisons revealed that 226 and 712 proteins were significantly upregulated and downregulated in infertile males, respectively. These proteins were significantly enriched in metabolic pathways as per KEGG enrichment analysis. YBX1 expression was upregulated in the sperm heads of patients requiring ICSI treatment, whereas AK1 and ACO2, which are critical enzymes involved in energy metabolism, were downregulated in the sperm tails of the same patients. This result indicates that metabolism may have a crucial role in maintaining normal sperm function. Overall, our results provide insights that will further help in investigating the pathogenic mechanisms of infertility and possible therapeutic strategies.
Collapse
Affiliation(s)
- Jiaying Liang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Yichun Zheng
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China.
| | - Weihong Zeng
- Children Inherit Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Liuqing Chen
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Shaofen Yang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Peng Du
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Yujiang Wang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Xingsu Yu
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China.
| |
Collapse
|
41
|
Aydos K, Aydos OS. Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. J Clin Med 2021; 10:jcm10122687. [PMID: 34207121 PMCID: PMC8234729 DOI: 10.3390/jcm10122687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Retrieving spermatozoa from the testicles has been a great hope for patients with non-obstructive azoospermia (NOA), but relevant methods have not yet been developed to the level necessary to provide resolutions for all cases of NOA. Although performing testicular sperm extraction under microscopic magnification has increased sperm retrieval rates, in vitro selection and processing of quality sperm plays an essential role in the success of in vitro fertilization. Moreover, sperm cryopreservation is widely used in assisted reproductive technologies, whether for therapeutic purposes or for future fertility preservation. In recent years, there have been new developments using advanced technologies to freeze and preserve even very small numbers of sperm for which conventional techniques are inadequate. The present review provides an up-to-date summary of current strategies for maximizing sperm recovery from surgically obtained testicular samples and, as an extension, optimization of in vitro sperm processing techniques in the management of NOA.
Collapse
Affiliation(s)
- Kaan Aydos
- Department of Urology, Reproductive Health Research Center, School of Medicine, University of Ankara, 06230 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-748-8995
| | - Oya Sena Aydos
- Department of Medical Biology, School of Medicine, University of Ankara, 06230 Ankara, Turkey;
| |
Collapse
|
42
|
Lorès P, Kherraf ZE, Amiri-Yekta A, Whitfield M, Daneshipour A, Stouvenel L, Cazin C, Cavarocchi E, Coutton C, Llabador MA, Arnoult C, Thierry-Mieg N, Ferreux L, Patrat C, Hosseini SH, Mustapha SFB, Zouari R, Dulioust E, Ray PF, Touré A. A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome. Hum Genet 2021; 140:1031-1043. [PMID: 33689014 DOI: 10.1007/s00439-021-02270-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Cilia and flagella are formed around an evolutionary conserved microtubule-based axoneme and are required for fluid and mucus clearance, tissue homeostasis, cell differentiation and movement. The formation and maintenance of cilia and flagella require bidirectional transit of proteins along the axonemal microtubules, a process called intraflagellar transport (IFT). In humans, IFT defects contribute to a large group of systemic diseases, called ciliopathies, which often display overlapping phenotypes. By performing exome sequencing of a cohort of 167 non-syndromic infertile men displaying multiple morphological abnormalities of the sperm flagellum (MMAF) we identified two unrelated patients carrying a homozygous missense variant adjacent to a splice donor consensus site of IFT74 (c.256G > A;p.Gly86Ser). IFT74 encodes for a core component of the IFT machinery that is essential for the anterograde transport of tubulin. We demonstrate that this missense variant affects IFT74 mRNA splicing and induces the production of at least two distinct mutant proteins with abnormal subcellular localization along the sperm flagellum. Importantly, while IFT74 deficiency was previously implicated in two cases of Bardet-Biedl syndrome, a pleiotropic ciliopathy with variable expressivity, our data indicate that this missense mutation only results in primary male infertility due to MMAF, with no other clinical features. Taken together, our data indicate that the nature of the mutation adds a level of complexity to the clinical manifestations of ciliary dysfunction, thus contributing to the expanding phenotypical spectrum of ciliopathies.
Collapse
Affiliation(s)
- Patrick Lorès
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU de Grenoble, UM GI-DPI, 38000, Grenoble, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjorie Whitfield
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Laurence Stouvenel
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Caroline Cazin
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU de Grenoble, UM GI-DPI, 38000, Grenoble, France
| | - Emma Cavarocchi
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Marie-Astrid Llabador
- Laboratoire de Biologie de la Reproduction, Groupe Hospitalier Universitaire Paris Nord Val de Seine, Assistante Publique-Hôpitaux de Paris, 75018, Paris, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France
| | | | - Lucile Ferreux
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.,Laboratoire d'Histologie Embryologie, Biologie de la Reproduction, CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Catherine Patrat
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.,Laboratoire d'Histologie Embryologie, Biologie de la Reproduction, CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003, Tunis, Tunisia
| | - Emmanuel Dulioust
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.,Laboratoire d'Histologie Embryologie, Biologie de la Reproduction, CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Pierre F Ray
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU de Grenoble, UM GI-DPI, 38000, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.
| |
Collapse
|
43
|
Llavanera M, Mateo-Otero Y, Delgado-Bermúdez A, Recuero S, Olives S, Barranco I, Yeste M. Deactivation of the JNK Pathway by GSTP1 Is Essential to Maintain Sperm Functionality. Front Cell Dev Biol 2021; 9:627140. [PMID: 33732696 PMCID: PMC7959831 DOI: 10.3389/fcell.2021.627140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Fifty percent of male subfertility diagnosis is idiopathic and is usually associated with genetic abnormalities or protein dysfunction, which are not detectable through the conventional spermiogram. Glutathione S-transferases (GSTs) are antioxidant enzymes essential for preserving sperm function and maintaining fertilizing ability. However, while the role of GSTP1 in cell signaling regulation via the inhibition of c-Jun N-terminal kinases (JNK) has been enlightened in somatic cells, it has never been investigated in mammalian spermatozoa. In this regard, a comprehensive approach through immunoblotting, immunofluorescence, computer-assisted sperm assessment (CASA), and flow cytometry analysis was used to characterize the molecular role of the GSTP1–JNK heterocomplex in sperm physiology, using the pig as a model. Immunological assessments confirmed the presence and localization of GSTP1 in sperm cells. The pharmacological dissociation of the GSTP1–JNK heterocomplex resulted in the activation of JNK, which led to a significant decrease in sperm viability, motility, mitochondrial activity, and plasma membrane stability, as well as to an increase of intracellular superoxides. No effects in intracellular calcium levels and acrosome membrane integrity were observed. In conclusion, the present work has demonstrated, for the first time, the essential role of GSTP1 in deactivating JNK, which is crucial to maintain sperm function and has also set the grounds to understand the relevance of the GSTP1–JNK heterocomplex for the regulation of mammalian sperm physiology.
Collapse
Affiliation(s)
- Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Samuel Olives
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
44
|
Santiago J, Santos MAS, Fardilha M, Silva JV. Stress response pathways in the male germ cells and gametes. Mol Hum Reprod 2021; 26:1-13. [PMID: 31814009 DOI: 10.1093/molehr/gaz063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved and essential cellular pathway involved in protein quality control that is activated in response to several cellular stressors such as diseases states, ageing, infection and toxins. The cytosol, endoplasmic reticulum (ER) and mitochondria are continuously exposed to new proteins and in situations of aberrant protein folding; one of three lines of defence may be activated: (i) heat-shock response, (ii) mitochondrial UPR and (iii) ER UPR. These pathways lead to different signal transduction mechanisms that activate or upregulate transcription factors that, in turn, regulate genes that increase the cell's ability to correct the conformation of poorly folded proteins or, ultimately, lead to apoptosis. Despite the recent progress in understanding such biological processes, few studies have focused on the implications of the UPR in male infertility, highlighting the need for a first approach concerning the presence of these components in the male reproductive system. In testis, there is a high rate of protein synthesis, and the UPR mechanisms are well described. However, the presence of these mechanisms in spermatozoa, apparently transcriptionally inactive cells, is contentious, and it is unclear how sperm cells deal with stress. Here, we review current concepts and mechanisms of the UPR and highlight the relevance of these stress response pathways in male fertility, especially the presence and functional activation of those components in male germinal cells and spermatozoa.
Collapse
Affiliation(s)
- J Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - M A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - J V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.,Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, 4200-135, Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
45
|
Cavarocchi E, Whitfield M, Chargui A, Stouvenel L, Lorès P, Coutton C, Arnoult C, Santulli P, Patrat C, Thierry-Mieg N, Ray PF, Dulioust E, Touré A. The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility. Clin Genet 2021; 99:684-693. [PMID: 33462806 DOI: 10.1111/cge.13927] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/02/2023]
Abstract
Asthenozoospermia, defined by the absence or reduction of sperm motility, constitutes the most frequent cause of human male infertility. This pathological condition is caused by morphological and/or functional defects of the sperm flagellum, which preclude proper sperm progression. While in the last decade many causal genes were identified for asthenozoospermia associated with severe sperm flagellar defects, the causes of purely functional asthenozoospermia are still poorly defined. We describe here the case of an infertile man, displaying asthenozoospermia without major morphological flagellar anomalies and carrying a homozygous splicing mutation in SLC9C1 (sNHE), which we identified by whole-exome sequencing. SLC9C1 encodes a sperm-specific sodium/proton exchanger, which in mouse regulates pH homeostasis and interacts with the soluble adenylyl cyclase (sAC), a key regulator of the signalling pathways involved in sperm motility and capacitation. We demonstrate by means of RT-PCR, immunodetection and immunofluorescence assays on patient's semen samples that the homozygous splicing mutation (c.2748 + 2 T > C) leads to in-frame exon skipping resulting in a deletion in the cyclic nucleotide-binding domain of the protein. Our work shows that in human, similar to mouse, SLC9C1 is required for sperm motility. Overall, we establish a homozygous truncating mutation in SLC9C1 as a novel cause of human asthenozoospermia and infertility.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | | | - Ahmed Chargui
- Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Patrick Lorès
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Charles Coutton
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Pietro Santulli
- Service de Chirurgie Gynécologie Obstétrique 2 et Médecine de la Reproduction, Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Catherine Patrat
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France.,Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Pierre F Ray
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France.,Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aminata Touré
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
46
|
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 2020; 11:5520. [PMID: 33139725 PMCID: PMC7606486 DOI: 10.1038/s41467-020-19113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45−/− mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module. The mechanism by which adenosine monophosphate modulates dynein ATPase-mediated ciliary and flagellar beating remains obscure. Here the authors identify an axonemal module including cilia and flagella associated protein 45 that supports adenine nucleotide homeostasis and underlies a human ciliopathy
Collapse
|
47
|
Cheng L, Sun P, Xie X, Sun D, Zhou Q, Yang S, Xie Q, Zhou X. Hepatitis B virus surface protein induces oxidative stress by increasing peroxides and inhibiting antioxidant defences in human spermatozoa. Reprod Fertil Dev 2020; 32:1180-1189. [PMID: 32998796 DOI: 10.1071/rd20130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection may affect sperm motility in patients with HBV. HBV surface protein (HBs) decreases mitochondrial membrane potential, impairs motility and induces apoptotic-like changes in human spermatozoa. However, little is known about how human spermatozoa respond to reactive oxygen species (ROS; mainly peroxides) induced by HBs. In this study, HBs induced supraphysiological ROS levels in human spermatozoa and reduced the formation of 2-cell embryos (obtained from hamster oocytes and human spermatozoa). HBs induced a pre-apoptotic status in human spermatozoa, as well as antioxidant defences by increasing glutathione peroxidase 4 (GPX4) and peroxiredoxin 5 (PRDX5) levels. These results highlight the molecular mechanism responsible for the oxidative stress in human spermatozoa exposed to HBV and the antioxidant defence response involving GPX4 and PRDX5.
Collapse
Affiliation(s)
- Lin Cheng
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoling Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Dongmei Sun
- Shenzhen Longgang District Maternity & Child Healthcare Hospital, Shenzhen 518172, PR China
| | - Qi Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Shaozhe Yang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Qingdong Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, PR China; and Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, PR China; and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, PR China; and Corresponding author.
| |
Collapse
|
48
|
Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, Whitfield M, Patrat C, Wu H, Dulioust E, Tian S, Shimada K, Cong J, Noda T, Li H, Morohoshi A, Cazin C, Kherraf ZE, Arnoult C, Jin L, He X, Ray PF, Cao Y, Touré A, Zhang F, Ikawa M. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. Am J Hum Genet 2020; 107:330-341. [PMID: 32619401 PMCID: PMC7413861 DOI: 10.1016/j.ajhg.2020.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.
Collapse
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211116, China
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zoulan Xu
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Marjorie Whitfield
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université de Paris, Paris 75014, France
| | - Catherine Patrat
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université de Paris, Paris 75014, France; Laboratoire d'Histologie Embryologie-Biologie de la Reproduction-CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Emmanuel Dulioust
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université de Paris, Paris 75014, France; Laboratoire d'Histologie Embryologie-Biologie de la Reproduction-CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Shixiong Tian
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Jiangshan Cong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Caroline Cazin
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; UM de genetique de l'infertilite et de diagnostic pre-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble 38000, France; Service de Génétique, Laboratoire Eurofins Biomnis, Lyon, France
| | - Zine-Eddine Kherraf
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; UM de genetique de l'infertilite et de diagnostic pre-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble 38000, France
| | - Christophe Arnoult
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Pierre F Ray
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; UM de genetique de l'infertilite et de diagnostic pre-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble 38000, France
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université de Paris, Paris 75014, France
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211116, China.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
49
|
Escoffier J, Arnaud B, Kaba M, Hograindleur JP, Le Blévec E, Martinez G, Stévant I, Ray PF, Arnoult C, Nef S. Pantoprazole, a proton-pump inhibitor, impairs human sperm motility and capacitation in vitro. Andrology 2020; 8:1795-1804. [PMID: 32609951 DOI: 10.1111/andr.12855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The effects of PPIs on human sperm fertilizing capacity were poorly investigated although these drugs are widely over-used. Two publications retrospectively studied relationships between any PPI intake and sperm parameters from patients consulting at infertility clinics, but the conclusions of these reports were contradictory. Only two reports investigated the effects of lansoprazole and omeprazole on sperm motility and found lansoprazole to be deleterious and omeprazole to be neutral for sperm motility. The inconsistency of the PPI effect in the previous reports emphasizes the need for more basic research on human spermatozoa, taking into account the hypothesis that the different PPI drugs may have different effects on sperm physiology. OBJECTIVES Do PPIs, which are among the most widely sold drug in the word, impact negatively human sperm capacitation and sperm motility? MATERIALS AND METHODS The effects of PPIs on human sperm maturation and motility were analyzed by CASA, flow cytometry, and Western blot. RESULTS We tested the impact of 6 different PPIs on human sperm motility and capacitation. We showed that pantoprazole, but not the other PPIs, decreased sperm progressive motility and capacitation-induced sperm hyperactivation. We therefore investigated further the effects of pantoprazole on sperm capacitation, and we observed that it had a significant deleterious effect on the capacitation-induced hyperpolarization of the membrane potential and capacitation-associated protein phosphorylation. DISCUSSION AND CONCLUSION Our results indicate that exposure to pantoprazole has an adverse effect on the physiological competence of human spermatozoa. As the capacitation process takes place within the female tract, our results suggest that PPIs intake by the female partner may impair in vivo sperm maturation and possibly fertilization. Moreover, the absence of adverse effect by PPIs on mouse sperm emphasizes the need to develop reprotox assays using human material to better assess the effects of medication intake on sperm physiology.
Collapse
Affiliation(s)
- Jessica Escoffier
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France
| | - Bastien Arnaud
- Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France
| | - Mayis Kaba
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Jean Pascal Hograindleur
- Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France
| | - Emilie Le Blévec
- Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Pierre F Ray
- Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Equipe "Génétique, Epigénétique et Thérapies de l'Infertilité", IAB, CNRS UMR 5309, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Jodar M, Attardo-Parrinello C, Soler-Ventura A, Barrachina F, Delgado-Dueñas D, Cívico S, Calafell JM, Ballescà JL, Oliva R. Sperm proteomic changes associated with early embryo quality after ICSI. Reprod Biomed Online 2020; 40:700-710. [DOI: 10.1016/j.rbmo.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|