1
|
Wang J, Liu X, Song Y, Liu Z, Tang X, Tan H. LC-AMP-I1, a novel venom-derived antimicrobial peptide from the wolf spider Lycosa coelestis. Antimicrob Agents Chemother 2025; 69:e0042424. [PMID: 39620694 PMCID: PMC11784185 DOI: 10.1128/aac.00424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025] Open
Abstract
Antibiotic resistance has become a critical concern in recent years, and antimicrobial peptides may function as innovative antibacterial agents to address this issue. In this work, we identified a novel antimicrobial peptide, LC-AMP-I1, derived from the venom of Lycosa coelestis, demonstrating substantial antibacterial properties and minimal hemolytic activity. LC-AMP-I1 was subjected to additional assessment for antibacterial efficacy, anti-biofilm properties, drug resistance, stability, and cytotoxicity in vitro. It exhibited comparable antibacterial efficacy to melittin against six common clinical multidrug-resistant bacteria, effectively inhibiting biofilm formation and disrupting established biofilms. Additionally, LC-AMP-I1 demonstrated minimal bacterial resistance, excellent stability, negligible mammalian cell toxicity, low hemolytic activity, and appropriate selectivity for both normal and tumor cells. When combined with traditional antibiotics, LC-AMP-I1 exhibited additive or synergistic therapeutic effects. In a neutropenic mouse thigh infection model, LC-AMP-I1 exhibited a therapeutic effect in inhibiting bacterial proliferation in vivo. The mechanistic investigation indicated that LC-AMP-I1 could influence bacterial cell membrane permeability at low concentrations and directly disrupt structure-function at high concentrations. The results of this work indicate that LC-AMP-I1 may function as a viable alternative to traditional antibiotics in addressing multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Junyao Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xi Liu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuxin Song
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xing Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, China
| | - Huaxin Tan
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Nishiduka ES, Lomazi RL, da Silva PI, Tashima AK. Identification of Peptides in Spider Venom Using Mass Spectrometry. Methods Mol Biol 2024; 2758:331-340. [PMID: 38549023 DOI: 10.1007/978-1-0716-3646-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3-9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter, we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3-9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.
Collapse
Affiliation(s)
- Erika S Nishiduka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rafael L Lomazi
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Pedro I da Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Alexandre K Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Duran LH, Wilson DT, Salih M, Rymer TL. Interactions between physiology and behaviour provide insights into the ecological role of venom in Australian funnel-web spiders: Interspecies comparison. PLoS One 2023; 18:e0285866. [PMID: 37216354 PMCID: PMC10202279 DOI: 10.1371/journal.pone.0285866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Australian funnel-web spiders are iconic species, characterized as being the most venomous spiders in the world. They are also valued for the therapeutics and natural bioinsecticides potentially hidden in their venom molecules. Although numerous biochemical and molecular structural approaches have tried to determine the factors driving venom complexity, these approaches have not considered behaviour, physiology and environmental conditions collectively, which can play a role in the evolution, complexity, and function of venom components in funnel-webs. This study used a novel interdisciplinary approach to understand the relationships between different behaviours (assessed in different ecological contexts) and morphophysiological variables (body condition, heart rate) that may affect venom composition in four species of Australian funnel-web spiders. We tested defensiveness, huddling behaviour, frequency of climbing, and activity for all species in three ecological contexts: i) predation using both indirect (puff of air) and direct (prodding) stimuli; ii) conspecific tolerance; and iii) exploration of a new territory. We also assessed morphophysiological variables and venom composition of all species. For Hadronyche valida, the expression of some venom components was associated with heart rate and defensiveness during the predation context. However, we did not find any associations between behavioural traits and morphophysiological variables in the other species, suggesting that particular associations may be species-specific. When we assessed differences between species, we found that the species separated out based on the venom profiles, while activity and heart rate are likely more affected by individual responses and microhabitat conditions. This study demonstrates how behavioural and morphophysiological traits are correlated with venom composition and contributes to a broader understanding of the function and evolution of venoms in funnel-web spiders.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - Mohamed Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
4
|
Shaikh NY, Sunagar K. The deep-rooted origin of disulfide-rich spider venom toxins. eLife 2023; 12:83761. [PMID: 36757362 PMCID: PMC10017107 DOI: 10.7554/elife.83761] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts, and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their bevolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot - which we name 'Adi Shakti', after the creator of the Universe according to Hindu mythology - 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g. prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.
Collapse
Affiliation(s)
- Naeem Yusuf Shaikh
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science BangaloreBengaluruIndia
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science BangaloreBengaluruIndia
| |
Collapse
|
5
|
Venom-derived pain-causing toxins: insights into sensory neuron function and pain mechanisms. Pain 2022; 163:S46-S56. [DOI: 10.1097/j.pain.0000000000002701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
|
6
|
The Deadly Toxin Arsenal of the Tree-Dwelling Australian Funnel-Web Spiders. Int J Mol Sci 2022; 23:ijms232113077. [PMID: 36361863 PMCID: PMC9658043 DOI: 10.3390/ijms232113077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.
Collapse
|
7
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
8
|
Fernandes FF, Moraes JR, Santos JLD, Soares TG, Gouveia VJP, Matavel ACS, Borges WDC, Cordeiro MDN, Figueiredo SG, Borges MH. Comparative venomic profiles of three spiders of the genus Phoneutria. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210042. [PMID: 35283937 PMCID: PMC8875809 DOI: 10.1590/1678-9199-jvatitd-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Spider venoms induce different physio-pharmacological effects by binding
with high affinity on molecular targets, therefore being of biotechnological
interest. Some of these toxins, acting on different types of ion channels,
have been identified in the venom of spiders of the genus
Phoneutria, mainly from P.
nigriventer. In spite of the pharmaceutical potential demonstrated
by P. nigriventer toxins, there is limited information on
molecules from venoms of the same genus, as their toxins remain poorly
characterized. Understanding this diversity and clarifying the differences
in the mechanisms of action of spider toxins is of great importance for
establishing their true biotechnological potential. This prompted us to
compare three different venoms of the Phoneutria genus:
P. nigriventer (Pn-V), P. eickstedtae
(Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by
SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and
electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall
similarity in their components, with only minor differences. The presence of
a high number of similar proteins was evident, particularly toxins in the
mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were
detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6.
All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning
protein composition and enzymatic activities, containing isoforms of the
same toxins sharing high sequence homology, with minor modifications.
However, these structural and functional variations are very important for
venom diversity. In addition, our findings will contribute to the
comprehension of the molecular diversity of the venoms of the other species
from Phoneutria genus, exposing their biotechnological
potential as a source for searching for new active molecules.
Collapse
|
9
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
10
|
Hernández Duran L, Wilson DT, Briffa M, Rymer TL. Beyond spider personality: The relationships between behavioral, physiological, and environmental factors. Ecol Evol 2021; 11:2974-2989. [PMID: 33841759 PMCID: PMC8019048 DOI: 10.1002/ece3.7243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Spiders are useful models for testing different hypotheses and methodologies relating to animal personality and behavioral syndromes because they show a range of behavioral types and unique physiological traits (e.g., silk and venom) that are not observed in many other animals. These characteristics allow for a unique understanding of how physiology, behavioral plasticity, and personality interact across different contexts to affect spider's individual fitness and survival. However, the relative effect of extrinsic factors on physiological traits (silk, venom, and neurohormones) that play an important role in spider survival, and which may impact personality, has received less attention. The goal of this review is to explore how the environment, experience, ontogeny, and physiology interact to affect spider personality types across different contexts. We highlight physiological traits, such as neurohormones, and unique spider biochemical weapons, namely silks and venoms, to explore how the use of these traits might, or might not, be constrained or limited by particular behavioral types. We argue that, to develop a comprehensive understanding of the flexibility and persistence of specific behavioral types in spiders, it is necessary to incorporate these underlying mechanisms into a synthesized whole, alongside other extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| | - David Thomas Wilson
- Centre for Molecular TherapeuticsAustralian Institute for Tropical Health and MedicineJames Cook UniversityCairnsQldAustralia
| | - Mark Briffa
- School of Biological and Marine SciencesPlymouth UniversityPlymouthUK
| | - Tasmin Lee Rymer
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| |
Collapse
|
11
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
12
|
Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon X 2020; 8:100063. [PMID: 33305257 PMCID: PMC7711288 DOI: 10.1016/j.toxcx.2020.100063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Mygalomorph venom properties and active components, which have importance in medicine, agronomy, venomics, ecology and evolution, have been widely studied, but only a small fraction have been characterised. Several studies have shown inter-individual variation in the composition of venom peptides based on ontogeny, sexual dimorphism, season and diet. However, intra-individual variation in venom composition, which could play a key role in the evolution, diversification and function of toxins, is poorly understood. In this study, we demonstrate significant intra- and inter-individual variation in venom composition in the Australian funnel-web spider Hadronyche valida, highlighting that individuals show different venom profiles over time. Fourteen (four juvenile and ten adult females) funnel-web spiders, maintained under the same environmental conditions and diet, were milked a total of four times, one month apart. We then used reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry to generate venom fingerprints containing the retention time and molecular weights of the different toxin components in the venom. Across all individuals, we documented a combined total of 83 individual venom components. Only 20% of these components were shared between individuals. Individuals showed variation in the composition of venom peptides, with some components consistently present over time, while others were only present at specific times. When individuals were grouped using the Jaccard clustering index and Kernel Principal Component Analysis, spiders formed two distinct clusters, most likely due to their origin or time of collection. This study contributes to the understanding of variation in venom composition at different levels (intra-individual, and intra- and inter-specific) and considers some of the mechanisms of selection that may contribute to venom diversification within arachnids. In addition, inter-specific variation in venom composition can be highly useful as a chemotaxonomic marker to identify funnel-web species.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
13
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
14
|
Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc Natl Acad Sci U S A 2020; 117:11399-11408. [PMID: 32398368 DOI: 10.1073/pnas.1914536117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.
Collapse
|
15
|
Haney RA, Matte T, Forsyth FS, Garb JE. Alternative Transcription at Venom Genes and Its Role as a Complementary Mechanism for the Generation of Venom Complexity in the Common House Spider. Front Ecol Evol 2019; 7. [PMID: 31431897 PMCID: PMC6700725 DOI: 10.3389/fevo.2019.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The complex composition of venom, a proteinaceous secretion used by
diverse animal groups for predation or defense, is typically viewed as being
driven by gene duplication in conjunction with positive selection, leading to
large families of diversified toxins with selective venom gland expression. Yet,
the production of alternative transcripts at venom genes is often overlooked as
another potentially important process that could contribute proteins to venom,
and requires comprehensive datasets integrating genome and transcriptome
sequences together with proteomic characterization of venom to be fully
documented. In the common house spider, Parasteatoda
tepidariorum, we used RNA sequencing of four tissue types in
conjunction with the sequenced genome to provide a comprehensive transcriptome
annotation. We also used mass spectrometry to identify a minimum of 99 distinct
proteins in P tepidariorum venom, including at least 33
latrotoxins, pore-forming neurotoxins shared with the confamilial black widow.
We found that venom proteins are much more likely to come from multiple
transcript genes, whose transcripts produced distinct protein sequences. The
presence of multiple distinct proteins in venom from transcripts at individual
genes was confirmed for eight loci by mass spectrometry, and is possible at 21
others. Alternative transcripts from the same gene, whether encoding or not
encoding a protein found in venom, showed a range of expression patterns, but
were not necessarily restricted to the venom gland. However, approximately half
of venom protein encoding transcripts were found among the 1,318 transcripts
with strongly venom gland biased expression. Our findings revealed an important
role for alternative transcription in generating venom protein complexity and
expanded the traditional model of venom evolution.
Collapse
Affiliation(s)
- Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Taylor Matte
- Center for Regenerative Medicine, Boston University, Medical, Boston, MA, United States
| | - FitzAnthony S Forsyth
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
16
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
17
|
Lian W, Lian H, Li Q, Hu A, Liu S. The venom of spider Haplopelma hainanum suppresses proliferation and induces apoptosis in hepatic cancer cells by caspase activation in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:169-177. [PMID: 29928971 DOI: 10.1016/j.jep.2018.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spiders and spider venoms have been used in traditional Chinese medicine to treat various ailments for more than 1000 years. For instance, several large spiders have been utilized by the Li People, who mainly live in Hainan Island of China, in their own unique traditional Chinese medicine therapy. Recent studies have indicated that spider venoms may be an important source of bioactive compounds for anti-tumor treatments. However, the specific mechanisms underlying these activities are not yet completely understood. AIM OF THE STUDY The present study investigated how the venom of the spider Haplopelma hainanum regulate proliferation and apoptosis in HepG2 cells via the underlying molecular mechanisms. MATERIALS AND METHODS We treated HepG2 cells with various concentrations of the spider venom (0, 10, 50, 100 and 200 μg/mL) for 48 h, and then analyzed anti-proliferation activity, apoptosis-inducing effects, mitochondrial membrane potential (Δψm) and changes in the pro-apoptotic pathway. The anti-proliferation activity was detected by the MTT assay and Western blotting. Flow cytometry was used to analyze both apoptosis and mitochondrial membrane potential. The key pro-apoptotic molecules in the caspase-3 and -9 dependent mitochondrial pathway, including Bcl2 family, were assessed through realtime PCR, Western blotting and enzymatic test. RESULTS Obvious morphological changes induced by the spider venom included decreased cell numbers, shorter cell length and reduced cell adhesion. MTT and Western blotting demonstrated that the spider venom potently suppressed cell proliferation in a dose- and time-dependent manner with IC50 of 126.00 μg/mL for 48 h. In addition, the spider venom caused a reduction in the mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm under the participation of Bax. Finally, cytochrome c activated caspase-3 and caspase-9, and induced the apoptosis in the HepG2 cells. CONCLUSION The results indicated that the venom of H. hainanum exhibited potent inhibition effects in HepG2 cells through suppressing proliferation, reducing the mitochondrial membrane potential, activating caspase-3 and caspase-9, and inducing the apoptosis through a mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Weiguang Lian
- Department of Laboratory Animal Science, Hebei Medical University, Key Lab of Laboratory Animal Science of Hebei Province, Shijiazhuang 050017, China.
| | - Hongguang Lian
- Department of Dermatology, the Second Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China.
| | - Qian Li
- Department of Dermatology, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China.
| | - An Hu
- Department of Laboratory Animal Science, Hebei Medical University, Key Lab of Laboratory Animal Science of Hebei Province, Shijiazhuang 050017, China.
| | - Shufeng Liu
- Department of Laboratory Animal Science, Hebei Medical University, Key Lab of Laboratory Animal Science of Hebei Province, Shijiazhuang 050017, China.
| |
Collapse
|
18
|
Diniz MRV, Paiva ALB, Guerra-Duarte C, Nishiyama MY, Mudadu MA, de Oliveira U, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13:e0200628. [PMID: 30067761 PMCID: PMC6070231 DOI: 10.1371/journal.pone.0200628] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- High-Throughput Nucleotide Sequencing
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Peptides/metabolism
- Proteomics
- Sequence Alignment
- Sequence Analysis, DNA
- Spider Venoms/metabolism
- Spiders/genetics
- Spiders/metabolism
- Toxins, Biological/genetics
- Toxins, Biological/metabolism
- Transcriptome
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Marcelo R. V. Diniz
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L. B. Paiva
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Y. Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Ursula de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Márcia H. Borges
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - John R. Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | |
Collapse
|
19
|
Li B, Gou M, Han J, Yuan X, Li Y, Li T, Jiang Q, Xiao R, Li Q. Proteomic analysis of buccal gland secretion from fasting and feeding lampreys ( Lampetra morii). Proteome Sci 2018; 16:9. [PMID: 29796011 PMCID: PMC5964706 DOI: 10.1186/s12953-018-0137-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/14/2018] [Indexed: 12/05/2022] Open
Abstract
Background Previous studies have shown that lamprey buccal glands contain some regulators related to anticoagulation, nociception, and immune responses due to the blood sucking habit. Regrettably, the protein expression profile in the buccal glands of feeding lampreys has never been reported yet. The present study was performed in order to further identify more proteins which are closely associated with lamprey feeding process. Methods 2D-PAGE, NanoLC–MS/MS with higher resolution, Ensembl lamprey and NCBI protein databases, as well as western blot was used to compare the proteomics of buccal gland secretion from China northeast lampreys (Lampetra morii) which had been fed for 0, 10, and 60 min, respectively. Results In the present study, the number of identified protein species in the buccal glands of feeding groups (60 min) was increased significantly, nearly ten times of that in the fasting group. During the feeding stage, novel proteins emerged in the buccal gland secretion of lampreys. According to gene ontology (GO) analysis and function predictions, these proteins were summarized and discussed based on their potential roles during feeding process. Furthermore, some of the identified proteins were confirmed to express during the feeding time of lampreys. Conclusion When lampreys attack host fishes to suck blood and flesh, their buccal glands could secrete enough proteins to suppress blood coagulation, nociception, oxidative stress, immune response, as well as other adverse effects encountered during their parasitic lives. The present study would provide clues to clarify the feeding mechanism of the bloodsucking lampreys. Electronic supplementary material The online version of this article (10.1186/s12953-018-0137-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bowen Li
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Meng Gou
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Jianmei Han
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Xiaofei Yuan
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Yingying Li
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Tiesong Li
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Qi Jiang
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Rong Xiao
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| | - Qingwei Li
- 1School of Life Sciences, Liaoning Normal University, Dalian, 116081 People's Republic of China.,2Lamprey Research Center, Liaoning Normal University, Dalian, 116081 People's Republic of China
| |
Collapse
|
20
|
Hedin M, Derkarabetian S, Ramírez MJ, Vink C, Bond JE. Phylogenomic reclassification of the world's most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Sci Rep 2018; 8:1636. [PMID: 29374214 PMCID: PMC5785998 DOI: 10.1038/s41598-018-19946-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/10/2018] [Indexed: 12/27/2022] Open
Abstract
Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins. Based on the standing morphology-based classification, mouse spiders are hypothesized distant relatives of atracines, having diverged over 200 million years ago. Using sequence-capture phylogenomics, we instead show convincingly that hexathelids are non-monophyletic, and that atracines are sister to actinopodids. Three new mygalomorph lineages are elevated to the family level, and a revised circumscription of Hexathelidae is presented. Re-writing this phylogenetic story has major implications for how we study venom evolution in these spiders, and potentially genuine consequences for antivenom development and bite treatment research. More generally, our research provides a textbook example of the applied importance of modern phylogenomic research.
Collapse
Affiliation(s)
- Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Shahan Derkarabetian
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
- Department of Biology, University of California Riverside, Riverside, California, 92521, USA
| | - Martín J Ramírez
- Division of Arachnology Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Cor Vink
- Canterbury Museum Christchurch, Christchurch, 8013, New Zealand
| | - Jason E Bond
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
21
|
Lomazi RL, Nishiduka ES, Silva PI, Tashima AK. Identification of Peptides in Spider Venom Using Mass Spectrometry. Methods Mol Biol 2018; 1719:359-367. [PMID: 29476524 DOI: 10.1007/978-1-4939-7537-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3-9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3-9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.
Collapse
Affiliation(s)
- Rafael L Lomazi
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Erika S Nishiduka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Pedro I Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Alexandre K Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology. Toxins (Basel) 2017; 10:toxins10010015. [PMID: 29280959 PMCID: PMC5793102 DOI: 10.3390/toxins10010015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Venoms are produced by a wide variety of species including spiders, scorpions, reptiles, cnidarians, and fish for the purpose of harming or incapacitating predators or prey. While some venoms are of relatively simple composition, many contain hundreds to thousands of individual components with distinct pharmacological activity. Pain-inducing or "algesic" venom compounds have proven invaluable to our understanding of how physiological nociceptive neural networks operate. In this review, we present an overview of some of the diverse nociceptive pathways that can be modulated by specific venom components to evoke pain.
Collapse
|
23
|
Evaluation of sample preparation protocols for spider venom profiling by MALDI-TOF MS. Toxicon 2017; 133:18-25. [DOI: 10.1016/j.toxicon.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022]
|
24
|
Perez-Riverol A, Dos Santos-Pinto JRA, Lasa AM, Palma MS, Brochetto-Braga MR. Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. J Proteomics 2017; 161:88-103. [PMID: 28435107 DOI: 10.1016/j.jprot.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
Polybia paulista (Hymenoptera: Vespidae) is a neotropical social wasp from southeast Brazil. As most social Hymenoptera, venom from P. paulista comprises a complex mixture of bioactive toxins ranging from low molecular weight compounds to peptides and proteins. Several efforts have been made to elucidate the molecular composition of the P. paulista venom. Data derived from proteomic, peptidomic and allergomic analyses has enhanced our understanding of the whole envenoming process caused by the insect sting. The combined use of bioinformatics, -omics- and molecular biology tools have allowed the identification, characterization, in vitro synthesis and recombinant expression of several wasp venom toxins. Some of these P. paulista - derived bioactive compounds have been evaluated for the rational design of antivenoms and the improvement of allergy specific diagnosis and immunotherapy. Molecular characterization of crude venom extract has enabled the description and isolation of novel toxins with potential biotechnological applications. Here, we review the different approaches that have been used to unravel the venom composition of P. paulista. We also describe the main groups of P. paulista - venom toxins currently identified and analyze their potential in the development of component-resolved diagnosis of allergy, and in the rational design of antivenoms and novel bioactive drugs.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | | | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, System Biology Department, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana 10600, Cuba.
| | - Mario Sergio Palma
- Centro de Estudos de Insetos Sociais-CEIS-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
25
|
Venom Profiling of a Population of the Theraphosid Spider Phlogius crassipes Reveals Continuous Ontogenetic Changes from Juveniles through Adulthood. Toxins (Basel) 2017; 9:toxins9040116. [PMID: 28346332 PMCID: PMC5408190 DOI: 10.3390/toxins9040116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023] Open
Abstract
Theraphosid spiders (tarantulas) are venomous arthropods found in most tropical and subtropical regions of the world. Tarantula venoms are a complex cocktail of toxins with potential use as pharmacological tools, drugs and bioinsecticides. Although numerous toxins have been isolated from tarantula venoms, little research has been carried out on the venom of Australian tarantulas. We therefore investigated the venom profile of the Australian theraphosid spider Phlogius crassipes and examined whether there are ontogenetic changes in venom composition. Spiders were divided into four ontogenic groups according to cephalothorax length, then the venom composition of each group was examined using gel electrophoresis and mass spectrometry. We found that the venom of P. crassipes changes continuously during development and throughout adulthood. Our data highlight the need to investigate the venom of organisms over the course of their lives to uncover and understand the changing functions of venom and the full range of toxins expressed. This in turn should lead to a deeper understanding of the organism’s ecology and enhance the potential for biodiscovery.
Collapse
|
26
|
Aili SR, Touchard A, Petitclerc F, Dejean A, Orivel J, Padula MP, Escoubas P, Nicholson GM. Combined Peptidomic and Proteomic Analysis of Electrically Stimulated and Manually Dissected Venom from the South American Bullet Ant Paraponera clavata. J Proteome Res 2017; 16:1339-1351. [DOI: 10.1021/acs.jproteome.6b00948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Samira R. Aili
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| | - Axel Touchard
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Frédéric Petitclerc
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Alain Dejean
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
- Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31400 Toulouse, France
| | - Jérôme Orivel
- CNRS,
UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech,
Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97310 Kourou, France
| | - Matthew P. Padula
- Proteomics
Core Facility, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines — Villa
3, Valbonne 06560, France
| | - Graham M. Nicholson
- Neurotoxin
Research Group, School of Life Sciences, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
27
|
Aili SR, Touchard A, Koh JMS, Dejean A, Orivel J, Padula MP, Escoubas P, Nicholson GM. Comparisons of Protein and Peptide Complexity in Poneroid and Formicoid Ant Venoms. J Proteome Res 2016; 15:3039-54. [DOI: 10.1021/acs.jproteome.6b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Samira R. Aili
- Neurotoxin
Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Jennifer M. S. Koh
- Neurotoxin
Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
- Laboratoire Écologie
Fonctionnelle et Environnement, CNRS, UMR 5245, Ecolab, 118 route de Narbonne, 31062 Toulouse, France
| | - Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Matthew P. Padula
- Proteomics
Core Facility, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| | - Graham M. Nicholson
- Neurotoxin
Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
28
|
Low cost venom extractor based on Arduino® board for electrical venom extraction from arthropods and other small animals. Toxicon 2016; 118:156-61. [DOI: 10.1016/j.toxicon.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
|
29
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
30
|
Abreu TF, Sumitomo BN, Nishiyama MY, Oliveira UC, Souza GHMF, Kitano ES, Zelanis A, Serrano SMT, Junqueira-de-Azevedo I, Silva PI, Tashima AK. Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity. J Proteomics 2016; 151:232-242. [PMID: 27436114 DOI: 10.1016/j.jprot.2016.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022]
Abstract
Acanthoscurria gomesiana is a Brazilian spider from the Theraphosidae family inhabiting regions of Southeastern Brazil. Potent antimicrobial peptides as gomesin and acanthoscurrin have been discovered from the spider hemolymph in previous works. Spider venoms are also recognized as sources of biologically active peptides, however the venom peptidome of A. gomesiana remained unexplored to date. In this work, a MS-based workflow was applied to the investigation of the spider venom peptidome. Data-independent and data-dependent LC-MS/MS acquisitions of intact peptides and of peptides submitted to multiple enzyme digestions, followed by automated chromatographic alignment, de novo analysis, database and homology searches with manual validations showed that the venom is composed by <165 features, with masses ranging from 0.4-15.8kDa. From digestions, 135 peptides were identified from 17 proteins, including three new mature peptides: U1-TRTX-Agm1a, U1-TRTX-Agm2a and U1-TRTX-Agm3a, containing 3, 4 and 3 disulfide bonds, respectively. The toxins U1-TRTX-Agm1a differed by only one amino acid from U1-TRTX-Ap1a from A. paulensis and U1-TRTX-Agm2a was derived from the genicutoxin-D1 precursor from A. geniculata. These toxins have potential applications as antimicrobial agents, as the peptide fraction of A. gomesiana showed activity against Escherichia coli, Enterobacter cloacae and Candida albicans strains. MS data are available via ProteomeXchange Consortium with identifier PXD003884. BIOLOGICAL SIGNIFICANCE Biological fluids of the Acanthoscurria gomesiana spider are sources of active molecules, as is the case of antimicrobial peptides and acylpolyamines found in the hemolymphs. The venom is also a potential source of toxins with pharmacological and biotechnological applications. However, to our knowledge no A. gomesiana venom toxin structure has been determined to date. Using a combination of high resolution mass spectrometry, transcriptomics and bioinformatics, we employed a workflow to fully sequence, determine the number of disulfide bonds of mature peptides and we found new potential antimicrobial peptides. This workflow is suitable for complete peptide toxin sequencing when handling limited amount of venom samples and can accelerate the discovery of peptides with potential biotechnological applications.
Collapse
Affiliation(s)
- Thiago F Abreu
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bianca N Sumitomo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Milton Y Nishiyama
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo, SP, Brazil
| | - Ursula C Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo, SP, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Applications Research & Development Laboratory, Waters Corporation, Sāo Paulo, SP, Brazil
| | - Eduardo S Kitano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo, SP, Brazil
| | - André Zelanis
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, ICT-UNIFESP, São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo, SP, Brazil
| | - Inácio Junqueira-de-Azevedo
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo, SP, Brazil
| | - Pedro I Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling, Instituto Butantan, São Paulo, SP, Brazil
| | - Alexandre K Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Cooper AM, Kelln WJ, Hayes WK. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis. ZOOLOGY 2015; 117:398-414. [PMID: 25456977 DOI: 10.1016/j.zool.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023]
Abstract
Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.
Collapse
|
32
|
Touchard A, Koh JMS, Aili SR, Dejean A, Nicholson GM, Orivel J, Escoubas P. The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:385-396. [PMID: 26349460 DOI: 10.1002/rcm.7116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE Compared with other animal venoms, ant venoms remain little explored. Ants have evolved complex venoms to rapidly immobilize arthropod prey and to protect their colonies from predators and pathogens. Many ants have retained peptide-rich venoms that are similar to those of other arthropod groups. METHODS With the goal of conducting a broad and comprehensive survey of ant venom peptide diversity, we investigated the peptide composition of venoms from 82 stinging ant species from nine subfamilies using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). We also conducted an in-depth investigation of eight venoms using reversed-phase high-performance liquid chromatography (RP-HPLC) separation coupled with offline MALDI-TOFMS. RESULTS Our results reveal that the peptide compositions of ant venom peptidomes from both poneroid and formicoid ant clades comprise hundreds of small peptides (<4 kDa), while large peptides (>4 kDa) are also present in the venom of formicoids. Chemical reduction revealed the presence of disulfide-linked peptides in most ant subfamilies, including peptides structured by one, two or three disulfide bonds as well as dimeric peptides reticulated by three disulfide bonds. CONCLUSIONS The biochemical complexity of ant venoms, associated with an enormous ecological and taxonomic diversity, suggests that stinging ant venoms constitute a promising source of bioactive molecules that could be exploited in the search for novel drug and biopesticide leads.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
| | - Jennifer M S Koh
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Samira R Aili
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, Toulouse, France
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379, Kourou Cedex, France
| | | |
Collapse
|
33
|
Undheim EAB, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015; 7:679-704. [PMID: 25723324 PMCID: PMC4379518 DOI: 10.3390/toxins7030679] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022] Open
Abstract
Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
34
|
Bende NS, Dziemborowicz S, Herzig V, Ramanujam V, Brown GW, Bosmans F, Nicholson GM, King GF, Mobli M. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop. FEBS J 2015; 282:904-20. [PMID: 25559770 DOI: 10.1111/febs.13189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/27/2022]
Abstract
Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker.
Collapse
Affiliation(s)
- Niraj S Bende
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fang W, Lu HL, King GF, St Leger RJ. Construction of a hypervirulent and specific mycoinsecticide for locust control. Sci Rep 2014; 4:7345. [PMID: 25475694 PMCID: PMC4256560 DOI: 10.1038/srep07345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022] Open
Abstract
Locusts and grasshoppers (acridids) are among the worst pests of crops and grasslands worldwide. Metarhizium acridum, a fungal pathogen that specifically infects acridids, has been developed as a control agent but its utility is limited by slow kill time and greater expense than chemical insecticides. We found that expression of four insect specific neurotoxins improved the efficacy of M. acridum against acridids by reducing lethal dose, time to kill and food consumption. Coinoculating recombinant strains expressing AaIT1(a sodium channel blocker) and hybrid-toxin (a blocker of both potassium and calcium channels), produced synergistic effects, including an 11.5-fold reduction in LC50, 43% reduction in LT50 and a 78% reduction in food consumption. However, specificity was retained as the recombinant strains did not cause disease in non-acridids. Our results identify a repertoire of toxins with different modes of action that improve the utility of fungi as specific control agents of insects.
Collapse
Affiliation(s)
- Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou. 310058, Zhejiang, China
| | - Hsiao-Ling Lu
- Department of Entomology University of Maryland College Park MD 20742 USA
| | - Glenn F King
- Division of Chemical &Structural Biology Institute for Molecular Bioscience The University of Queensland St. Lucia, QLD 4072 Australia
| | - Raymond J St Leger
- Department of Entomology University of Maryland College Park MD 20742 USA
| |
Collapse
|
36
|
Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R. Peptidomics combined with cDNA library unravel the diversity of centipede venom. J Proteomics 2014; 114:28-37. [PMID: 25449838 DOI: 10.1016/j.jprot.2014.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/25/2023]
Abstract
UNLABELLED Centipedes are one of the oldest venomous arthropods using toxin as their weapon to capture prey. But little attention was focused on them and only few centipede toxins were demonstrated with activity on ion channels. Therefore, more deep works are needed to understand the diversity of centipede venom. In the present study, we use peptidomics combined with cDNA library to uncover the diversity of centipede Scolopendra subspinipes mutilans L. Koch. 192 peptides were identified by LC-MS/MS and 79 precursors were deduced by cDNA library. Surprisingly, the signal peptides of centipede toxins were more complicated than any other animal toxins and even exhibited large differences in homologues. Meanwhile, a large number of variants generated by alternative cleavage sites were detected by mass spectra. Odd number of cystein (3, 5, 7) found in the mature peptides were seldom seen in peptide toxins. In additional, two novel cysteine frameworks (C-C-C-CCC, C-C-C-C-CC-CC) were identified from 16 different cysteine frameworks from centipede peptides. Only 29 precursors have clear targets, while others may provide a potential diversity function for centipede. These findings highlight the extensive diversity of centipede toxins and provide powerful tools to understand the capture and defense weapon of centipede. BIOLOGICAL SIGNIFICANCE Peptide toxins from venomous animal have attracted increasing attentions due to their extraordinary chemical and pharmacological diversity. Centipedes are one of the most used Chinese traditional medicines, but little was known about the active components. The venom of Scolopendra subspinipes mutilans L. Koch is first deeply analyzed in this work and most of peptides were never discovered before. Interestingly, the number and arrangement of cysteine showed a larger different to known peptide toxins such spider or scorpion toxins. Moreover, only 29 peptides from this centipede venom were identified with known function. It suggested that our work not only important to understand the composition of centipede venom, but also provide many valuable peptides for potential biological functions.
Collapse
Affiliation(s)
- Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Guoxiang Mo
- School of Biological Sciences, Nanjing Agriculture University, Nanjing, Jiangshu 210095, China
| | - Di Kang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | - Jie Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | | | - Wenbin Jiang
- College of Life Science and Technology, Kunming University of Science and Technology, China
| | - Bowen Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | | | - Shuanjuan Yang
- Kunming Biological Diversity Regional Center of Large Apparatuses and Equipment, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen 518083, China; Kunming Biological Diversity Regional Center of Large Apparatuses and Equipment, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Kunming Biological Diversity Regional Center of Large Apparatuses and Equipment, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| |
Collapse
|
37
|
Touchard A, Dauvois M, Arguel MJ, Petitclerc F, Leblanc M, Dejean A, Orivel J, Nicholson GM, Escoubas P. Elucidation of the unexplored biodiversity of ant venom peptidomes via MALDI-TOF mass spectrometry and its application for chemotaxonomy. J Proteomics 2014; 105:217-31. [PMID: 24456813 DOI: 10.1016/j.jprot.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED The rise of integrative taxonomy, a multi-criteria approach used in characterizing species, fosters the development of new tools facilitating species delimitation. Mass spectrometric (MS) analysis of venom peptides from venomous animals has previously been demonstrated to be a valid method for identifying species. Here we aimed to develop a rapid chemotaxonomic tool for identifying ants based on venom peptide mass fingerprinting. The study focused on the biodiversity of ponerine ants (Hymenoptera: Formicidae: Ponerinae) in French Guiana. Initial experiments optimized the use of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to determine variations in the mass profiles of ant venoms using several MALDI matrices and additives. Data were then analyzed via a hierarchical cluster analysis to classify the venoms of 17 ant species. In addition, phylogenetic relationships were assessed and were highly correlated with methods using DNA sequencing of the mitochondrial gene cytochrome c oxidase subunit 1. By combining a molecular genetics approach with this chemotaxonomic approach, we were able to improve the accuracy of the taxonomic findings to reveal cryptic ant species within species complexes. This chemotaxonomic tool can therefore contribute to more rapid species identification and more accurate taxonomies. BIOLOGICAL SIGNIFICANCE This is the first extensive study concerning the peptide analysis of the venom of both Pachycondyla and Odontomachus ants. We studied the venoms of 17 ant species from French Guiana that permitted us to fine-tune the venom analysis of ponerine ants via MALDI-TOF mass spectrometry. We explored the peptidomes of crude ant venom and demonstrated that venom peptides can be used in the identification of ant species. In addition, the application of this novel chemotaxonomic method combined with a parallel genetic approach using COI sequencing permitted us to reveal the presence of cryptic ants within both the Pachycondyla apicalis and Pachycondyla stigma species complexes. This adds a new dimension to the search for means of exploiting the enormous biodiversity of venomous ants as a source for novel therapeutic drugs or biopesticides. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France.
| | - Mélodie Dauvois
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| | | | - Frédéric Petitclerc
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Mathieu Leblanc
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France; Université de Toulouse, UPS, INP, Laboratoire Écologie Fonctionnelle et Environnement (ECOLAB), 118 route de Narbonne, 31062 Toulouse, France
| | - Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| |
Collapse
|
38
|
Cologna CT, Cardoso JDS, Jourdan E, Degueldre M, Upert G, Gilles N, Uetanabaro APT, Costa Neto EM, Thonart P, de Pauw E, Quinton L. Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteomics 2013; 94:413-22. [DOI: 10.1016/j.jprot.2013.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|