1
|
Goel RK, Kim N, Lukong KE. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon 2023; 9:e16421. [PMID: 37251450 PMCID: PMC10220380 DOI: 10.1016/j.heliyon.2023.e16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
SRMS (Src-Related kinase lacking C-terminal regulatory tyrosine and N-terminal Myristoylation Sites) is a non-receptor tyrosine kinase first reported in a 1994 screen for genes regulating murine neural precursor cells. SRMS, pronounced "Shrims", lacks the C-terminal regulatory tyrosine critical for the regulation of the enzymatic activity of Src-family kinases (SFKs). Another remarkable characteristic of SRMS is its localization into distinct SRMS cytoplasmic punctae (SCPs) or GREL (Goel Raghuveera-Erique Lukong) bodies, a pattern not observed in the SFKs. This unique subcellular localization of SRMS could dictate its cellular targets, proteome, and potentially, substrates. However, the function of SRMS is still relatively unknown. Further, how is its activity regulated and by what cellular targets? Studies have emerged highlighting the potential role of SRMS in autophagy and in regulating the activation of BRK/PTK6. Potential novel cellular substrates have also been identified, including DOK1, vimentin, Sam68, FBKP51, and OTUB1. Recent studies have also demonstrated the potential role of the kinase in various cancers, including gastric and colorectal cancers and platinum resistance in ovarian cancer. This review discusses the advancements made in SRMS-related biology to date and the path to understanding the cellular and physiological significance of the kinase.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nayoung Kim
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
2
|
Goel RK, Lukong KE. Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology. Cancer Metastasis Rev 2017; 35:179-99. [PMID: 27067725 DOI: 10.1007/s10555-016-9623-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-receptor tyrosine kinase Fyn-related kinase (FRK) is a member of the BRK family kinases (BFKs) and is distantly related to the Src family kinases (SFKs). FRK was first discovered in 1993, and studies pursued thereafter attributed a potential tumour-suppressive function to the enzyme. In recent years, however, further functional characterization of the tyrosine kinase in diverse cancer types suggests that FRK may potentially play an oncogenic role as well. Specifically, while ectopic expression of FRK suppresses cell proliferation and migration in breast and brain cancers, knockdown or catalytic inhibition of FRK suppresses these cellular processes in pancreatic and liver cancer. Such functional paradox is therefore evidently exhibited in a tissue-specific context. This review sheds light on the recent developments emerged from investigations on FRK which include: (a) a review of the expression pattern of the protein in mammalian cells/tissues, (b) underlying genomic perturbations and (c) a mechanistic function of the enzyme across different cellular environments. Given its functional heterogeneity observed across different cancers, we also discuss the therapeutic significance of FRK.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5, Saskatchewan, Canada.
| |
Collapse
|
3
|
Huang H, Kaneko T, Sidhu SS, Li SSC. Creation of Phosphotyrosine Superbinders by Directed Evolution of an SH2 Domain. Methods Mol Biol 2017; 1555:225-254. [PMID: 28092036 DOI: 10.1007/978-1-4939-6762-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Commercial antibodies raised against phosphotyrosine have been widely used as reagents to detect or isolate tyrosine-phosphorylated proteins from cellular samples. However, these antibodies are costly and are not amenable to in-house production in an academic lab setting. In this chapter, we describe a method to generate super-high affinity SH2 domains, dubbed the phosphotyrosine superbinders, by evolving a natural SH2 domain using the phage display technology. The superbinders are stable and can be easily produced in Escherichia coli in large quantities. The strategy presented here may also be applied to other protein domains to generate domain variants with markedly enhanced affinities for a specific post-translational modification.
Collapse
Affiliation(s)
- Haiming Huang
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1
| | - Tomonori Kaneko
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1.
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, Canada, M5S 3E1.
| | - Shawn S C Li
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1.
| |
Collapse
|
4
|
Abstract
During the past 20 years, the studies on genetics or pharmacogenomics of primary hypertension provided interesting results supporting the role of genetics, but no actionable finding ready to be translated into personalized medicine. Two types of approaches have been applied: a "hypothesis-driven" approach on the candidate genes, coding for proteins involved in the biochemical machinery underlying the regulation of BP, and an "unbiased hypothesis-free" approach with GWAS, based on the randomness principles of frequentist statistics. During the past 10-15 years, the application of the latter has overtaken the application of the former leading to an enlargement of the number of previously unknown candidate loci or genes but without any actionable result for the therapy of hypertension. In the present review, we summarize the results of our hypothesis-driven approach based on studies carried out in rats with genetic hypertension and in humans with essential hypertension at the pre-hypertensive and early hypertensive stages. These studies led to the identification of mutant adducin and endogenous ouabain as candidate genetic-molecular mechanisms in both species. Rostafuroxin has been developed for its ability to selectively correct Na(+) pump abnormalities sustained by the two abovementioned mechanisms and to selectively reduce BP in rats and in humans carrying the gene variants underlying the mutant adducin and endogenous ouabain (EO) effects. A clinical trial is ongoing to substantiate these findings. Future studies should apply both the candidate gene and GWAS approaches to fully exploit the potential of genetics in optimizing the personalized therapy.
Collapse
|
5
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
6
|
Ferrandi M, Molinari I, Rastaldi MP, Ferrari P, Bianchi G, Manunta P. Rostafuroxin protects from podocyte injury and proteinuria induced by adducin genetic variants and ouabain. J Pharmacol Exp Ther 2014; 351:278-87. [PMID: 25187430 DOI: 10.1124/jpet.114.217133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glomerulopathies are important causes of morbidity and mortality. Selective therapies that address the underlying mechanisms are still lacking. Recently, two mechanisms, mutant β-adducin and ouabain, have been found to be involved in glomerular podocytopathies and proteinuria through nephrin downregulation. The main purpose of the present study was to investigate whether rostafuroxin, a novel antihypertensive agent developed as a selective inhibitor of Src-SH2 interaction with mutant adducin- and ouabain-activated Na,K-ATPase, may protect podocytes from adducin- and ouabain-induced effects, thus representing a novel pharmacologic approach for the therapy of podocytopathies and proteinuria caused by the aforementioned mechanisms. To study the effect of rostafuroxin on podocyte protein changes and proteinuria, mice carrying mutant β-adducin and ouabain hypertensive rats were orally treated with 100 μg/kg per day rostafuroxin. Primary podocytes from congenic rats carrying mutant α-adducin or β-adducin (NB) from Milan hypertensive rats and normal rat podocytes incubated with 10(-9) M ouabain were cultured with 10(-9) M rostafuroxin. The results indicated that mutant β-adducin and ouabain caused podocyte nephrin loss and proteinuria in animal models. These alterations were reproduced in primary podocytes from NB rats and normal rats incubated with ouabain. Treatment of animals, or incubation of cultured podocytes with rostafuroxin, reverted mutant β-adducin- and ouabain-induced effects on nephrin protein expression and proteinuria. We conclude that rostafuroxin prevented podocyte lesions and proteinuria due to mutant β-adducin and ouabain in animal models. This suggests a potential therapeutic effect of rostafuroxin in patients with glomerular disease progression associated with these two mechanisms.
Collapse
Affiliation(s)
- Mara Ferrandi
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy (M.F., I.M., P.F.); Division of Genetics and Cell Biology, Genomics of Renal Diseases and Hypertension Unit, IRCC San Raffaele Scientific Institute, Milan, Italy (M.F., I.M., P.M.); Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy (M.P.R.); CVie Therapeutics, Hong Kong, China (P.F., G.B.); and Chair of Nephrology, University Vita-Salute, Milan, Italy (G.B., P.M.)
| | - Isabella Molinari
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy (M.F., I.M., P.F.); Division of Genetics and Cell Biology, Genomics of Renal Diseases and Hypertension Unit, IRCC San Raffaele Scientific Institute, Milan, Italy (M.F., I.M., P.M.); Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy (M.P.R.); CVie Therapeutics, Hong Kong, China (P.F., G.B.); and Chair of Nephrology, University Vita-Salute, Milan, Italy (G.B., P.M.)
| | - Maria Pia Rastaldi
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy (M.F., I.M., P.F.); Division of Genetics and Cell Biology, Genomics of Renal Diseases and Hypertension Unit, IRCC San Raffaele Scientific Institute, Milan, Italy (M.F., I.M., P.M.); Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy (M.P.R.); CVie Therapeutics, Hong Kong, China (P.F., G.B.); and Chair of Nephrology, University Vita-Salute, Milan, Italy (G.B., P.M.)
| | - Patrizia Ferrari
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy (M.F., I.M., P.F.); Division of Genetics and Cell Biology, Genomics of Renal Diseases and Hypertension Unit, IRCC San Raffaele Scientific Institute, Milan, Italy (M.F., I.M., P.M.); Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy (M.P.R.); CVie Therapeutics, Hong Kong, China (P.F., G.B.); and Chair of Nephrology, University Vita-Salute, Milan, Italy (G.B., P.M.)
| | - Giuseppe Bianchi
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy (M.F., I.M., P.F.); Division of Genetics and Cell Biology, Genomics of Renal Diseases and Hypertension Unit, IRCC San Raffaele Scientific Institute, Milan, Italy (M.F., I.M., P.M.); Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy (M.P.R.); CVie Therapeutics, Hong Kong, China (P.F., G.B.); and Chair of Nephrology, University Vita-Salute, Milan, Italy (G.B., P.M.)
| | - Paolo Manunta
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy (M.F., I.M., P.F.); Division of Genetics and Cell Biology, Genomics of Renal Diseases and Hypertension Unit, IRCC San Raffaele Scientific Institute, Milan, Italy (M.F., I.M., P.M.); Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy (M.P.R.); CVie Therapeutics, Hong Kong, China (P.F., G.B.); and Chair of Nephrology, University Vita-Salute, Milan, Italy (G.B., P.M.)
| |
Collapse
|
7
|
Li L, Cui X, Yu S, Zhang Y, Luo Z, Yang H, Zhou Y, Zheng X. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations. PLoS One 2014; 9:e92863. [PMID: 24675610 PMCID: PMC3968047 DOI: 10.1371/journal.pone.0092863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/27/2014] [Indexed: 02/05/2023] Open
Abstract
Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.
Collapse
Affiliation(s)
- Liqi Li
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiang Cui
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sanjiu Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Boston, United States of America
| |
Collapse
|