1
|
Khan MIR, Nazir F, Maheshwari C, Chopra P, Chhillar H, Sreenivasulu N. Mineral nutrients in plants under changing environments: A road to future food and nutrition security. THE PLANT GENOME 2023; 16:e20362. [PMID: 37480222 DOI: 10.1002/tpg2.20362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/25/2023] [Accepted: 05/20/2023] [Indexed: 07/23/2023]
Abstract
Plant nutrition is an important aspect that contributes significantly to sustainable agriculture, whereas minerals enrichment in edible source implies global human health; hence, both strategies need to be bridged to ensure "One Health" strategies. Abiotic stress-induced nutritional imbalance impairs plant growth. In this context, we discuss the molecular mechanisms related to the readjustment of nutrient pools for sustained plant growth under harsh conditions, and channeling the minerals to edible source (seeds) to address future nutritional security. This review particularly highlights interventions on (i) the physiological and molecular responses of mineral nutrients in crop plants under stressful environments; (ii) the deployment of breeding and biotechnological strategies for the optimization of nutrient acquisition, their transport, and distribution in plants under changing environments. Furthermore, the present review also infers the recent advancements in breeding and biotechnology-based biofortification approaches for nutrient enhancement in crop plants to optimize yield and grain mineral concentrations under control and stress-prone environments to address food and nutritional security.
Collapse
Affiliation(s)
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Center, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
2
|
Feng D, Wang X, Gao J, Zhang C, Liu H, Liu P, Sun X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1143963. [PMID: 37025147 PMCID: PMC10070993 DOI: 10.3389/fpls.2023.1143963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stresses are various environmental factors that inhibit a normal plant growth and limit the crop productivity. Plant scientists have been attempting for a long time to understand how plants respond to these stresses and find an effective and feasible solution in mitigating their adverse impacts. Exogenous calcium ion as an essential element for the plant growth, development and reproduction has proven to be effective in alleviating plant stresses through enhancing its resistance or tolerance against them. With a comprehensive review of most recent advances and the analysis by VOSviewer in the researches on this focus of "exogenous calcium" and "stress" for last decade, this paper summarizes the mechanisms of exogenous calcium that are involved in plant defensive responses to abiotic stresses and classifies them accordingly into six categories: I) stabilization of cell walls and membranes; II) regulation of Na+ and K+ ratios; III) regulation of hormone levels in plants; IV) maintenance of photosynthesis; V) regulation of plant respiratory metabolism and improvement of root activities; and VI) induction of gene expressions and protein transcriptions for the stress resistance. Also, the progress and advances from the updated researches on exogenous calcium to alleviate seven abiotic stresses such as drought, flooding, salinity, high temperature, low temperature, heavy metals, and acid rain are outlined. Finally, the future research perspectives in agricultural production are discussed.
Collapse
Affiliation(s)
- Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xuejie Wang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Afairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Ping Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| |
Collapse
|
3
|
Visualization of Glutamate Decarboxylase Activity in Barley Seeds under Salinity Stress Using Mass Microscope. Metabolites 2022; 12:metabo12121262. [PMID: 36557299 PMCID: PMC9786171 DOI: 10.3390/metabo12121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
γ-Aminobutyric acid (GABA) accumulates in plants in response to environmental stresses. The activity levels of glutamate decarboxylase (GAD), an enzyme involved in GABA biosynthesis, are reported to increase during germination under salinity stress. However, it is not clear which tissues of the plant seeds are affected by GAD activity in response to salinity stress. In this study, the effects of salinity stress on the distribution of barley seeds GAD activity during germination were investigated. The mass spectrometry imaging (MSI) method was optimized, and the distribution of GAD activity in germinated seeds exposed to salinity stress at different germination stages from 12 to 48 h after imbibition was investigated. In this study, MSI was successfully applied to enzyme histochemistry to visualize the relative GAD activity in germinating barley seeds for the first time. The salinity stress increased the GAD activity, mostly due to the increase in relative GAD activity in the embryo. Higher GAD activity was detected in seeds exposed to salinity stress in the scutellum or aleurone layer, which are difficult to separate for extraction. This method can be used to clarify the role of GABA shunts, including GAD enzyme responses, in barley seeds under stress.
Collapse
|
4
|
Yu G, Chen F, Wang Y, Chen Q, Liu H, Tian J, Wang M, Ren C, Zhao Q, Yang F, Sheng Y, Wei J, Zhang Y. Exogenous γ-aminobutyric acid strengthens phenylpropanoid and nitrogen metabolism to enhance the contents of flavonoids, amino acids, and the derivatives in edamame. Food Chem X 2022; 16:100511. [DOI: 10.1016/j.fochx.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
|
5
|
Yin Y, Tian X, He X, Yang J, Yang Z, Fang W. Exogenous melatonin stimulated isoflavone biosynthesis in NaCl-stressed germinating soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:123-131. [PMID: 35671589 DOI: 10.1016/j.plaphy.2022.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (MT) has gained increasing attention due to its pleiotropic effects. In this study, the function of exogenous MT on the response to NaCl stress and isoflavone biosynthesis in germinating soybeans was investigated. Results showed the exogenous MT (100 μM) application neutralised the negative effects of NaCl stress (60 mM), induced sprout growth, biomass and fluorescence intensity of intracellular free calcium, decreased malondialdehyde, H2O2 content and fluorescence intensity of O2•-, and enhanced superoxide dismutase, catalase and peroxidas activities of germinating soybeans. Meanwhile, total flavonoids and different forms of isoflavone content were enhanced by MT application, not only companied by the up-regulated relative gene expression of cinnamic acid 4-hydroxylase chalcone reductase, chalcone isomerase 1A, isoflavone reductase and isoflavone synthase 1 that involved in isoflavone biosynthesis, but also increased activities of phenylalanine ammonia lyase and 4-coumarate coenzyme A ligase. Given the evidence from the present study, it's proposed that the exogenous MT could relieve NaCl stress and stimulate isoflavone biosynthesis in germinating soybeans.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
6
|
Chen S, Peng Y, Lv Q, Liu J, Wu Z, Wang H, Wang X. Characterization of two constitutive promoters RPS28 and EIF1 for studying soybean growth, development, and symbiotic nodule development. ABIOTECH 2022; 3:99-109. [PMID: 36312443 PMCID: PMC9590564 DOI: 10.1007/s42994-022-00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/25/2022] [Indexed: 06/03/2023]
Abstract
Native promoters that can drive high and stable transgene expression are important tools for modifying plant traits. Although several such promoters have been reported in soybean (Glycine max), few of them function at multiple growth and development stages and during nodule development. Here, we report that the promoters of 40S RIBOSOMAL PROTEIN SMALL SUBUNIT S28 (RPS28) and EUKARYOTIC TRANSLATION INITIATION FACTOR 1 (EIF1) are ideal for high expression of transgene. Through bioinformatic analysis, we determined that RPS28 and EIF1 were highly expressed during soybean growth and development, nodule development, and various biotic and abiotic stresses. Fusion of both RPS28 and EIF1 promoters, with or without their first intron, with the reporter gene β-GLUCURONIDASE (uidA) in transgenic soybean, resulted in high GUS activity in seedlings, seeds, and nodules. Fluorimetric GUS assays showed that the RPS28 promoter and the EIF1 promoter yielded high expression, comparable to the soybean Ubiquitin (GmUbi) promoter. RPS28 and EIF1 promoters were also highly expressed in Arabidopsis thaliana and Nicotiana benthamiana. Our results indicate the potential of RPS28 and EIF1 promoters to facilitate future genetic engineering and breeding to improve the quality and yield of soybean, as well as in a wide variety of other plant species. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00073-6.
Collapse
Affiliation(s)
- Shengcai Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Qi Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Jing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074 China
| | - Haijiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| |
Collapse
|
7
|
Yin Y, Xu J, He X, Yang Z, Fang W, Tao J. Role of exogenous melatonin involved in phenolic acid metabolism of germinated hulless barley under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:14-22. [PMID: 34844114 DOI: 10.1016/j.plaphy.2021.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of exogenous MT on phenolic acids biosynthesis and the response to NaCl stress in germinating barley were investigated to explicate the role and molecular mechanism of MT in the regulation of phenolic acids and biomass under salt stress. Results showed that exogenous MT increased the gene expression and activities of phenylalanine ammonia lyase and cinnamate 4-hydroxylase involved in phenols biosynthesis. As a result, phenolic acids contents significantly increased, and ferulic acid, p-coumaric acid and p-hydroxybenzoic acid were mostly induced by exogenous MT treatment. Meanwhile, exogenous MT application reduced the damage of NaCl stress, including promotion sprout growth, biomass and Ca2+ influs, malonaldehyde and H2O2 content reduction, increases of peroxidase, superoxide dismutase and catalase activities in barley seedlings. These results indicated that exogenous MT was essential for inducing phenolic acids accumulation and alleviated the inhibition of NaCl stress on barley seedlings.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jinpeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China.
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
8
|
Wang J, Song J, Wu XB, Deng QQ, Zhu ZY, Ren MJ, Ye M, Zeng RS. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. PEST MANAGEMENT SCIENCE 2021; 77:4709-4718. [PMID: 34146457 DOI: 10.1002/ps.6513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Qian-Qian Deng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ming-Jian Ren
- Guizhou Branch of the National Wheat Improvement Center, Guiyang, China
| | - Mao Ye
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ren-Sen Zeng
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Uses of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Budzyńska S, Kubiak A, Szostek M, Budka A, Gąsecka M, Niedzielski P, Zheng L, Mleczek M. Trees and shrubs from a post-industrial area high in calcium and trace elements: the potential of dendroremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:493-506. [PMID: 34310221 DOI: 10.1080/15226514.2021.1954877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
That is probably the first study to date of trees and shrubs differing in age and growing on post-industrial soil contaminated with calcium (Ca) and selected toxic metals/metalloids. The obtained results show that an alkaline reaction (less than 9) of soil and an unusually high Ca concentration may help the studied tree species to adapt/survive in unfavorable habitat conditions (high concentration of toxic elements). The efficiency of phytoextraction of toxic elements was so high that, especially for forest animals (roe-deer) that consume, e.g., willow shoots, it could pose a serious threat to health and life, both for them and potentially for humans.
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Kubiak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Szostek
- Department of Soil Science, Environmental Chemistry and Hydrology, University of Rzeszów, Rzeszów, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Monika Gąsecka
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Linlin Zheng
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Mirosław Mleczek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Aslam S, Gul N, Mir MA, Asgher M, Al-Sulami N, Abulfaraj AA, Qari S. Role of Jasmonates, Calcium, and Glutathione in Plants to Combat Abiotic Stresses Through Precise Signaling Cascade. FRONTIERS IN PLANT SCIENCE 2021; 12:668029. [PMID: 34367199 PMCID: PMC8340019 DOI: 10.3389/fpls.2021.668029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Plant growth regulators have an important role in various developmental processes during the life cycle of plants. They are involved in abiotic stress responses and tolerance. They have very well-developed capabilities to sense the changes in their external milieu and initiate an appropriate signaling cascade that leads to the activation of plant defense mechanisms. The plant defense system activation causes build-up of plant defense hormones like jasmonic acid (JA) and antioxidant systems like glutathione (GSH). Moreover, calcium (Ca2+) transients are also seen during abiotic stress conditions depicting the role of Ca2+ in alleviating abiotic stress as well. Therefore, these growth regulators tend to control plant growth under varying abiotic stresses by regulating its oxidative defense and detoxification system. This review highlights the role of Jasmonates, Calcium, and glutathione in abiotic stress tolerance and activation of possible novel interlinked signaling cascade between them. Further, phyto-hormone crosstalk with jasmonates, calcium and glutathione under abiotic stress conditions followed by brief insights on omics approaches is also elucidated.
Collapse
Affiliation(s)
- Saima Aslam
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadia Gul
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mudasir A. Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Mohd. Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadiah Al-Sulami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Qari
- Genetics and Molecular Biology Central Laboratory (GMCL), Department of Biology, Aljumun University College, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
11
|
Liang C, Zhang Y, Ren X. Calcium regulates antioxidative isozyme activity for enhancing rice adaption to acid rain stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110876. [PMID: 33775371 DOI: 10.1016/j.plantsci.2021.110876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/05/2021] [Accepted: 03/06/2021] [Indexed: 05/08/2023]
Abstract
Acid rain, as a typical abiotic stress, damages plant growth and production. Calcium (Ca) mediates plant growth and links the signal transduction in plants for adapting to abiotic stresses. To understand the effect of Ca2+ on plant adaptable response to acid rain, we investigated changes in activities and gene expression of antioxidative enzymes and fatty acid composition of membrane lipid in rice seedlings treated with exogenous Ca2+ (5 mM) or/and simulated acid rain (SAR, pH 3.5 / 2.5). Exogenous Ca2+ enhanced activities of superoxide dismutase, catalase and peroxidase isozymes in rice leaves under SAR stress by promoting activation of existing isoforms and up-regulation of Cu/Zn-SOD1, Cu/Zn-SOD2, Cu/Zn-SOD3, CAT1, CAT2 and POD1. Compared to SAR treatment alone, exogenous Ca2+ alleviated SAR-induced oxidative damage to cell membrane by enhancing antioxidative capacity, as shown by the decrease in concentrations of H2O2, O2- and malondialdehyde in rice leaves. Meanwhile, Ca2+ alleviated SAR-induced decrease in unsaturation of membrane lipid for maintaining membrane fluidity. Finally, exogenous Ca2+ alleviated SAR-induced inhibition on relative growth rate of rice. Therefore, Ca2+ could play a role in regulating activities of antioxidative enzymes as well as maintaining unsaturation of membrane lipid for enhancing tolerance in rice seedlings to acid rain stress.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, China.
| | - Yuanqi Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqian Ren
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, China
| |
Collapse
|
12
|
Wang X, Hu H, Li F, Yang B, Komatsu S, Zhou S. Quantitative proteomics reveals dual effects of calcium on radicle protrusion in soybean. J Proteomics 2021; 230:103999. [PMID: 33017647 DOI: 10.1016/j.jprot.2020.103999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022]
Abstract
To reveal calcium-mediated germination in soybean, a gel-free/label-free proteomics was performed in radicle of seed imbibed with CaCl2. Morphological analysis presented promoting and suppressing performance of seed growth under 5 and 50 mM CaCl2, respectively. A total of 106 and 581 proteins were identified in response to 5 and 50 mM CaCl2, respectively. Among 33 proteins, which were simultaneously affected by 5 and 50 mM CaCl2 imbibition, proteins related to protein metabolism, cell, development, and stress showed reversed abundance in response to CaCl2 on dose-dependent manner. Notably, protein abundance of late embryogenesis abundant (LEA) 4-5, LEA4, and dehydrin decreased and increased by 5 and 50 mM CaCl2, respectively, consistent with the transcript level. Moreover, inhibited biosynthesis of gibberellic acid repressed growth of 5 mM CaCl2-imbibed soybean, while inhibition of abscisic acid biosynthesis released the suppressing effects of 50 mM CaCl2. Taken together, these results suggest that decreased or increased protein abundance of LEA4-5, LEA4, and dehydrin might determine promoting or suppressing effects of low or high level of calcium on soybean through enhancing seed sensitivity to gibberellic acid or abscisic acid during radicle protrusion. SIGNIFICANCE: Calcium serves as a versatile signal in plant growth; however, calcium-mediated germination on dose-dependent manner remains elusive. In this study, dual effects of calcium on radicle protrusion in soybean were investigated using proteomic approach. Radicle growth of germinating seed was improved by 5 mM CaCl2; however, it was retarded by 50 mM CaCl2. Late embryogenesis abundant (LEA) 4-5, LEA4, and dehydrin displayed converse profiles in response to low and high concentrations of CaCl2 at both protein abundance and gene expression level. Inhibited biosynthesis of gibberellic acid (GA) significantly impeded radicle protrusion in presence of low concentration of CaCl2, while inhibiting of abscisic acid (ABA) biosynthesis released suppression induced by high concentration of CaCl2. These findings suggest that LEA proteins are associated with calcium-mediated radicle protrusion on dose-dependent manner, and seed sensitivity to GA and ABA might determine promoting and suppressing effects of calcium on radicle protrusion in soybean.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Han Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shunli Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Sun X, Pan B, Wang Y, Xu W, Zhang S. Exogenous Calcium Improved Resistance to Botryosphaeria dothidea by Increasing Autophagy Activity and Salicylic Acid Level in Pear. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1150-1160. [PMID: 32432513 DOI: 10.1094/mpmi-04-20-0101-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pear ring rot, caused by Botryosphaeria dothidea, is one of the most serious diseases in pear. Calcium (Ca2+) was reported to play a key role in the plant defense response. Here, we found that exogenous calcium could enhance resistance to B. dothidea in pear leaves. Less H2O2 and O2- but more activated reactive oxygen species scavenge enzymes accumulated in calcium-treated leaves than in H2O-treated leaves. Moreover, the increased level of more ascorbic acid-glutathione was maintained by Ca2+ treatment under pathogen infection. The expression of core autophagy-related genes and autophagosome formations were enhanced in Ca2+-treated leaves. Silencing of PbrATG5 in Pyrus betulaefolia conferred sensitivity to inoculation, which was only slightly recovered by Ca2+ treatment. Moreover, the salicylic acid (SA) level and SA-related gene expression were induced more strongly by B. dothidea in Ca2+-treated leaves than in H2O-treated leaves. Taken together, these results demonstrated that exogenous Ca2+ enhanced resistance to B. dothidea by increasing autophagic activity and SA accumulation. Our findings reveal a new mechanism of Ca2+ in increasing the tolerance of pear to B. dothidea infection.
Collapse
Affiliation(s)
- Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bisheng Pan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Bandehagh A, Taylor NL. Can Alternative Metabolic Pathways and Shunts Overcome Salinity Induced Inhibition of Central Carbon Metabolism in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1072. [PMID: 32849676 PMCID: PMC7417600 DOI: 10.3389/fpls.2020.01072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/30/2020] [Indexed: 05/25/2023]
Abstract
The annual cost of lost crop production from exposure to salinity has major impacts on food security in all parts of the world. Salinity stress disturbs energy metabolism and knowledge of the impacts on critical processes controlling plant energy production is key to successfully breeding salt tolerant crops. To date, little progress has been achieved using classic breeding approaches to develop salt tolerance. The hope of some salinity researchers is that through a better understanding of the metabolic responses and adaptation to salinity exposure, new breeding targets can be suggested to help develop salt tolerant crops. Plants sense and react to salinity through a complex system of sensors, receptor systems, transporters, signal transducers, and gene expression regulators in order to control the uptake of salts and to induce tolerant metabolism that jointly leads to changes in growth rate and biomass production. During this response, there must be a balance between supply of energy from mitochondria and chloroplasts and energy demands for water and ion transport, growth, and osmotic adjustment. The photosynthetic response to salinity has been thoroughly researched and generally we see a sharp drop in photosynthesis after exposure to salinity. However, less attention has been given to the effect of salt stress on plant mitochondrial respiration and the metabolic processes that influence respiratory rate. A further complication is the wide range of respiratory responses that have been observed in different plant species, which have included major and minor increases, decreases, and no change in respiratory rate after salt exposure. In this review, we begin by considering physiological and biochemical impacts of salinity on major crop plants. We then summarize and consider recent advances that have characterized changes in abundance of metabolites that are involved in respiratory pathways and their alternative routes and shunts in terms of energy metabolism in crop plants. We will consider the diverse molecular responses of cellular plant metabolism during salinity exposure and suggest how these metabolic responses might aid in salinity tolerance. Finally, we will consider how this commonality and diversity should influence how future research of the salinity responses of crops plants should proceed.
Collapse
Affiliation(s)
- Ali Bandehagh
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
15
|
Zhu C, Zhao G, Cui W, Li S, Yu X, Zhang Q. Utilization of i-TRAQ technology to determine protein modifications in pork soup in response to addition of salt. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Cheng C, Liu Y, Fang W, Tao J, Yang Z, Yin Y. iTRAQ-based proteomic and physiological analyses of mustard sprouts in response to heat stress. RSC Adv 2020; 10:6052-6062. [PMID: 35497421 PMCID: PMC9049219 DOI: 10.1039/c9ra10089j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022] Open
Abstract
Heat stress has been proved to increase the content of melatonin in plants. In the present study, a combination of methods including physiological and biochemical, gene transcription and proteomic were used to investigate the melatonin accumulation mechanisms in mustard sprouts under heat treatment during the germination period. It was revealed that the heat treatment can significantly affect sprout growth, antioxidant enzyme activity and melatonin content in mustard sprouts. Meanwhile, the expression of melatonin key synthase genes, such as tryptophan decarboxylase genes (BjTDC 1, BjTDC 2) and serotonin N-acetyltransferase genes (BjSNAT 1), were significantly induced by heat stress, which coincided with the trend of melatonin content. Under the heat stress, a total of 172 differential abundance proteins were confidently identified in mustard sprouts and participated in many physiological processes. Functional classification analysis showed that the defense/pressure, energy and nucleotide metabolism, protein biosynthesis, signal transduction and transcription etc. were largely induced. Heat treatment stimulated a defense response at the protein level by regulating the growth and physiological metabolism in mustard sprouts. The results in this work provided novel deep insights into the proteins' response to heat stress, which will certainly promote further understanding of the heat-tolerance mechanism of mustard sprouts.
Collapse
Affiliation(s)
- Chao Cheng
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Yin Liu
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Weiming Fang
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Jun Tao
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhengfei Yang
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Yongqi Yin
- College of Food Science and Engerning, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| |
Collapse
|
17
|
Jiao C, Duan Y. The Role of IP3 in NO-Enhanced Chilling Tolerance in Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8312-8318. [PMID: 31287303 DOI: 10.1021/acs.jafc.9b02871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The role of inositol 1,4,5-trisphosphate (IP3) in nitric oxide (NO)-reduced chilling injury (CI) in peach fruit was investigated. The fruit were immersed in sodium nitroprusside (SNP) (NO donor) and neomycin (IP3 inhibitor). Results showed that chilling tolerance was enhanced upon exogenous SNP in postharvest peach fruit. Further, GABA accumulation was stimulated by SNP. The increase in protein expression and activity for enzymes in GABA biosynthesis, including glutamate decarboxylase (GAD), polyamine oxidase (PAO), and amino aldehyde dehydrogenase (AMADH), upon SNP treatment was also observed. Also, the up-regulation of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine d-aminotransferase (OAT) and the down-regulation of proline dehydrogenase (PDH) were induced by SNP treatment, thereby accelating proline production. Additionally, SNP treatment elevated protein expression and activity of alternative oxidase (AOX). The above effects induced upon SNP were partly weakened by neomycin. Therefore, IP3 mediated NO-activated GABA and proline accumulation as well as AOX, thus inducing chilling tolerance in postharvest peach fruit.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process , Ministry of Agriculture and Rural Affairs , Beijing 100193 , People's Republic of China
| | - Yuquan Duan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process , Ministry of Agriculture and Rural Affairs , Beijing 100193 , People's Republic of China
| |
Collapse
|
18
|
Farooq MA, Zhang K, Islam F, Wang J, Athar HUR, Nawaz A, Ullah Zafar Z, Xu J, Zhou W. Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus Under Arsenic Stress. Proteomics 2019. [PMID: 29528557 DOI: 10.1002/pmic.201700290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brassica napus plants exposed to 200 μM arsenic (As) exhibited high-level of stress condition, which led to inhibited growth, enhanced lipid peroxidation, and disrupted cellular ultrastructures. Exogenous application of methyl jasmonate (MeJA) alleviated the As-induced oxidative stress and improved the plant growth and photosynthesis. In this study, changes in the B. napus leaf proteome are investigated in order to identify molecular mechanisms involved in MeJA-induced As tolerance. The study identifies 177 proteins that are differentially expressed in cultivar ZS 758; while 200 differentially expressed proteins are accumulated in Zheda 622, when exposed to As alone and MeJA+As treatments, respectively. The main objective was to identify the MeJA-regulated protein under As stress. Consistent with this, iTRAQ detected 61 proteins which are significantly accumulated in ZS 758 leaves treated with MeJA under As stress. While in Zheda 622, iTRAQ detected 49 MeJA-induced proteins under As stress. These significantly expressed proteins are further divided into five groups on the base of their function, that is, stress and defense, photosynthesis, carbohydrates and energy production, protein metabolism, and secondary metabolites. Taken together, this study sheds light on the molecular mechanisms involved in MeJA-induced As tolerance in B. napus leaves and suggests a more active involvement of MeJA in plant physiological processes.
Collapse
Affiliation(s)
- Muhammad Ahsan Farooq
- Institute of Crop Science and, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, P. R. China.,Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kangni Zhang
- Institute of Crop Science and, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, P. R. China
| | - Faisal Islam
- Institute of Crop Science and, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, P. R. China
| | - Jian Wang
- Institute of Crop Science and, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, P. R. China
| | - Habib U R Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aamir Nawaz
- Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jianxiang Xu
- Institute of Crop Science, Quzhou Academy of Agricultural Sciences, Quzhou, P. R. China
| | - Weijun Zhou
- Institute of Crop Science and, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
19
|
Roy PR, Tahjib-Ul-Arif M, Polash MAS, Hossen MZ, Hossain MA. Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:611-624. [PMID: 31168227 PMCID: PMC6522628 DOI: 10.1007/s12298-019-00654-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/26/2023]
Abstract
Being more sensitive to salt stress among the cereals, growth of rice (Oryza sativa L.) has been habitually affected by salinity. Although, several practices have evolved to sustain the growth of rice under salinity, the enormous role of calcium (Ca2+) as a signalling molecule in salt stress mitigation is still arcane. Considering this fact, an experiment was performed aiming to explicate the mechanism of salt-induced growth inhibition in rice and its alleviation by exogenous Ca2+. At germination stage, 10 mM and 15 mM CaCl2 primed rice (cv. Binadhan-10 & Binadhan-7) seeds were grown in petri dishes for 9 days under 100 mM NaCl stress. At seedling stage, 9-day-old rice seedlings grown on sand were exposed to 100 mM NaCl alone and combined with 10 mM and 15 mM CaCl2 for 15 days. This research revealed that salinity radically slowed down growth of rice seedlings and Ca2+ treatment noticeably improved growth performances. At germination stage, 10 mM CaCl2 treatment significantly increased the final germination percentage, germination rate index (in Binadhan-7), shoot, root length (89.20, 67.58% in Bindhan-10 & 84.72, 31.15% in Bindhan-7) and biomass production under salinity. Similarly, at seedling stage, 10 mM CaCl2 supplementation in salt-stressed plants enhanced shoot length (42.17, 28.76%) and shoot dry weight (339.52, 396.20%) significantly in Binadhan-10 & Binadhan-7, respectively, but enhanced root dry weight (36.76%) only in Binadhan-10. In addition, 10 mM CaCl2 supplementation on salt-stressed seedlings increased the chlorophyll and proline content, and oppressed the accretion of reactive oxygen species thus protecting from oxidative damage more pronouncedly in Binadhan-10 than Binadhan-7 as reflected by the elevated levels of catalase and ascorbate peroxidase activity. The 15 mM CaCl2 somehow also enhanced some growth parameters but overall was less effective than 10 mM CaCl2 to alleviate salt stress, and sometimes showed negative effect. Therefore, supplementary application of calcium-rich fertilizers in saline prone soils can be an effective approach to acclimatize salt stress and cultivate rice successfully.
Collapse
Affiliation(s)
- Popy Rani Roy
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Mohammed Arif Sadik Polash
- Department of Crop Botany, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Md. Zakir Hossen
- Department of Agricultural Chemistry, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| |
Collapse
|
20
|
Jia T, Wang J, Chang W, Fan X, Sui X, Song F. Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress. Int J Mol Sci 2019; 20:ijms20030788. [PMID: 30759832 PMCID: PMC6386820 DOI: 10.3390/ijms20030788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/20/2023] Open
Abstract
To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi (AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase, and other proteins closely related to the salt tolerance process. The proteomic results indicated that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability, promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential as an application for the improvement of saline-alkali soils.
Collapse
Affiliation(s)
- Tingting Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Jian Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
21
|
|
22
|
Li Y, Liang C. Exogenous application of Ca 2+ mitigates simulated acid rain stress on soybean productivity and quality by maintaining nutrient absorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4975-4986. [PMID: 30604360 DOI: 10.1007/s11356-018-4034-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Acid rain is a global environmental problem that threatens agricultural production. Calcium (Ca), as a signal substance for physiological activities, has been known to regulate plant growth under abiotic stresses. To clarify whether calcium could be one of possible ways to alleviate the reduction caused by acid rain in agricultural production and investigate its regulating mechanism on adaptation of plants under acid rain stress, we studied the effect of exogenous Ca2+ (5 mM CaCl2) on growth of soybean at different growth stages (seedling, flowering-podding, and filling stages) as well as yield and grain quality of soybean under simulated acid rain (pH 4.5 or pH 3.0) stress. We found that the application of Ca2+ could regulate the activity of plasma membrane H+-ATPase, for mitigating the increase of ammonium and the decrease of nitrate and phosphorus in soybean roots, which mitigated the inhibition on growth and improved the yield and grain quality of soybean under simulated acid rain stress. In addition, the alleviating effect of exogenous Ca2+ on soybean was the most significant at seedling stage. The results indicate that the exogenous Ca2+ could enhance the adaptation of soybean and facilitate the recovery of soybean productivity and grain quality under simulated acid rain stress by maintaining the uptake of nitrate, ammonium, and phosphorus.
Collapse
Affiliation(s)
- Youwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
23
|
Mora L, Gallego M, Toldrá F. New approaches based on comparative proteomics for the assessment of food quality. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Kerry RG, Mahapatra GP, Patra S, Sahoo SL, Pradhan C, Padhi BK, Rout JR. Proteomic and genomic responses of plants to nutritional stress. Biometals 2018; 31:161-187. [PMID: 29453655 DOI: 10.1007/s10534-018-0083-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/10/2018] [Indexed: 12/17/2022]
Abstract
Minerals or trace elements in small amount are essential nutrients for every plant, but when the internal concentration exceeds the threshold, these essential elements do create phytotoxicity. Plant responses to elemental stresses are very common due to different anthropogenic activities; however it is a complex phenomenon with individual characteristics for various species. To cope up with the situation, a plant produces a group of strategies both in proteomic and genomic level to overcome it. Controlling the metal stress is known to activate a multigene response resulting in the changes in various proteins, which directly affects almost all biological processes in a living cell. Therefore, proteomic and genomic approaches can be useful for elucidating the molecular responses under metal stress. For this, it is tried to provide the latest knowledge and techniques used in proteomic and genomic study during nutritional stress and is represented here in review form.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Academy of Management and Information Technology, IID Centre, 67/68, BidyaVihar, Barunei Hills, Khurda, Odisha, 752057, India
| | - Gyana Prakash Mahapatra
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamilnadu, 608502, India
| | - Sushmita Patra
- Department of Biotechnology, Academy of Management and Information Technology, IID Centre, 67/68, BidyaVihar, Barunei Hills, Khurda, Odisha, 752057, India
| | - Santi Lata Sahoo
- Biochemistry and Molecular Biology Laboratory, Post Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | - Chinmay Pradhan
- Biochemistry and Molecular Biology Laboratory, Post Graduate Department of Botany, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| | - Bijaya Kumar Padhi
- School of Biological Sciences, Asian Institute of Public Health, 28A, Unit-VI, Ganganagar, Bhubaneswar, Odisha, 751001, India
| | - Jyoti Ranjan Rout
- School of Biological Sciences, Asian Institute of Public Health, 28A, Unit-VI, Ganganagar, Bhubaneswar, Odisha, 751001, India.
| |
Collapse
|
25
|
Che-Othman MH, Millar AH, Taylor NL. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. PLANT, CELL & ENVIRONMENT 2017; 40:2875-2905. [PMID: 28741669 DOI: 10.1111/pce.13034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 05/12/2023]
Abstract
Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process.
Collapse
Affiliation(s)
- M Hafiz Che-Othman
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
- School of Bioscience and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Selangor, 43600, Malaysia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| |
Collapse
|
26
|
Guo L, Wang P, Gu Z, Jin X, Yang R. Proteomic analysis of broccoli sprouts by iTRAQ in response to jasmonic acid. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:16-25. [PMID: 28763705 DOI: 10.1016/j.jplph.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/02/2023]
Abstract
Jasmonic acid (JA) is well known as a linolenic acid-derived signal molecule related to the plant response to biotic and abiotic stresses. JA can regulate various plant metabolisms, such as glucosinolate metabolism. In this study, the proteome profiles of broccoli sprouts under JA treatment were analyzed using the iTRAQ-based quantitative proteome approach. A total of 122 differentially expressed proteins participating in a wide range of physiological processes were confidently identified in broccoli sprouts treated with JA. Functional classification analysis showed that photosynthesis and protein synthesis were inhibited by JA treatment, thereby inhibiting sprout growth, while proteins related to carbohydrate catabolism and amino acid metabolism showed an increased expression. Additionally, proteins involved in defense and secondary metabolism were also up-regulated. Proteins related to glucosinolate biosynthesis and degradation were mediated by JA, leading to the accumulation of glucosinolates and sulforaphane. These results indicate that JA stimulated a defense response at the proteome level by redirecting metabolism of growth and physiology in broccoli sprouts.
Collapse
Affiliation(s)
- Liping Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaolin Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
27
|
Luo Q, Peng M, Zhang X, Lei P, Ji X, Chow W, Meng F, Sun G. Comparative mitochondrial proteomic, physiological, biochemical and ultrastructural profiling reveal factors underpinning salt tolerance in tetraploid black locust (Robinia pseudoacacia L.). BMC Genomics 2017; 18:648. [PMID: 28830360 PMCID: PMC5568289 DOI: 10.1186/s12864-017-4038-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background Polyploidy is an important phenomenon in plants because of its roles in agricultural and forestry production as well as in plant tolerance to environmental stresses. Tetraploid black locust (Robinia pseudoacacia L.) is a polyploid plant and a pioneer tree species due to its wide ranging adaptability to adverse environments. To evaluate the ploidy-dependent differences in leaf mitochondria between diploid and tetraploid black locust under salinity stress, we conducted comparative proteomic, physiological, biochemical and ultrastructural profiling of mitochondria from leaves. Results Mitochondrial proteomic analysis was performed with 2-DE and MALDI-TOF-MS, and the ultrastructure of leaf mitochondria was observed by transmission electron microscopy. According to 2-DE analysis, 66 proteins that responded to salinity stress significantly were identified from diploid and/or tetraploid plants and classified into 9 functional categories. Assays of physiological characters indicated that tetraploids were more tolerant to salinity stress than diploids. The mitochondrial ultrastructure of diploids was damaged more severely under salinity stress than that of tetraploids. Conclusions Tetraploid black locust possessed more tolerance of, and ability to acclimate to, salinity stress than diploids, which may be attributable to the ability to maintain mitochondrial structure and to trigger different expression patterns of mitochondrial proteins during salinity stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4038-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuxiang Luo
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Mu Peng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Xiuli Zhang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Pei Lei
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ximei Ji
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wahsoon Chow
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.,Division of Plant Science, Research School of Biology, The Australian National University, ACT, 2601, Australia
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Guanyu Sun
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
28
|
Differential Proteomic Analysis Reveals the Effect of Calcium on Malus baccata Borkh. Leaves under Temperature Stress. Int J Mol Sci 2017; 18:ijms18081755. [PMID: 28800123 PMCID: PMC5578145 DOI: 10.3390/ijms18081755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
In the cool apple-producing areas of northern China, air temperature during early spring changes in a rapid and dramatic manner, which affects the growth and development of apple trees at the early stage of the growing season. Previous studies have shown that the treatment of calcium can increase the cold tolerance of Malus baccata Borkh., a widely-used rootstock apple tree in northern China. To better understand the physiological function of calcium in the response of M. baccata to temperature stress, we analyzed the effect of calcium treatment (2% CaCl₂) on M. baccata leaves under temperature stress. Physiological analysis showed that temperature stress aggravated membrane lipid peroxidation, reduced chlorophyll content and induced photo-inhibition in leaves, whereas these indicators of stress injuries were alleviated by the application of calcium. An isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics approach was used in this study. Among the 2114 proteins that were detected in M. baccata leaves, 41, 25, and 34 proteins were differentially regulated by the increasing, decreasing, and changing temperature treatments, respectively. Calcium treatment induced 9 and 15 proteins after increasing and decreasing temperature, respectively, in comparison with non-treated plants. These calcium-responsive proteins were mainly related to catalytic activity, binding, and structural molecule activity. Hierarchical cluster analysis indicated that the changes in abundance of the proteins under increasing temperature and changing temperature treatments were similar, and the changes in protein abundance under decreasing temperature and increasing temperature with calcium treatment were similar. The findings of this study will allow a better understanding of the mechanisms underlying the role of calcium in M. baccata leaves under temperature stress.
Collapse
|
29
|
Pérez-Mora W, Jorrin-Novo JV, Melgarejo LM. Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chem 2017; 240:496-504. [PMID: 28946303 DOI: 10.1016/j.foodchem.2017.07.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Substantial equivalence studies were performed in three Theobroma spp., cacao, bicolor and grandiflorum through chemical composition analysis and protein profiling of fruit (pulp juice and seeds). Principal component analysis of sugar, organic acid, and phenol content in pulp juice revealed equivalence among the three species, with differences in some of the compounds that may result in different organoleptic properties. Proteins were extracted from seeds and pulp juice, resolved by two dimensional electrophoresis and major spots subjected to mass spectrometry analysis and identification. The protein profile, as revealed by principal component analysis, was variable among the three species in both seed and pulp, with qualitative and quantitative differences in some of protein species. The functional grouping of the identified proteins correlated with the biological role of each organ. Some of the identified proteins are of interest, being minimally discussed, including vicilin, a protease inhibitor, and a flavonol synthase/flavanone 3-hydroxylase. BIOLOGICAL SIGNIFICANCE Theobroma grandiflorum and Theobroma bicolor are endemic Amazonian plants that are poorly traded at the local level. As close relatives of Theobroma cacao, they may provide a good alternative for human consumption and industrial purposes. In this regard, we performed equivalence studies by conducting a comparative biochemical and proteomics analysis of the fruit, pulp juice and seeds of these three species. The results indicated equivalent chemical compositions and variable protein profiles with some differences in the content of the specific compounds or protein species that may result in variable organoleptic properties between the species and can be exploited for traceability purposes.
Collapse
Affiliation(s)
- Walter Pérez-Mora
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Jesús V Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology Research Group, Dpt. of Biochemistry and Molecular University of Córdoba-CeiA3 Córdoba, Spain.
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
30
|
Wang X, Komatsu S. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:117-148. [PMID: 28427531 DOI: 10.1016/bs.afnr.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean.
Collapse
Affiliation(s)
- Xin Wang
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
31
|
Hui Q, Yang R, Shen C, Zhou Y, Gu Z. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5564-73. [PMID: 27324823 DOI: 10.1021/acs.jafc.6b01598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.
Collapse
Affiliation(s)
- Qianru Hui
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Chang Shen
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Yulin Zhou
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
32
|
Fercha A, Capriotti AL, Caruso G, Cavaliere C, Stampachiacchiere S, Zenezini Chiozzi R, Laganà A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016; 16:1537-46. [PMID: 26969838 DOI: 10.1002/pmic.201500283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label-free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2-fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt-responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt-tolerant proteins. Furthermore, our results suggest that the cross-protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.
Collapse
Affiliation(s)
- Azzedine Fercha
- Department of Biology, University of Abbès Laghrour Khenchela, Khenchela, Algeria
| | | | - Giuseppe Caruso
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
33
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|