1
|
Jiang C, Storey KB, Yang H, Sun L. Aestivation in Nature: Physiological Strategies and Evolutionary Adaptations in Hypometabolic States. Int J Mol Sci 2023; 24:14093. [PMID: 37762394 PMCID: PMC10531719 DOI: 10.3390/ijms241814093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Aestivation is considered to be one of the "purest" hypometabolic states in nature, as it involves aerobic dormancy that can be induced and sustained without complex factors. Animals that undergo aestivation to protect themselves from environmental stressors such as high temperatures, droughts, and food shortages. However, this shift in body metabolism presents new challenges for survival, including oxidative stress upon awakening from aestivation, accumulation of toxic metabolites, changes in energy sources, adjustments to immune status, muscle atrophy due to prolonged immobility, and degeneration of internal organs due to prolonged food deprivation. In this review, we summarize the physiological and metabolic strategies, key regulatory factors, and networks utilized by aestivating animals to address the aforementioned components of aestivation. Furthermore, we present a comprehensive overview of the advancements made in aestivation research across major species, including amphibians, fish, reptiles, annelids, mollusks, and echinoderms, categorized according to their respective evolutionary positions. This approach offers a distinct perspective for comparative analysis, facilitating an understanding of the shared traits and unique features of aestivation across different groups of organisms.
Collapse
Affiliation(s)
- Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.J.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science & Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Meng X, Guan D, Zhang N, Jiang H, Jiang C, Ge H, Wei J, Wang J, Qian K. Comparative phosphoproteomics analysis provides insights into the responses of Chilo suppressalis to sublethal chlorantraniliprole exposure. PEST MANAGEMENT SCIENCE 2023; 79:2338-2352. [PMID: 36797212 DOI: 10.1002/ps.7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Sublethal exposure to insecticides causes changes in insect behaviors and physiologies including feeding, mobility, communication, hormone homeostasis, development and fecundity, however, the underlying molecular mechanisms were largely unclear. Our previous studies revealed that sublethal chlorantraniliprole exposure disturbed the hormone homeostasis, reduced the weight and longevity and prolonged the developmental duration of Chilo suppressalis. In the present study, the potential phosphorylation modification regulation mechanisms in C. suppressalis in response to sublethal chlorantraniliprole exposure were explored using comparative and quantitative phosphoproteomics. RESULTS A total of 2640 phosphopeptides belonging to 1144 phosphoproteins were identified, among which 446 phosphopeptides derived from 303 unique phosphoproteins were differentially phosphorylated between the chlorantraniliprole-treated and control larvae. The phosphorylation levels of differentially phosphorylated phosphopeptides were further validated using parallel reaction monitoring (PRM). Functional classification and protein-protein interaction of the differentially phosphorylated proteins (DPPs) were analyzed. Generalized analysis of the DPPs and the differentially expressed genes (DEGs) identified in our previous study showed that sublethal chlorantraniliprole exposure significantly changed the transcription and phosphorylation levels of genes/proteins associated with carbohydrate and lipid metabolism, cytoskeleton, signal transduction, transcription, translation and post-translational modification, leading to the dysfunctions of energy metabolism, transcription regulation, protein synthesis and modification, and signal transduction in C. suppressalis. Further analysis of the phosphorylation motifs in DPPs revealed that the MAPKs, CDKs, CaMK II, PKA, PKC and CK II protein kinases might be directly responsible for the phosphoproteomics response of C. suppressalis to chlorantraniliprole treatment. CONCLUSION Our results provide abundant phosphorylation information for characterizing the protein modification in insects, and also provide valuable insights into the molecular mechanisms of insect post-translational modifications in response to sublethal insecticide exposure. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chengyun Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Gut Microbiota and Metabolites May Play a Crucial Role in Sea Cucumber Apostichopus japonicus Aestivation. Microorganisms 2023; 11:microorganisms11020416. [PMID: 36838381 PMCID: PMC9961660 DOI: 10.3390/microorganisms11020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The constant increase in temperatures under global warming has led to a prolonged aestivation period for Apostichopus japonicus, resulting in considerable losses in production and economic benefits. However, the specific mechanism of aestivation has not been fully elucidated. In this study, we first tried to illustrate the biological mechanisms of aestivation from the perspective of the gut microbiota and metabolites. Significant differences were found in the gut microbiota of aestivating adult A. japonicus (AAJSD group) compared with nonaestivating adult A. japonicus (AAJRT group) and young A. japonicus (YAJRT and YAJSD groups) based on 16S rRNA gene high-throughput sequencing analysis. The abundances of Desulfobacterota, Myxococcota, Bdellovibrionota, and Firmicutes (4 phyla) in the AAJSD group significantly increased. Moreover, the levels of Pseudoalteromonas, Fusibacter, Labilibacter, Litorilituus, Flammeovirga, Polaribacter, Ferrimonas, PB19, and Blfdi19 genera were significantly higher in the AAJSD group than in the other three groups. Further analysis of the LDA effect size showed that species with significant variation in abundance in the AAJSD group, including the phylum Firmicutes and the genera Litorilituus, Fusibacter, and Abilibacter, might be important biomarkers for aestivating adult A. japonicus. In addition, the results of metabolomics analysis showed that there were three distinct metabolic pathways, namely biosynthesis of secondary metabolites, tryptophan metabolism, and sesquiterpenoid and triterpenoid biosynthesis in the AAJSD group compared with the other three groups. Notably, 5-hydroxytryptophan was significantly upregulated in the AAJSD group in the tryptophan metabolism pathway. Moreover, the genera Labilibacter, Litorilituus, Ferrimonas, Flammeovirga, Blfdi19, Fusibacter, Pseudoalteromonas, and PB19 with high abundance in the gut of aestivating adult A. japonicus were positively correlated with the metabolite 5-HTP. These findings suggest that there may be potential biological associations among the gut microbiota, metabolites, and aestivation in A. japonicus. This work may provide a new perspective for further understanding the aestivation mechanism of A. japonicus.
Collapse
|
4
|
Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. 6-Benzyladenine increasing subsequent waterlogging-induced waterlogging tolerance of summer maize by increasing hormone signal transduction. Ann N Y Acad Sci 2021; 1509:89-112. [PMID: 34766352 DOI: 10.1111/nyas.14708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Summer maize is frequently subjected to waterlogging damage because of increased and variable rainfall during the growing season. The application of 6-benzyladenine (6-BA) can effectively mitigate the waterlogging effects on plant growth and increase the grain yield of waterlogged summer maize. However, the mechanisms underlying this process and the involvement of 6-BA in relevant signal transduction pathways remain unclear. In this study, we explored the effects of 6-BA on waterlogged summer maize using a phosphoproteomic technique to better understand the mechanism by which summer maize growth improves following waterlogging. Application of 6-BA inhibited the waterlogging-induced increase in abscisic acid (ABA) content and increased the phosphorylation levels of proteins involved in ABA signaling; accordingly, stomatal responsiveness to exogenous ABA increased. In addition, the application of 6-BA had a long-term effect on signal transduction pathways and contributed to rapid responses to subsequent stresses. Plants primed with 6-BA accumulated more ethylene and jasmonic acid in response to subsequent waterlogging; accordingly, leaf SPAD, antioxidase activity, and root traits improved by 6-BA priming. These results suggest that the effects of 6-BA on hormone signal transduction pathways are anamnestic, which enables plants to show faster or stronger defense responses to stress.
Collapse
Affiliation(s)
- Juan Hu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Baizhao Ren
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong, PR China
| |
Collapse
|
5
|
Yang F, Liu Q, Chen Y, Ye H, Wang H, Zeng S. Integrative Proteomic and Phosphoproteomic Analyses of Granulosa Cells During Follicular Atresia in Porcine. Front Cell Dev Biol 2021; 8:624985. [PMID: 33520998 PMCID: PMC7843964 DOI: 10.3389/fcell.2020.624985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian follicular atresia is a natural physiological process; however, the mechanism is not fully understood. In this study, quantitative proteomic and phosphoproteomic analyses of granulosa cells (GCs) in healthy (H), slightly atretic (SA), and atretic follicles (A) of porcine were performed by TMT labeling, enrichment of phosphopeptides, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. In total, 6,201 proteins were quantified, and 4,723 phosphorylation sites of 1,760 proteins were quantified. In total, 24 (11 up, 13 down) and 50 (29 up, 21 down) proteins with a fold change (FC) > 5 were identified in H/SA and H/A, respectively. In addition, there were 20 (H/SA, up) and 39 (H/A, up) phosphosites with an FC > 7 that could serve as potential biomarkers for distinguishing different quality categories of follicles. Western blotting and immunofluorescence confirmed the reliability of the proteomic analysis. Some key proteins (e.g., MIF, beta catenin, integrin β2), phosphosites (e.g., S76 of caspase6, S22 and S636 of lamin A/C), pathways (e.g., apoptosis, regulation of actin cytoskeleton pathway), transcription factors (e.g., STAT5A, FOXO1, and BCLAF1), and kinases (e.g., PBK, CDK5, CDK12, and AKT3) involved in the atresia process were revealed via further analysis of the differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Further study showed that mutant caspase6 Ser76 to Ala increased the ratios of cleaved caspase6/caspase6 and cleaved caspase3/caspase3 and dephosphorylation of caspase6 at Ser76 increased cell apoptotic rate, a new potential pathway of follicular atresia. Collectively, the proteomic and phosphoproteomic profiling and functional research in the current study comprehensively analyzed the dynamic changes in protein expression and phosphorylation during follicular atresia and provided some new explanations regarding the regulation of this process.
Collapse
Affiliation(s)
- Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yanhong Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huizhen Ye
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Liu Y, Lai G, Guo Y, Tang X, Shuai O, Xie Y, Wu Q, Chen D, Yuan X. Protective effect of Ganoderma lucidum spore extract in trimethylamine-N-oxide-induced cardiac dysfunction in rats. J Food Sci 2021; 86:546-562. [PMID: 33438268 DOI: 10.1111/1750-3841.15575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
Previous research has shown that the extracts from the Ganoderma lucidum spore (GS) have potentially cardioprotective effects, but there is still abundant room for development in determining its mechanism. In this study, the rat model of cardiac dysfunction was established by intraperitoneal injection of trimethylamine-N-oxide (TMAO), and the extracts of GS (oil, lipophilic components, and polysaccharides) were given intragastrically at a dose of 50 mg/kg/day to screen the pharmacological active components of GS. After 50 days of treatments, we found that the extraction from GS reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein; increased the levels of high-density lipoprotein; and reduced the levels of serum TMAO when compared to the model group (P < 0.05); especially the GS polysaccharides (DT) and GS lipophilic components (XF) exhibited decreases in serum TMAO compared to TMAO-induced control. The results of 16S rRNA sequencing showed that GS could change the gut microbiota, increasing the abundance of Firmicutes and Proteobacteria in the DT-treated group and XF-treated group, while reducing the abundance of Actinobacteria and Tenericutes. Quantitative proteomics analysis showed that GS extracts (DT and XF) could regulate the expression of some related proteins, such as Ucp1 (XF-TMAO/M-TMAO ratio is 2.76), Mpz (8.52), Fasn (2.39), Nefl (1.85), Mtnd5 (0.83), Mtnd2 (0.36), S100a8 (0.69), S100a9 (0.70), and Bdh1 (0.72). The results showed that XF can maintain the metabolic balance and function of the heart by regulating the expression of some proteins related to cardiovascular disease, and DT can reduce the risk of cardiovascular diseases by targeting gut microbiota.
Collapse
Affiliation(s)
- Yadi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guoxiao Lai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ou Shuai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xujiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Mi R, Rabbi MH, Sun Y, Li X, Ma S, Wen Z, Meng N, Li Y, Du X, Li S. Enhanced protein phosphorylation in Apostichopus japonicus intestine triggered by tussah immunoreactive substances might be involved in the regulation of immune-related signaling pathways. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100757. [PMID: 33197859 DOI: 10.1016/j.cbd.2020.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
The sea cucumber Apostichopus japonicus is an economically important species owing to its high nutritive and medicinal value. In order to avoid the pollution resulting from the overuse of antibiotics in A. japonicus aquaculture, various immunostimulants have been used as an alternative to improve the efficiency of A. japonicus farming. Our previous proteomic investigation has shown that several proteins participating in the immune-related physiology of A. japonicus were differentially expressed in the intestinal tissue in response to tussah immunoreactive substances (TIS). This study further explored the immunostimulation mechanism of TIS in A. japonicus. Phosphoproteomics technology was used to investigate the effect of TIS on protein phosphorylation in the intestine of A. japonicus following feeding with a TIS-supplemented diet. A total of 213 unique phosphoproteins were detected from 225 unique phosphopeptides. KEGG pathway analysis showed that majority of the phosphoproteins are involved in endocytosis, carbon metabolism and spliceosome functional group. Sixteen of the phosphoproteins exhibited differential phosphorylation in response to TIS and 12 of these were found to associate with biological functions. Of these 12 phosphoproteins, eight exhibited enhanced phosphorylation while four displayed reduced phosphorylation. These 12 proteins were further analyzed and all were found to play a role in regulating some aspects of the immune system and the growth of sea cucumbers, especially in phagocytosis, energy metabolism and disease resistance. The findings of this study could therefore shed new light on the immune pathways of sea cucumber that are affected by TIS. This could help us to better understand the underlying mechanism linked to the immunoenhancement of A. japonicus in response to TIS, one that is associated with the change in protein phosphorylation.
Collapse
Affiliation(s)
- Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Md Hasim Rabbi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116024, PR China
| | - Yongxin Sun
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China.
| | - Xuejun Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Shuhui Ma
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Zhixin Wen
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Nan Meng
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Yajie Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Xingfan Du
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Shuying Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| |
Collapse
|
8
|
Shi H, Wang J, Liu F, Hu X, Lu Y, Yan S, Dai D, Yang X, Zhu Z, Guo Q. Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra). J Proteomics 2020; 229:103866. [PMID: 32736137 DOI: 10.1016/j.jprot.2020.103866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/15/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
Hibernation is an energy-saving and adaptive strategy adopted by leech, an important medicinal resource in Asia, to survive low temperature. Reversible protein phosphorylation (RPP) plays a key role in the regulation of mammalian hibernation processes but has never been documented in freshwater invertebrate such as leech. In this study, we detected the effects of hibernation on the proteome and phosphoproteome of the leech Whitmania pigra. A total of 2184 proteins and 2598 sites were quantified. Deep-hibernation resulted in 85 up-regulated and 107 down-regulated proteins and 318 up-regulated and 204 down-regulated phosphosites using a 1.5-fold threshold (P<0.05). Proteins involved in protein digestion and absorption, amino acid metabolism and N-glycan biosynthesis were significantly down-regulated during deep-hibernation. However, proteins involved in maintaining cell structure stability in hibernating animals were up-regulated. Differentially phosphorylated proteins provided the first global picture of a shift in energy metabolism, protein synthesis, cytoprotection and signaling during deep hibernation. Furthermore, AMP-activated protein kinase and protein kinase C play major roles in the regulation of these functional processes. These data significantly improve our understanding of the regulatory mechanisms of leech hibernation processes and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals. SIGNIFICANCE: The leech Whitmania pigra as an important medicinal resource in Asia is an excellent model freshwater invertebrate for studies of environmentally-induced hibernation. The present study provides the first quantitative proteomics and phosphoproteomic analysis of leech hibernation using isobaric tag based TMT labeling and high-resolution mass spectrometry. These data significantly improve our understanding of the regulatory mechanisms when ectotherm animals face environmental stress and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals.
Collapse
Affiliation(s)
- Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangjing Hu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Yiming Lu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Shimeng Yan
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Daoxin Dai
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xibin Yang
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Han R, Wei Y, Xie Y, Liu L, Jiang C, Yu Y. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. PLoS One 2020; 15:e0237845. [PMID: 32813721 PMCID: PMC7437914 DOI: 10.1371/journal.pone.0237845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aluminum (Al3+) toxicity is one of the most important limitations to agricultural production worldwide. The overall response of plants to Al3+ stress has been documented, but the contribution of protein phosphorylation to Al3+ detoxicity and tolerance in plants is unclear. Using a combination of tandem mass tag (TMT) labeling, immobilized metal affinity chromatography (IMAC) enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS), Al3+-induced phosphoproteomic changes in roots of Tamba black soybean (TBS) were investigated in this study. The Data collected in this study are available via ProteomeXchange with the identifier PXD019807. After the Al3+ treatment, 189 proteins harboring 278 phosphosites were significantly changed (fold change > 1.2 or < 0.83, p < 0.05), with 88 upregulated, 96 downregulated and 5 up-/downregulated. Enrichment and protein interaction analyses revealed that differentially phosphorylated proteins (DPPs) under the Al3+ treatment were mainly related to G-protein-mediated signaling, transcription and translation, transporters and carbohydrate metabolism. Particularly, DPPs associated with root growth inhibition or citric acid synthesis were identified. The results of this study provide novel insights into the molecular mechanisms of TBS post-translational modifications in response to Al3+ stress.
Collapse
Affiliation(s)
- Rongrong Han
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yunmin Wei
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yonghong Xie
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Caode Jiang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
10
|
Li A, Li L, Wang W, Zhang G. Acetylome Analysis Reveals Population Differentiation of the Pacific Oyster Crassostrea gigas in Response to Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:233-245. [PMID: 31997089 DOI: 10.1007/s10126-020-09947-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Lysine acetylation of proteins is a highly conserved post-translational modification that plays an important regulatory role in almost every aspect of metabolic processes in both terrestrial and aquatic species. Pacific oyster, Crassostrea gigas, a model marine species, is distributed worldwide and is economically and ecologically important. However, little is known about the role of acetylation in the adaptive response of oyster to heterogeneous intertidal environments. Here, we conducted the first-ever lysine acetylome analysis in two genetically and physiologically differentiated oyster populations, using a highly sensitive immune-affinity purification and high-resolution mass spectrometry. Overall, we identified 1054 lysine acetylation sites in 664 proteins, which account for 2.37% of the oyster proteome analysed in the current study. The modified proteins are involved in a wide range of biological processes and are localised in multiple cellular compartments. Motif analysis revealed that hydrophilic and polar amino acids histidine, lysine and arginine were the most enriched residues in the positions + 1 and + 2 of the acetylated sites. Further, the two oyster populations exhibited divergent acetylomic regulations of several biological pathways, particularly energy metabolism and glycine and serine amino acid metabolism, in response to thermal stress and differentiated acetylation patters of candidate heat-responsive proteins, e.g. molecular chaperone and myosin. These observations suggest that lysine acetylation plays a critical role in different thermal responses of these two oyster populations. These findings provide an important resource for in-depth exploration of the physiological role of lysine acetylation in adaptive evolution of marine invertebrates.
Collapse
Affiliation(s)
- Ao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China.
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Wei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
11
|
Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Sci Rep 2020; 10:1750. [PMID: 32019949 PMCID: PMC7000794 DOI: 10.1038/s41598-020-58349-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
The growth and development of embryonic skeletal muscle plays a crucial role in sheep muscle mass. But proteomic analyses for embryonic skeletal development in sheep had been little involved in the past research. In this study, we explored differential abundance proteins during embryonic skeletal muscle development by the tandem mass tags (TMT) and performed a protein profile analyses in the longissimus dorsi of Chinese merino sheep at embryonic ages Day85 (D85N), Day105 (D105N) and Day135 (D135N). 5,520 proteins in sheep embryonic skeletal muscle were identified, and 1,316 of them were differential abundance (fold change ≥1.5 and p-value < 0.05). After the KEGG enrichment analyses, these differential abundance proteins were significant enriched in the protein binding, muscle contraction and energy metabolism pathways. After validation of the protein quantification with the parallel reaction monitoring (PRM), 41% (16/39) significant abundance proteins were validated, which was similar to the results of protein quantification with TMT. All results indicated that D85N to D105N was the stage of embryonic muscle fibers proliferation, while D105N to D135N was the stage of their hypertrophy. These findings provided a deeper understanding of the function and rules of proteins in different phases of sheep embryonic skeletal muscle growth and development.
Collapse
|
12
|
MiR-200-3p Is Potentially Involved in Cell Cycle Arrest by Regulating Cyclin A during Aestivation in Apostichopus japonicus. Cells 2019; 8:cells8080843. [PMID: 31390757 PMCID: PMC6721757 DOI: 10.3390/cells8080843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber (Apostichopus japonicus) has become a good model organism for studying environmentally induced aestivation in marine invertebrates. We hypothesized that mechanisms that arrest energy-expensive cell cycle activity would contribute significantly to establishing the hypometabolic state during aestivation. Cyclin A is a core and particularly interesting cell cycle regulator that functions in both the S phase and in mitosis. In the present study, negative relationships between miR-200-3p and AjCA expressions were detected at both the transcriptional and the translational levels during aestivation in A. japonicus. Dual-luciferase reporter assays confirmed the targeted location of the miR-200-3p binding site within the AjCA gene transcript. Furthermore, gain- and loss-of-function experiments were conducted in vivo with sea cucumbers to verify the interaction between miR-200-3p and AjCA in intestine tissue by qRT-PCR and Western blotting. The results show that the overexpression of miR-200-3p mimics suppressed AjCA transcript levels and translated protein production, whereas transfection with a miR-200-3p inhibitor enhanced both AjCA mRNA and AjCA protein in A. japonicus intestine. Our findings suggested a potential mechanism that reversibly arrests cell cycle progression during aestivation, which may center on miR-200-3p inhibitory control over the translation of cyclin A mRNA transcripts.
Collapse
|
13
|
Yu C, Wu Q, Sun C, Tang M, Sun J, Zhan Y. The Phosphoproteomic Response of Okra ( Abelmoschus esculentus L.) Seedlings to Salt Stress. Int J Mol Sci 2019; 20:ijms20061262. [PMID: 30871161 PMCID: PMC6470868 DOI: 10.3390/ijms20061262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 01/30/2023] Open
Abstract
Soil salinization is a major environmental stresses that seriously threatens land use efficiency and crop yields worldwide. Although the overall response of plants to NaCl has been well studied, the contribution of protein phosphorylation to the detoxification and tolerance of NaCl in okra (Abelmoschus esculentus L.) seedlings is unclear. The molecular bases of okra seedlings’ responses to 300 mM NaCl stress are discussed in this study. Using a combination of affinity enrichment, tandem mass tag (TMT) labeling and high-performance liquid chromatography–tandem mass spectrometry analysis, a large-scale phosphoproteome analysis was performed in okra. A total of 4341 phosphorylation sites were identified on 2550 proteins, of which 3453 sites of 2268 proteins provided quantitative information. We found that 91 sites were upregulated and 307 sites were downregulated in the NaCl/control comparison group. Subsequently, we performed a systematic bioinformatics analysis including gene ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation. The latter revealed that the differentially expressed proteins were most strongly associated with ‘photosynthesis antenna proteins’ and ‘RNA degradation’. These differentially expressed proteins probably play important roles in salt stress responses in okra. The results should help to increase our understanding of the molecular mechanisms of plant post-translational modifications in response to salt stress.
Collapse
Affiliation(s)
- Chenliang Yu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinqfei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou 311300, China.
| | - Mengling Tang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou 311300, China.
| | - Junwei Sun
- College of modern science and technology, China Jiliang University, Hangzhou 310018, China.
| | - Yihua Zhan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Chen M, Wang S, Li X, Storey KB, Zhang X. The potential contribution of miRNA-200-3p to the fatty acid metabolism by regulating AjEHHADH during aestivation in sea cucumber. PeerJ 2018; 6:e5703. [PMID: 30310746 PMCID: PMC6173160 DOI: 10.7717/peerj.5703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The sea cucumber (Apostichopus japonicus) has become a good model organism for studying environmentally-induced aestivation by a marine invertebrate more recently. In the present study, we hypothesized that miRNA-200-3p may contribute to establish rapid biological control to regulate fatty acid metabolism during a estivation. The peroxisomal bi-functional enzyme (EHHADH) is a crucial participant of the classical peroxisomal fatty acid β-oxidation pathway, the relative mRNA transcripts and protein expressions of EHHADH were analyzed in intestine from sea cucumbers experienced long-term aestivation. Both mRNA transcripts and protein expressions of EHHADH in intestine decreased significantly during deep-aestivation as compared with non-aestivation controls. Analysis of the 3′ UTR of AjEHHADH showed the presence of a conserved binding site for miR-200-3p. Level of miR-200-3p showed an inverse correlation with EHHADH mRNA transcripts and protein levels in intestine, implicating miR-200-3p may directly targeted AjEHHADH by inducing the degradation of AjEHHADH mRNA in the aestivating sea cucumber, further dual-luciferase reporter assay validated the predicted role of miRNA-200-3p in regulating AjEHHADH. In order to further understand their regulatory mechanism, we conducted the functional experiment in vivo. The overexpression of miR-200-3p in sea cucumber significantly decreased mRNA and protein expression levels of AjEHHADH. Taken together, these findings suggested the potential contribution of miRNA-200-3p to the fatty acid metabolism by regulating AjEHHADH during aestivation in sea cucumber.
Collapse
Affiliation(s)
- Muyan Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Shanshan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Xingke Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | | | - Xiumei Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Sun L, Lin C, Li X, Xing L, Huo D, Sun J, Zhang L, Yang H. Comparative Phospho- and Acetyl Proteomics Analysis of Posttranslational Modifications Regulating Intestine Regeneration in Sea Cucumbers. Front Physiol 2018; 9:836. [PMID: 30018572 PMCID: PMC6037860 DOI: 10.3389/fphys.2018.00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers exposed to stressful circumstances eviscerate most internal organs, and then regenerate them rapidly under favorable environments. Reversible protein phosphorylation and acetylation are major modifications regulating protein function. Herein, for the first time, we perform quantitative phospho- and acetyl proteomics analyses of intestine regeneration in a sea cucumber species Apostichopus japonicus. We identified 1,862 phosphorylation sites in 1,169 proteins, and 712 acetylation sites in 470 proteins. Of the 147 and 251 proteins differentially modified by phosphorylation and acetylation, respectively, most were related to cytoskeleton biogenesis, protein synthesis and modification, signal recognition and transduction, energy production and conversion, or substance transport and metabolism. Phosphorylation appears to play a more important role in signal recognition and transduction than acetylation, while acetylation is of greater importance in posttranslational modification, protein turnover, chaperones; energy production and conversion; amino acid and lipid transport and metabolism. These results expanded our understanding of the regulatory mechanisms of posttranslational modifications in intestine regeneration of sea cucumbers after evisceration.
Collapse
Affiliation(s)
- Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Wang S, Li X, Chen M, Storey KB, Wang T. A potential antiapoptotic regulation: The interaction of heat shock protein 70 and apoptosis-inducing factor mitochondrial 1 during heat stress and aestivation in sea cucumber. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018; 329:103-111. [PMID: 29808567 DOI: 10.1002/jez.2180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Abstract
The sea cucumber (Apostichopus japonicus) has become a good model organism for studying environmentally induced aestivation in marine invertebrates. A characteristic feature of aestivation in this species is the degeneration of the intestine. In the current study, we hypothesized that energy conservation and cytoprotective strategies need to be coordinated in the intestine to ensure long-term survival during aestivation, and there was potential relationship between heat shock protein 70 (HSP70) and apoptosis-inducing factor mitochondrial 1 (AIFM1) during extreme environmental stress. AIFM1 is a bifunctional flavoprotein that is involved in the caspase-independent activation of apoptosis. The gene and protein expression profiles of AjAIFM1 and AjHSP70 in intestinal tissue during aestivation were analyzed and results showed an inverse correlation between them, AjAIFM1 being suppressed during aestivation whereas AjHSP70 was strongly upregulated. Comparable responses were also seen when intestinal cells were isolated and analyzed in vitro for responses to heat stress at 25°C (a water temperature typical during aestivation), compared with 15°C control cells. Combined with co-immunoprecipitation studies in vivo and in vitro, our results suggested that AjHSP70 protein may have potential interaction with AjAIFM1. To determine the influence of heat stress on apoptotic rate of intestinal cells, we also assessed the DNA fragmentation by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay, and results also supported a potential antiapoptotic response in sea cucumber during heat stress. This type of cytoprotective mechanism could be used to preserve the existing cellular components during long-term aestivation in sea cucumber.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Xingke Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Muyan Chen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Tianming Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, PR China
| |
Collapse
|
17
|
Wang T, Yang Z, Zhou N, Sun L, Lv Z, Wu C. Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka). Sci Rep 2017; 7:40247. [PMID: 28059140 PMCID: PMC5216381 DOI: 10.1038/srep40247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) is an important neurotransmitter and neuromodulator that controls a variety of sensory and motor functions through 5-HT receptors (5-HTRs). The 5-HT4R subfamily is linked to Gs proteins, which activate adenylyl cyclases (ACs), and is involved in many responses in peripheral organs. In this study, the 5-HT4R from Apostichopus japonicus (Aj5-HT4R) was identified and characterised. The cloned full-length Aj5-HT4R cDNA is 1,544 bp long and contains an open reading frame 1,011 bp in length encoding 336 amino acid proteins. Bioinformatics analysis of the Aj5-HT4R protein indicated this receptor was a member of class A G protein coupled receptor (GPCR) family. Further experiments using Aj5-HT4R-transfected HEK293 cells demonstrated that treatment with 5-HT triggered a significant increase in intracellular cAMP level in a dose-dependent manner and induced a rapid internalisation of Aj5-HT4R fused with enhanced green fluorescent protein (Aj5-HT4R-EGFP) from the cell surface into the cytoplasm. In addition, the transcriptional profiles of Aj5-HT4R in aestivating A. japonicas and phosphofructokinase (AjPFK) in 5-HT administrated A. japonicus have been analysed by real-time PCR assays. Results have led to a basic understanding of Aj5-HT4R in A. japonicus, and provide a foundation for further exploration of the cell signaling and regulatory functions of this receptor.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Naiming Zhou
- Institute of Biochemistry, College of LifeSciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| |
Collapse
|