1
|
Zhang L, Zhang K, Yang F, Dayananda B, Cao Y, Hu Z, Liu Y. Chromosome-level genome of Scolopendra mutilans provides insights into its evolution. Integr Zool 2024. [PMID: 39075924 DOI: 10.1111/1749-4877.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Report the first chromosome level genome of myriapod Scolopendra mutilans. Reveal gene expansions for importance to adapt. Annotate nine Hox cluster genes in this genome.
Collapse
Affiliation(s)
- Lin Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Kai Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Zhang LM, Yang M, Zhou SW, Zhang H, Feng Y, Shi L, Li DS, Lu QM, Zhang ZH, Zhao M. Blapstin, a Diapause-Specific Peptide-Like Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera, Has Antifungal Function. Microbiol Spectr 2023; 11:e0308922. [PMID: 37140456 PMCID: PMC10269622 DOI: 10.1128/spectrum.03089-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Drug resistance against bacteria and fungi has become common in recent years, and it is urgent to discover novel antimicrobial peptides to manage this problem. Many antimicrobial peptides from insects have been reported to have antifungal activity and are candidate molecules in the treatment of human diseases. In the present study, we characterized an antifungal peptide named blapstin that was isolated from the Chinese medicinal beetle Blaps rhynchopetera used in folk medicine. The complete coding sequence was cloned from the cDNA library prepared from the midgut of B. rhynchopetera. It is a 41-amino-acid diapause-specific peptide (DSP)-like peptide stabilized by three disulfide bridges and shows antifungal activity against Candida albicans and Trichophyton rubrum with MICs of 7 μM and 5.3 μM, respectively. The C. albicans and T. rubrum treated with blapstin showed irregular and shrunken cell membranes. In addition, blapstin inhibited the activity of C. albicans biofilm and showed little hemolytic or toxic activity on human cells and it is highly expressed in the fat body, followed by the hemolymph, midgut, muscle, and defensive glands. These results indicate that blapstin may help insects fight against fungi and showed a potential application in the development of antifungal reagents. IMPORTANCE Candida albicans is one of the conditional pathogenic fungi causing severe nosocomial infections. Trichophyton rubrum and other skin fungi are the main pathogens of superficial cutaneous fungal diseases, especially in children and the elderly. At present, antibiotics such as amphotericin B, ketoconazole, and fluconazole are the main drugs for the clinical treatment of C. albicans and T. rubrum infections. However, these drugs have certain acute toxicity. Long-term use can increase kidney damage and other side effects. Therefore, obtaining broad-spectrum antifungal drugs with high efficiency and low toxicity for the treatment of C. albicans and T. rubrum infections is a top priority. Blapstin is an antifungal peptide which shows activity against C. albicans and T. rubrum. The discovery of blapstin provides a novel clue for our understanding of the innate immunity of Blaps rhynchopetera and provides a template for designing antifungal drugs.
Collapse
Affiliation(s)
- La-Mei Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Wen Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Feng
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Lei Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Dong-Sheng Li
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Qiu-Min Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Zhong-He Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Zhao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
3
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
4
|
Centipede Venom: A Potential Source of Ion Channel Modulators. Int J Mol Sci 2022; 23:ijms23137105. [PMID: 35806107 PMCID: PMC9266919 DOI: 10.3390/ijms23137105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.
Collapse
|
5
|
De Lucca Caetano LH, Nishiyama-Jr MY, de Carvalho Lins Fernandes Távora B, de Oliveira UC, de Loiola Meirelles Junqueira-de-Azevedo I, Faquim-Mauro EL, Magalhães GS. Recombinant Production and Characterization of a New Toxin from Cryptops iheringi Centipede Venom Revealed by Proteome and Transcriptome Analysis. Toxins (Basel) 2021; 13:858. [PMID: 34941696 PMCID: PMC8704451 DOI: 10.3390/toxins13120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Among the Chilopoda class of centipede, the Cryptops genus is one of the most associated with envenomation in humans in the metropolitan region of the state of São Paulo. To date, there is no study in the literature about the toxins present in its venom. Thus, in this work, a transcriptomic characterization of the Cryptops iheringi venom gland, as well as a proteomic analysis of its venom, were performed to obtain a toxin profile of this species. These methods indicated that 57.9% of the sequences showed to be putative toxins unknown in public databases; among them, we pointed out a novel putative toxin named Cryptoxin-1. The recombinant form of this new toxin was able to promote edema in mice footpads with massive neutrophils infiltration, linking this toxin to envenomation symptoms observed in accidents with humans. Our findings may elucidate the role of this toxin in the venom, as well as the possibility to explore other proteins found in this work.
Collapse
Affiliation(s)
- Lhiri Hanna De Lucca Caetano
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil; (M.Y.N.-J.); (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Eliana L. Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| | - Geraldo Santana Magalhães
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil; (L.H.D.L.C.); (B.d.C.L.F.T.); (E.L.F.-M.)
| |
Collapse
|
6
|
Yang S, Wang Y, Wang L, Kamau P, Zhang H, Luo A, Lu X, Lai R. Target switch of centipede toxins for antagonistic switch. SCIENCE ADVANCES 2020; 6:eabb5734. [PMID: 32821839 PMCID: PMC7413724 DOI: 10.1126/sciadv.abb5734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/26/2020] [Indexed: 05/02/2023]
Abstract
Animal venoms are powerful, highly evolved chemical weapons for defense and predation. While venoms are used mainly to lethally antagonize heterospecifics (individuals of a different species), nonlethal envenomation of conspecifics (individuals of the same species) is occasionally observed. Both the venom and target specifications underlying these two forms of envenomation are still poorly understood. Here, we show a target-switching mechanism in centipede (Scolopendra subspinipes) venom. On the basis of this mechanism, a major toxin component [Ssm Spooky Toxin (SsTx)] in centipede venom inhibits the Shal channel in conspecifics but not in heterospecifics to cause short-term, recoverable, and nonlethal envenomation. This same toxin causes fatal heterospecific envenomation, for example, by switching its target to the Shaker channels in heterospecifics without inhibiting the Shaker channel of conspecific S. subspinipes individuals. These findings suggest that venom components exhibit intricate coevolution with their targets in both heterospecifics and conspecifics, which enables a single toxin to develop graded intraspecific and interspecific antagonistic interactions.
Collapse
Affiliation(s)
- Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yunfei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Peter Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiancui Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding author.
| |
Collapse
|
7
|
Liu ZC, Liang JY, Lan XQ, Li T, Zhang JR, Zhao F, Li G, Chen PY, Zhang Y, Lee WH, Zhao F. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zool Res 2020; 41:138-147. [PMID: 31945809 PMCID: PMC7109010 DOI: 10.24272/j.issn.2095-8137.2020.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.
Collapse
Affiliation(s)
- Zi-Chao Liu
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Engineering Research Center for Exploitation and Utilization of Leech Resources in Universities of Yunnan Province, School of Agronomy and Life Sciences, Kunming University, Kunming, Yunnan 650214, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xin-Qiang Lan
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Tao Li
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Jia-Rui Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Nanshan College, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Fang Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China.,Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Geng Li
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Pei-Yi Chen
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail: leewh@mail. kiz.ac.cn
| | - Feng Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation of Yunnan Universities, Department of Biology and Chemistry, Puer University, Puer, Yunnan 665000, China.,Key Laboratory of Active Molecules and Drug Development, Puer University, Puer, Yunnan 665000, China.,Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai 200032, China. E-mail:
| |
Collapse
|
8
|
Chu Y, Qiu P, Yu R. Centipede Venom Peptides Acting on Ion Channels. Toxins (Basel) 2020; 12:toxins12040230. [PMID: 32260499 PMCID: PMC7232367 DOI: 10.3390/toxins12040230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Centipedes are among the oldest venomous arthropods that use their venom to subdue the prey. The major components of centipede venom are a variety of low-molecular-weight peptide toxins that have evolved to target voltage-gated ion channels to interfere with the central system of prey and produce pain or paralysis for efficient hunting. Peptide toxins usually contain several intramolecular disulfide bonds, which confer chemical, thermal and biological stability. In addition, centipede peptides generally have novel structures and high potency and specificity and therefore hold great promise both as diagnostic tools and in the treatment of human disease. Here, we review the centipede peptide toxins with reported effects on ion channels, including Nav, Kv, Cav and the nonselective cation channel polymodal transient receptor potential vanilloid 1 (TRPV1).
Collapse
Affiliation(s)
- YanYan Chu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Correspondence: (Y.C.); (R.Y.)
| | - PeiJu Qiu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - RiLei Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Correspondence: (Y.C.); (R.Y.)
| |
Collapse
|
9
|
Identification and Characterization of ShSPI, a Kazal-Type Elastase Inhibitor from the Venom of Scolopendra Hainanum. Toxins (Basel) 2019; 11:toxins11120708. [PMID: 31817486 PMCID: PMC6950245 DOI: 10.3390/toxins11120708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
Elastase is a globular glycoprotein and belongs to the chymotrypsin family. It is involved in several inflammatory cascades on the basis of cleaving the important connective tissue protein elastin, and is strictly regulated to a balance by several endogenous inhibitors. When elastase and its inhibitors are out of balance, severe diseases will develop, especially those involved in the cardiopulmonary system. Much attention has been attracted in seeking innovative elastase inhibitors and various advancements have been taken on clinical trials of these inhibitors. Natural functional peptides from venomous animals have been shown to have anti-protease properties. Here, we identified a kazal-type serine protease inhibitor named ShSPI from the cDNA library of the venom glands of Scolopendra hainanum. ShSPI showed significant inhibitory effects on porcine pancreatic elastase and human neutrophils elastase with Ki values of 225.83 ± 20 nM and 12.61 ± 2 nM, respectively. Together, our results suggest that ShSPI may be an excellent candidate to develop a drug for cardiopulmonary diseases.
Collapse
|
10
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Sabiá Júnior EF, Menezes LFS, de Araújo IFS, Schwartz EF. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel) 2019; 11:E563. [PMID: 31557900 PMCID: PMC6832604 DOI: 10.3390/toxins11100563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Arthropoda is a phylum of invertebrates that has undergone remarkable evolutionary radiation, with a wide range of venomous animals. Arthropod venom is a complex mixture of molecules and a source of new compounds, including antimicrobial peptides (AMPs). Most AMPs affect membrane integrity and produce lethal pores in microorganisms, including protozoan pathogens, whereas others act on internal targets or by modulation of the host immune system. Protozoan parasites cause some serious life-threatening diseases among millions of people worldwide, mostly affecting the poorest in developing tropical regions. Humans can be infected with protozoan parasites belonging to the genera Trypanosoma, Leishmania, Plasmodium, and Toxoplasma, responsible for Chagas disease, human African trypanosomiasis, leishmaniasis, malaria, and toxoplasmosis. There is not yet any cure or vaccine for these illnesses, and the current antiprotozoal chemotherapeutic compounds are inefficient and toxic and have been in clinical use for decades, which increases drug resistance. In this review, we will present an overview of AMPs, the diverse modes of action of AMPs on protozoan targets, and the prospection of novel AMPs isolated from venomous arthropods with the potential to become novel clinical agents to treat protozoan-borne diseases.
Collapse
Affiliation(s)
- Elias Ferreira Sabiá Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Israel Flor Silva de Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth Ferroni Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
12
|
Convergent recruitment of adamalysin-like metalloproteases in the venom of the red bark centipede (Scolopocryptops sexspinosus). Toxicon 2019; 168:1-15. [PMID: 31229627 DOI: 10.1016/j.toxicon.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Many venom proteins have presumably been convergently recruited by taxa from diverse venomous lineages. These toxic proteins have characteristics that allow them to remain stable in solution and have a high propensity for toxic effects on prey and/or potential predators. Despite this well-established convergent toxin recruitment, some toxins seem to be lineage specific. To further investigate the toxic proteins found throughout venomous lineages, venom proteomics and venom-gland transcriptomics were performed on two individual red bark centipedes (Scolopocryptops sexspinosus). Combining the protein phenotype with the transcript genotype resulted in the first in-depth venom characterization of S. sexspinosus, including 72 venom components that were identified in both the transcriptome and proteome and 1468 nontoxin transcripts identified in the transcriptome. Ten different toxin families were represented in the venom and venom gland with the majority of the toxins belonging to metalloproteases, CAPS (cysteine-rich secretory protein, antigen 5, and pathogenesis-related 1 proteins), and β-pore-forming toxins. Nine of these toxin families shared a similar proteomic structure to venom proteins previously identified from other centipedes. However, the most highly expressed toxin family, the adamalysin-like metalloproteases, has until now only been observed in the venom of snakes. We confirmed adamalysin-like metalloprotease activity by means of in vivo functional assays. The recruitment of an adamalysin-like metalloprotease into centipede venom represents a striking case of convergent evolution.
Collapse
|
13
|
Du C, Li J, Shao Z, Mwangi J, Xu R, Tian H, Mo G, Lai R, Yang S. Centipede KCNQ Inhibitor SsTx Also Targets K V1.3. Toxins (Basel) 2019; 11:toxins11020076. [PMID: 30717088 PMCID: PMC6409716 DOI: 10.3390/toxins11020076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/19/2022] Open
Abstract
It was recently discovered that Ssm Spooky Toxin (SsTx) with 53 residues serves as a key killer factor in red-headed centipede’s venom arsenal, due to its potent blockage of the widely expressed KCNQ channels to simultaneously and efficiently disrupt cardiovascular, respiratory, muscular, and nervous systems, suggesting that SsTx is a basic compound for centipedes’ defense and predation. Here, we show that SsTx also inhibits KV1.3 channel, which would amplify the broad-spectrum disruptive effect of blocking KV7 channels. Interestingly, residue R12 in SsTx extends into the selectivity filter to block KV7.4, however, residue K11 in SsTx replaces this ploy when toxin binds on KV1.3. Both SsTx and its mutant SsTx_R12A inhibit cytokines production in T cells without affecting the level of KV1.3 expression. The results further suggest that SsTx is a key molecule for defense and predation in the centipedes’ venoms and it evolves efficient strategy to disturb multiple physiological targets.
Collapse
Affiliation(s)
- Canwei Du
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jiameng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zicheng Shao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100009, China.
| | - Runjia Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huiwen Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ren Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| |
Collapse
|
14
|
Rong M, Zhou B, Zhou R, Liao Q, Zeng Y, Xu S, Liu Z. PPIP: Automated Software for Identification of Bioactive Endogenous Peptides. J Proteome Res 2019; 18:721-727. [PMID: 30540478 DOI: 10.1021/acs.jproteome.8b00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endogenous peptides play an important role in multiple biological processes in many species. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is an important technique for detecting these peptides on a large scale. We present PPIP, which is a dedicated peptidogenomics software for identifying endogenous peptides based on peptidomics and RNA-Seq data. This software automates the de novo transcript assembly based on RNA-Seq data, construction of a protein reference database based on the de novo assembled transcripts, peptide identification, function analysis, and HTML-based report generation. Different function components are integrated using Docker technology. The Docker image of PPIP is available at https://hub.docker.com/r/shawndp/ppip , and the source code under GPL-3 license is available at https://github.com/Shawn-Xu/PPIP . A user manual of PPIP is available at https://shawn-xu.github.io/PPIP .
Collapse
Affiliation(s)
- Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| | - Baojin Zhou
- Deepxomics Co., Ltd. , Shenzhen 518000 , China
| | - Ruo Zhou
- Deepxomics Co., Ltd. , Shenzhen 518000 , China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| | - Shaohang Xu
- Deepxomics Co., Ltd. , Shenzhen 518000 , China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| |
Collapse
|
15
|
Dash TS, Shafee T, Harvey PJ, Zhang C, Peigneur S, Deuis JR, Vetter I, Tytgat J, Anderson MA, Craik DJ, Durek T, Undheim EAB. A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure 2018; 27:315-326.e7. [PMID: 30554841 DOI: 10.1016/j.str.2018.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Disulfide-rich peptides (DRPs) play diverse physiological roles and have emerged as attractive sources of pharmacological tools and drug leads. Here we describe the 3D structure of a centipede venom peptide, U-SLPTX15-Sm2a, whose family defines a unique class of one of the most widespread DRP folds known, the cystine-stabilized α/β fold (CSαβ). This class, which we have named the two-disulfide CSαβ fold (2ds-CSαβ), contains only two internal disulfide bonds as opposed to at least three in all other confirmed CSαβ peptides, and constitutes one of the major neurotoxic peptide families in centipede venoms. We show the 2ds-CSαβ is widely distributed outside centipedes and is likely an ancient fold predating the split between prokaryotes and eukaryotes. Our results provide insights into the ancient evolutionary history of a widespread DRP fold and highlight the usefulness of 3D structures as evolutionary tools.
Collapse
Affiliation(s)
- Thomas S Dash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Shafee
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Marilyn A Anderson
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Rong M, Liu J, Liao Q, Lin Z, Wen B, Ren Y, Lai R. The defensive system of tree frog skin identified by peptidomics and RNA sequencing analysis. Amino Acids 2018; 51:345-353. [PMID: 30353357 DOI: 10.1007/s00726-018-2670-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
The diversity of defensive peptides from skin of amphibians has been demonstrated. These peptides may have resulted from the diversity of microorganisms encountered by amphibians. In this study, peptidomics and RNA sequencing analyses were used to study deeply the defensive peptides of the skin secretions from Polypedates megacephalus. A total of 99 defensive peptides have been identified from the skin secretions. Among these peptides, 3 peptides were myotropical peptides and 34 peptides classified as protease inhibitor peptides. 5 lectins, 8 antimicrobial peptides, 26 immunomodulatory peptides, 10 wound-healing peptides and 13 other bioactive peptides were identified as belonging to the innate immune system. One antimicrobial peptide Pm-amp1 showed high similarity to antimicrobial peptide marcin-18. This peptide was successfully expressed and showed moderate activity against four tested strains. These identified peptides highlight the extensive diversity of defensive peptides and provide powerful tools to understand the defense weapon of frog.
Collapse
Affiliation(s)
- Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Jie Liu
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Qiong Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhilong Lin
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences'and Yunnan Province, Kunming Institute of Zoology, 32# Jiaochang East Road, Kunming, 650223, Yunnan, China.
| |
Collapse
|
17
|
Ward MJ, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the giant Florida blue centipede, Scolopendra viridis. Toxicon 2018; 152:121-136. [PMID: 30086358 DOI: 10.1016/j.toxicon.2018.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
The limited number of centipede venom characterizations have revealed a rich diversity of toxins, and recent work has suggested centipede toxins may be more rapidly diversifying than previously considered. Additionally, many identified challenges in venomics research, including assembly and annotation methods, toxin quantification, and the ability to provide biological or technical replicates, have yet to be addressed in centipede venom characterizations. We performed high-throughput, quantifiable transcriptomic and proteomic methods on two individual Scolopendra viridis centipedes from North Florida. We identified 39 toxins that were proteomically confirmed, and 481 nontoxins that were expressed in the venom gland of S. viridis. The most abundant toxins expressed in the venom of S. viridis belonged to calcium and potassium ion-channel toxins, venom allergens, metalloproteases, and β-pore forming toxins. We compared our results to the previously characterized S. viridis from Morelos, Mexico, and found only five proteomically confirmed toxins in common to both localities, suggesting either extreme toxin divergence within S. viridis, or that these populations may represent entirely different species. By using multiple assembly and annotation methods, we generated a comprehensive and quantitative reference transcriptome and proteome of a Scolopendromorpha centipede species, while overcoming some of the challenges present in venomics research.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
18
|
True Lies: Using Proteomics to Assess the Accuracy of Transcriptome-Based Venomics in Centipedes Uncovers False Positives and Reveals Startling Intraspecific Variation in Scolopendra Subspinipes. Toxins (Basel) 2018; 10:toxins10030096. [PMID: 29495554 PMCID: PMC5869384 DOI: 10.3390/toxins10030096] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 12/17/2022] Open
Abstract
Centipede venoms have emerged as a rich source of novel bioactive compounds. However, most centipede species are commonly considered too small for venom extraction and transcriptomics is likely to be an attractive way of probing the molecular diversity of these venoms. Examining the venom composition of Scolopendra subspinipes, we test the accuracy of this approach. We compared the proteomically determined venom profile with four common toxin transcriptomic toxin annotation approaches: BLAST search against toxins in UniProt, lineage-specific toxins, or species-specific toxins and comparative expression analyses of venom and non-venom producing tissues. This demonstrated that even toxin annotation based on lineage-specific homology searches is prone to substantial errors compared to a proteomic approach. However, combined comparative transcriptomics and phylogenetic analysis of putative toxin families substantially improves annotation accuracy. Furthermore, comparison of the venom composition of S. subspinipes with the closely related S. subspinipes mutilans revealed a surprising lack of overlap. This first insight into the intraspecific venom variability of centipedes contrasts the sequence conservation expected from previous findings that centipede toxins evolve under strong negative selection. Our results highlight the importance of proteomic data in studies of even comparably well-characterized venoms and warrants caution when sourcing venom from centipedes of unknown origin.
Collapse
|
19
|
Abstract
Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response.
Collapse
Affiliation(s)
- Heejeong Lee
- BK 21 Plus KNU Creative BioResearch Group, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science RDA, Jeonju, Republic of Korea
| | - Dong Gun Lee
- BK 21 Plus KNU Creative BioResearch Group, School of Life Science, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
20
|
Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. Proteotranscriptomic Analysis and Discovery of the Profile and Diversity of Toxin-like Proteins in Centipede. Mol Cell Proteomics 2018; 17:709-720. [PMID: 29339413 DOI: 10.1074/mcp.ra117.000431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
Centipedes are one of the oldest venomous animals and use their venoms as weapons to attack prey or protect themselves. Their venoms contain various components with different biomedical and pharmacological properties. However, little attention has been paid to the profiles and diversity of their toxin-like proteins/peptides. In this study, we used a proteotranscriptomic approach to uncover the diversity of centipede toxin-like proteins in Scolopendra subspinipes mutilans Nine hundred twenty-three and 6,736 peptides, which were separately isolated from venom and torso tissues, respectively, were identified by ESI-MS/MS and deduced from their transcriptomes. Finally, 1369 unique proteins were identified in the proteome, including 100 proteins that exhibited overlapping expression in venom and torso tissues. Of these proteins, at least 40 proteins were identified as venom toxin-like proteins. Meanwhile, transcriptome mining identified ∼10-fold more toxin-like proteins and enabled the characterization of the precursor architecture of mature toxin-like peptides. Importantly, combined with proteomic and transcriptomic analyses, 25 toxin-like proteins/peptides (neurotoxins accounted for 50%) were expressed outside the venom gland and involved in gene recruitment processes. These findings highlight the extensive diversity of centipede toxin-like proteins and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins. Moreover, we are the first group to report the gene recruitment activity of venom toxin-like proteins in centipede, similar to snakes.
Collapse
Affiliation(s)
- Feng Zhao
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China; .,§Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.,¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China
| | - Xinqiang Lan
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China.,‖Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Tao Li
- §Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.,¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China
| | - Yang Xiang
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China
| | - Fang Zhao
- §Key Laboratory of Subtropical Medicinal Edible Resources Development and Utilization in Yunnan Province, Department of Biology and Chemistry, Puer University, 6 Xueyuan Road, Puer, Yunnan 665000, China.,¶Institute of Comparative Study of Traditional Materia Medica, Institute of Integrative Medicine of Fudan University, Shanghai China
| | - Yun Zhang
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China; .,**Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Hui Lee
- From the ‡Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao-Chang Road, Kunming, Yunnan 650223, China;
| |
Collapse
|
21
|
Involvement of mast cells and histamine in edema induced in mice by Scolopendra viridicornis centipede venom. Toxicon 2016; 121:51-60. [DOI: 10.1016/j.toxicon.2016.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/17/2022]
|
22
|
Abstract
INTRODUCTION Centipedes are one of the oldest and most successful lineages of venomous terrestrial predators. Despite their use for centuries in traditional medicine, centipede venoms remain poorly studied. However, recent work indicates that centipede venoms are highly complex chemical arsenals that are rich in disulfide-constrained peptides that have novel pharmacology and three-dimensional structure. Areas covered: This review summarizes what is currently known about centipede venom proteins, with a focus on disulfide-rich peptides that have novel or unexpected pharmacology that might be useful from a therapeutic perspective. The authors also highlight the remarkable diversity of constrained three-dimensional peptide scaffolds present in these venoms that might be useful for bioengineering of drug leads. Expert opinion: Like most arthropod predators, centipede venoms are rich in peptides that target neuronal ion channels and receptors, but it is also becoming increasingly apparent that many of these peptides have novel or unexpected pharmacological properties with potential applications in drug discovery and development.
Collapse
Affiliation(s)
- Eivind A B Undheim
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia.,b Centre for Advanced Imaging , The University of Queensland , St Lucia , Australia
| | - Ronald A Jenner
- c Department of Life Sciences , Natural History Museum , London , UK
| | - Glenn F King
- a Institute for Molecular Bioscience , The University of Queensland , St Lucia , Australia
| |
Collapse
|
23
|
Guillot A, Boulay M, Chambellon É, Gitton C, Monnet V, Juillard V. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. J Proteome Res 2016; 15:3214-24. [DOI: 10.1021/acs.jproteome.6b00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alain Guillot
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Mylène Boulay
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Émilie Chambellon
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Christophe Gitton
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Véronique Monnet
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Vincent Juillard
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
24
|
Hakim MA, Yang S, Lai R. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel) 2015; 7:4832-51. [PMID: 26593947 PMCID: PMC4663536 DOI: 10.3390/toxins7114832] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022] Open
Abstract
Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.
Collapse
Affiliation(s)
- Md Abdul Hakim
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- Joint Laboratory of Natural Peptide, University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
25
|
Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 2015; 36:579-86. [PMID: 26143240 DOI: 10.1016/j.tips.2015.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Undheim EAB, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015; 7:679-704. [PMID: 25723324 PMCID: PMC4379518 DOI: 10.3390/toxins7030679] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022] Open
Abstract
Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|