1
|
Lagoutte P, Bourhis JM, Mariano N, Gueguen-Chaignon V, Vandroux D, Moali C, Vadon-Le Goff S. Mono- and Bi-specific Nanobodies Targeting the CUB Domains of PCPE-1 Reduce the Proteolytic Processing of Fibrillar Procollagens. J Mol Biol 2024; 436:168667. [PMID: 38901640 DOI: 10.1016/j.jmb.2024.168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The excessive deposition of fibrillar collagens is a hallmark of fibrosis. Collagen fibril formation requires proteolytic maturations by Procollagen N- and C-proteinases (PNPs and PCPs) to remove the N- and C-propeptides which maintain procollagens in the soluble form. Procollagen C-Proteinase Enhancer-1 (PCPE-1, a glycoprotein composed of two CUB domains and one NTR domain) is a regulatory protein that activates the C-terminal processing of procollagens by the main PCPs. It is often up-regulated in fibrotic diseases and represents a promising target for the development of novel anti-fibrotic strategies. Here, our objective was to develop the first antagonists of PCPE-1, based on the nanobody scaffold. Using both an in vivo selection through the immunization of a llama and an in vitro selection with a synthetic library, we generated 18 nanobodies directed against the CUB domains of PCPE1, which carry its enhancing activity. Among them, I5 from the immune library and H4 from the synthetic library have a high affinity for PCPE-1 and inhibit its interaction with procollagens. The crystal structure of the complex formed by PCPE-1, H4 and I5 showed that they have distinct epitopes and enabled the design of a biparatopic fusion, the diabody diab-D1. Diab-D1 has a sub-nanomolar affinity for PCPE-1 and is a potent antagonist of its activity, preventing the stimulation of procollagen cleavage in vitro. Moreover, Diab-D1 is also effective in reducing the proteolytic maturation of procollagen I in cultures of human dermal fibroblasts and hence holds great promise as a tool to modulate collagen deposition in fibrotic conditions.
Collapse
Affiliation(s)
- Priscillia Lagoutte
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, University Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France
| | - Natacha Mariano
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, SFR BioSciences, Univ Lyon, CNRS UAR3444, Inserm US8, ENS de Lyon, F-69367 Lyon, France
| | | | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France.
| |
Collapse
|
2
|
Disulfide bond and crosslinking analyses reveal inter-domain interactions that contribute to the rigidity of placental malaria VAR2CSA structure and formation of CSA binding channel. Int J Biol Macromol 2023; 226:143-158. [PMID: 36470436 DOI: 10.1016/j.ijbiomac.2022.11.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022]
Abstract
VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.
Collapse
|
3
|
Choksi IN, Cox A, Robinson C, Bale A, Carpenter TO. Novel homozygous variant in BMP1 associated with a rare osteogenesis imperfecta phenotype. Osteoporos Int 2021; 32:1239-1244. [PMID: 33624138 DOI: 10.1007/s00198-021-05838-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 02/01/2023]
Abstract
Osteogenesis imperfecta (OI) is characterized by bone fragility and increased fracture susceptibility. BMP1 variants have been reported in the rare OI type XIII, specifically referred to herein as BMP1-associated autosomal recessive (AR) OI. We report the clinical presentation and diagnostic evaluation of a patient found to have a novel homozygous variant in BMP1. We also provide an overview of reported BMP1 variants to date, with discussion focusing on the use of bisphosphonate therapy in these patients. A 7-year-old male with speech and motor delay sustained five bilateral tibial fractures with minimal trauma since age 2.5 years. At age 6, he developed severe back pain after a fall. Diffuse spinal osteopenia and multiple vertebral compression fractures (VCF) at T9, L1, L3, and L5 were identified. Total hip BMD was generous (adjusted Z-score* = 1.76), and femoral neck BMD was high (adjusted Z-score* = 2.67). VCFs precluded assessment of lumbar spine BMD. Genetic analysis identified a homozygous missense variant in exon 4 of BMP1 (c.C505T; p.Arg169Cys). Unlike most forms of OI, patients with BMP1-associated AR OI may have normal or paradoxically increased BMD, making BMD and fracture risk correlation difficult. While bisphosphonates (BP) may help reduce recurrent fractures and provide symptomatic relief, the broad phenotypic spectrum and underlying bone pathology, often in the setting of increased BMD, complicate management. HR-pQCT assessment of bone microarchitecture and quality may aid in the decision of BP therapy and subsequent monitoring. Evidence is limited with respect to the effectiveness of BP in this rare form of OI. *Z-score was adjusted for height Z-score.
Collapse
Affiliation(s)
- I N Choksi
- Department of Pediatrics, Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA.
| | - A Cox
- DNA Diagnostic Laboratory, Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - C Robinson
- Department of Pediatrics, Division of Endocrinology and Diabetes, Icahn School of Medicine, New York, NY, USA
| | - A Bale
- DNA Diagnostic Laboratory, Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - T O Carpenter
- Department of Pediatrics, Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Cassidy L, Helbig AO, Kaulich PT, Weidenbach K, Schmitz RA, Tholey A. Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics. J Proteomics 2020; 230:103988. [PMID: 32949814 DOI: 10.1016/j.jprot.2020.103988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Short open reading frame-encoded peptides (SEP) represent a widely undiscovered part of the proteome. The detailed analysis of SEP has, despite inherent limitations such as incomplete sequence coverage, challenges encountered with protein inference, the identification of posttranslational modifications and the assignment of potential N- and C-terminal truncations, predominantly been assessed using bottom-up proteomic workflows. The use of top-down based proteomic workflows is capable of providing an unparalleled level of characterization information, which is of increased importance in the case of alternatively encoded protein products. However, top-down based analysis is not without its own limitations, for which efficient separation prior to MS analysis is a major issue. We established a sample preparation approach for the combined bottom-up and top-down proteomic analysis of SEP. Key improvements were made by the application of solid phase extraction (SPE), which supported enrichment of proteins below ca. 20 kDa, followed by 2D-LC-MS top-down analysis encompassing both HCD and EThcD ion activation. Bottom-up experiments were used to support and confirm top-down data interpretation. This strategy allowed for the top-down characterization of 36 proteoforms mapping to 12 SEP from the archaeon Methanosarcina mazei strain Gö1, with the concurrent detection and identification of several posttranslational modifications in SEP. BIOLOGICAL SIGNIFICANCE: Small or short open reading frames (sORF) have been widely neglected in genome research in the past. With their increasing discovery, the question about the presence and molecular function of their translation products, the short open reading frame-encoded peptides (SEP), arises. As these small proteins are usually below the 10 kDa range, the number of peptides identifiable by bottom-up proteomics is limited which hampers both the identification and the recognition of potential posttranslational modifications. The presented top-down approach allowed for the detection of full length SEP, as well as of terminally truncated proteoforms, and further enabled the identification of disulfide bonds in these small proteins. This demonstrates, that this yet widely undiscovered part of the proteome undergoes the same modifications as classical proteins which is an essential step for future understanding of the biological functions of these molecules.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas O Helbig
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Kathrin Weidenbach
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany.
| |
Collapse
|
5
|
Anastasi C, Rousselle P, Talantikite M, Tessier A, Cluzel C, Bachmann A, Mariano N, Dussoyer M, Alcaraz LB, Fortin L, Aubert A, Delolme F, El Kholti N, Armengaud J, Fournié P, Auxenfans C, Valcourt U, Goff SVL, Moali C. BMP-1 disrupts cell adhesion and enhances TGF-β activation through cleavage of the matricellular protein thrombospondin-1. Sci Signal 2020; 13:13/639/eaba3880. [PMID: 32636307 DOI: 10.1126/scisignal.aba3880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-β (TGF-β), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-β signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.
Collapse
Affiliation(s)
- Cyril Anastasi
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Patricia Rousselle
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Maya Talantikite
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Agnès Tessier
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Caroline Cluzel
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Alice Bachmann
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Natacha Mariano
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Mélissa Dussoyer
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Lindsay B Alcaraz
- University of Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), F-69373 Lyon, France
| | - Laëtitia Fortin
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Alexandre Aubert
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Frédéric Delolme
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.,University of Lyon, ENS de Lyon, INSERM US8, CNRS UMS3444, SFR Biosciences, F-69366 Lyon, France
| | - Naïma El Kholti
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Jean Armengaud
- CEA Marcoule, Innovative Technologies for Detection and Diagnostics Laboratory (DRF/Joliot/DMTS/SPI/Li2D), F-30200 Bagnols-sur-Cèze, France
| | - Pierre Fournié
- Purpan University Hospital, Ophthalmology Department, F-31059 Toulouse, France.,University of Toulouse, CNRS UMR 5165, INSERM U1056, Epithelial Differentiation and Rheumatoid Autoimmunity Unit (UDEAR), F-31059 Toulouse, France
| | - Céline Auxenfans
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.,Hospices Civils de Lyon, Tissue and Cell Bank, F-69437 Lyon, France
| | - Ulrich Valcourt
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.,University of Lyon, Centre Léon Bérard, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), F-69373 Lyon, France
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France
| | - Catherine Moali
- University of Lyon, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), F-69367 Lyon, France.
| |
Collapse
|
6
|
Chen W, Zhang C, Wu Y, Su X. Soluble expression and purification of high-bioactivity recombinant human bone morphogenetic protein-2 by codon optimisation in Escherichia coli. Protein Eng Des Sel 2019; 32:153-157. [PMID: 31603219 DOI: 10.1093/protein/gzz028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/13/2022] Open
Abstract
We developed a simple method of preparing recombinant human bone morphogenetic protein-2 (rhBMP-2) with high biological activity. This rhBMP-2 was overproduced in Escherichia coli as a fusion protein with thioredoxin 6xHis-tag at its amino terminus. The cDNA fragment of human bone morphogenetic protein-2 (hBMP-2) fused to the secretion signal of alkaline phosphatase (PhoA) was expressed under T7 promoter in E. coli. After DNA sequence confirmation, the recombinant vector pETpho-bmp2 was transformed into E. coli BL21 (DE3). rhBMP-2 was produced by the recombinant strain pETpho-bmp2/BL21 (DE3) in a soluble form with an yield of 6.2 mg/L culture. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) results showed that the molecular weight of the product was approximately 28 kD. Moreover, rhBMP-2 was secreted as a dimer with a natural structure. rhBMP-2, purified by Ni Nitrilotriacetic acid Agarose (Ni-NTA) affinity chromatography, was used to examine osteosarcoma MG-63 cells and assay the alkaline phosphatase (ALP) activity. Results showed that rhBMP-2 induced MG-63 cell differentiation. When the final concentration was 500 ng/mL, the effect was more remarkable and ALP activity reached 525% compared with that of the control group.
Collapse
Affiliation(s)
- Wei Chen
- Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, China.,College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Caiqian Zhang
- Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, China
| | - Yeqing Wu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiuping Su
- Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
7
|
Heumüller SE, Talantikite M, Napoli M, Armengaud J, Mörgelin M, Hartmann U, Sengle G, Paulsson M, Moali C, Wagener R. C-terminal proteolysis of the collagen VI α3 chain by BMP-1 and proprotein convertase(s) releases endotrophin in fragments of different sizes. J Biol Chem 2019; 294:13769-13780. [PMID: 31346034 DOI: 10.1074/jbc.ra119.008641] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
The assembly of collagen VI microfibrils is a multistep process in which proteolytic processing within the C-terminal globular region of the collagen VI α3 chain plays a major role. However, the mechanisms involved remain elusive. Moreover, C5, the short and most C-terminal domain of the α3 chain, recently has been proposed to be released as an adipokine that enhances tumor progression, fibrosis, inflammation, and insulin resistance and has been named "endotrophin." Serum endotrophin could be a useful biomarker to monitor the progression of such disorders as chronic obstructive pulmonary disease, systemic sclerosis, and kidney diseases. Here, using biochemical and isotopic MS-based analyses, we found that the extracellular metalloproteinase bone morphogenetic protein 1 (BMP-1) is involved in endotrophin release and determined the exact BMP-1 cleavage site. Moreover, we provide evidence that several endotrophin-containing fragments are present in various tissues and body fluids. Among these, a large C2-C5 fragment, which contained endotrophin, was released by furin-like proprotein convertase cleavage. By using immunofluorescence microscopy and EM, we also demonstrate that these proteolytic maturations occur after secretion of collagen VI tetramers and during microfibril assembly. Differential localization of N- and C-terminal regions of the collagen VI α3 chain revealed that cleavage products are deposited in tissue and cell cultures. The detailed information on the processing of the collagen VI α3 chain reported here provides a basis for unraveling the function of endotrophin (C5) and larger endotrophin-containing fragments and for refining their use as biomarkers of disease progression.
Collapse
Affiliation(s)
| | - Maya Talantikite
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Manon Napoli
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Jean Armengaud
- Commissariat à l'Energie Atomique (CEA)-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Innovative Technologies for Detection and Diagnostics Laboratory, 30200 Bagnols-sur-Cèze, France
| | | | - Ursula Hartmann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR5305 CNRS/University of Lyon, 69367 Lyon, France
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany .,Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
8
|
Latendorf T, Gerstel U, Wu Z, Bartels J, Becker A, Tholey A, Schröder JM. Cationic Intrinsically Disordered Antimicrobial Peptides (CIDAMPs) Represent a New Paradigm of Innate Defense with a Potential for Novel Anti-Infectives. Sci Rep 2019; 9:3331. [PMID: 30833614 PMCID: PMC6399351 DOI: 10.1038/s41598-019-39219-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
In the search for potential mechanisms underlying the remarkable resistance of healthy skin against infection by soil bacteria like Pseudomonas (P.) aeruginosa we identified fragments of the intrinsically disordered protein hornerin as potent microbicidal agents in the stratum corneum. We found that, independent of the amino acid (AA)-sequence, any tested linear cationic peptide containing a high percentage of disorder-promoting AA and a low percentage of order-promoting AA is a potent microbicidal antimicrobial. We further show that the antimicrobial activity of these cationic intrinsically disordered antimicrobial peptides (CIDAMPs) depends on the peptide chain length, its net charge, lipidation and environmental conditions. The ubiquitous presence of latent CIDAMP sources in nature suggests a common and yet overlooked adapted innate disinfection system of body surfaces. The simple structure and virtually any imaginable sequence or composition of disorder-promoting AA allow the generation of a plethora of CIDAMPs. These are potential novel microbicidal anti-infectives for various bacterial pathogens, including P. aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA) and fungal pathogens like Candida albicans and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Ties Latendorf
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulrich Gerstel
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Zhihong Wu
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Biochemistry and Cell Biology, Zhejiang University of Science and Technology, 310023, Hangzhou, China
| | - Joachim Bartels
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Becker
- Institute for Experimental Medicine-AG Systematic Proteomics & Bioanalytics, Kiel University (CAU), Kiel, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine-AG Systematic Proteomics & Bioanalytics, Kiel University (CAU), Kiel, Germany
| | - Jens-Michael Schröder
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
9
|
Karmilin K, Schmitz C, Kuske M, Körschgen H, Olf M, Meyer K, Hildebrand A, Felten M, Fridrich S, Yiallouros I, Becker-Pauly C, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stöcker W. Mammalian plasma fetuin-B is a selective inhibitor of ovastacin and meprin metalloproteinases. Sci Rep 2019; 9:546. [PMID: 30679641 PMCID: PMC6346019 DOI: 10.1038/s41598-018-37024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022] Open
Abstract
Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida ‘hardening’ caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carlo Schmitz
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Katharina Meyer
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - André Hildebrand
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Sven Fridrich
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH, 52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Julia Floehr
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
10
|
Akadam-Teker B, Ozkara G, Kurnaz-Gomleksiz O, Bugra Z, Teker E, Ozturk O, Yilmaz-Aydogan H. BMP1 5'UTR + 104 T/C gene variation: can be a predictive marker for serum HDL and apoprotein A1 levels in male patients with coronary heart disease. Mol Biol Rep 2018; 45:1269-1276. [PMID: 30062502 DOI: 10.1007/s11033-018-4283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein A1 (Apo A1), the major protein of HDL, is secreted as a proprotein and then is cleaved by C-terminal procollagen endoproteinase/bone morphogenetic protein-1 (BMP1). BMP1 stimulates the conversion of newly secreted proapo A1 to its phospholipid-binding form. Therefore, genetic variations of BMP1 gene may affect serum ApoA1 and HDL levels. We aimed to investigate the effects of the functional 5'UTR + 104 (T/C) variant of BMP1 on serum ApoA1 and HDL levels and risk of coronary heart disease (CHD) in this study. The BMP1 5'UTR + 104 (T/C) (rs143383) variation was determined in 131 male patients with CHD and 51 male controls by real-time polymerase chain reaction technique. ApoA1 levels were measured by immunoturbidimetry. The serum Apo-A1 levels were found higher in controls with the BMP1-CC genotype than those with the T-allele (p < 0.001). Our findings show the association of this variation with serum ApoA1 and HDL-C levels which increase in the order of CT < TT < CC in the controls. No effect was found on ApoA1 and HDL-C levels in CHD patients, as it was observed in the controls. However, the BMP1-TT genotype was associated with higher triglyceride (TG) levels as compared to C-allele (p = 0.009). These discrepancies could be due to statin therapy which has dominant effects on lowering cholesterol levels comparing to TG levels. Our results indicated that the BMP1 5'UTR + 104 (T/C) variation may affect the serum ApoA1 and lipoprotein levels depending on statin therapy so that contributes to the development of CHD.
Collapse
Affiliation(s)
- Basak Akadam-Teker
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakıf Gureba c. Çapa, 34093, Istanbul, Turkey.,Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakıf Gureba c. Çapa, 34093, Istanbul, Turkey
| | - Ozlem Kurnaz-Gomleksiz
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakıf Gureba c. Çapa, 34093, Istanbul, Turkey.,Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Zehra Bugra
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erhan Teker
- Departments of Cardiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakıf Gureba c. Çapa, 34093, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakıf Gureba c. Çapa, 34093, Istanbul, Turkey.
| |
Collapse
|
11
|
Kallander LS, Washburn D, Hilfiker MA, Eidam HS, Lawhorn BG, Prendergast J, Fox R, Dowdell S, Manns S, Hoang T, Zhao S, Ye G, Hammond M, Holt DA, Roethke T, Hong X, Reid RA, Gampe R, Zhang H, Diaz E, Rendina AR, Quinn AM, Willette B. Reverse Hydroxamate Inhibitors of Bone Morphogenetic Protein 1. ACS Med Chem Lett 2018; 9:736-740. [PMID: 30034610 DOI: 10.1021/acsmedchemlett.8b00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022] Open
Abstract
Bone Morphogenetic Protein 1 (BMP1) inhibition is a potential method for treating fibrosis because BMP1, a member of the zinc metalloprotease family, is required to convert pro-collagen to collagen. A novel class of reverse hydroxamate BMP1 inhibitors was discovered, and cocrystal structures with BMP1 were obtained. The observed binding mode is unique in that the small molecule occupies the nonprime side of the metalloprotease pocket providing an opportunity to build in metalloprotease selectivity. Structure-guided modification of the initial hit led to the identification of an oral in vivo tool compound with selectivity over other metalloproteases. Due to irreversible inhibition of cytochrome P450 3A4 for this chemical class, the risk of potential drug-drug interactions was managed by optimizing the series for subcutaneous injection.
Collapse
|
12
|
Mapping disulfide bonds from sub-micrograms of purified proteins or micrograms of complex protein mixtures. BIOPHYSICS REPORTS 2018; 4:68-81. [PMID: 29756007 PMCID: PMC5937861 DOI: 10.1007/s41048-018-0050-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/08/2018] [Indexed: 11/16/2022] Open
Abstract
Disulfide bonds are vital for protein functions, but locating the linkage sites has been a challenge in protein chemistry, especially when the quantity of a sample is small or the complexity is high. In 2015, our laboratory developed a sensitive and efficient method for mapping protein disulfide bonds from simple or complex samples (Lu et al. in Nat Methods 12:329, 2015). This method is based on liquid chromatography–mass spectrometry (LC–MS) and a powerful data analysis software tool named pLink. To facilitate application of this method, we present step-by-step disulfide mapping protocols for three types of samples—purified proteins in solution, proteins in SDS-PAGE gels, and complex protein mixtures in solution. The minimum amount of protein required for this method can be as low as several hundred nanograms for purified proteins, or tens of micrograms for a mixture of hundreds of proteins. The entire workflow—from sample preparation to LC–MS and data analysis—is described in great detail. We believe that this protocol can be easily implemented in any laboratory with access to a fast-scanning, high-resolution, and accurate-mass LC–MS system.
Collapse
|
13
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|