1
|
Zhang L, Wang X, Wu D, Zheng J, Ding F. Differentiating the Whole Urine and Urine Supernatant Protein Profiles of Preterm Infants via Urine Proteomics. Kidney Blood Press Res 2025; 50:198-209. [PMID: 39938506 DOI: 10.1159/000543714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025] Open
Abstract
INTRODUCTION Urine proteomics plays an important role in the screening of biomarkers for infant diseases. However, there is no unified standard for the selection of urine samples for urine proteomics. It is also unclear whether there are differences in proteomics between whole urine and urine supernatant. Therefore, the urine of preterm infants was used as the research sample to explore the differences in protein profiles between the whole urine and urine supernatant of preterm infants by proteomics. METHODS Urine samples were collected from five preterm infants with a gestational age of <28 weeks at their corrected gestational age of 37 weeks. Each preterm urine was divided into whole urine and supernatant. Urine protein was extracted and analyzed by liquid chromatography-tandem mass spectrometry. RESULTS The two groups of urine samples did not show significant clustering in the principal component analysis. A total of 2,607 proteins were detected in the two groups of urine samples, of which 82 proteins were unique to whole urine samples and 56 proteins were unique to urine supernatant samples. The molecular functions, the main biological processes, and subcellular localization of the differential proteins were analyzed. In other neonatal-related diseases, there was no significant difference in protein enrichment between whole urine and urine supernatant. CONCLUSIONS This study analyzed the differences between whole urine and urine supernatant in urine proteomics of preterm infants. In neonatal-related diseases, there is no significant difference in urinary protein biomarkers between whole urine and urine supernatant.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China,
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China,
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China,
| | - Xueyan Wang
- Department of Clinical Laboratory, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Department of Clinical Laboratory, Nankai University Maternity Hospital, Tianjin, China
| | - Dan Wu
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| | - Fangrui Ding
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Department of Neonatology, Nankai University Maternity Hospital, Tianjin, China
| |
Collapse
|
2
|
Wu D, Zhang L, Ding F. Current status and future directions of application of urine proteomics in neonatology. Front Pediatr 2025; 12:1509468. [PMID: 39877338 PMCID: PMC11772477 DOI: 10.3389/fped.2024.1509468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
With continuous advancements in mass spectrometry technology, researchers increasingly utilize this method to investigate the molecular mechanisms underlying various diseases, and to identify novel diagnostic and therapeutic strategies. Among proteomics applications, urinary proteomics stands out for its non-invasive nature, making it particularly suitable for vulnerable populations like neonates. This review provides a comprehensive overview of recent research on urinary proteomics in the field of neonatology. It summarizes findings from numerous studies, illustrating how urinary proteomic profiles provide critical insights into neonatal health and disease. By identifying specific protein biomarkers in urine, researchers can gain insights into the early detection and monitoring of neonatal diseases, potentially leading to more timely and effective interventions. As technology evolves, the sensitivity and accuracy of proteomic analyses are expected to improve, opening new avenues for research and clinical applications.
Collapse
Affiliation(s)
- Dan Wu
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Lulu Zhang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Fangrui Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Department of Neonatology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
3
|
Martelo-Vidal L, Vázquez-Mera S, Miguéns-Suárez P, Bravo-López SB, Makrinioti H, Domínguez-Arca V, de-Miguel-Díez J, Gómez-Carballa A, Salas A, González-Barcala FJ, Salgado FJ, Nieto-Fontarigo JJ. Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers. Biomolecules 2025; 15:60. [PMID: 39858454 PMCID: PMC11762655 DOI: 10.3390/biom15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2high asthma (N = 4) compared to T2low asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.
Collapse
Affiliation(s)
- Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo-López
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Vicente Domínguez-Arca
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Bioprocess Engineering Group, Instituto de Investigacións Mariñas (IIM-CSIC), 36208 Vigo, Spain
| | - Javier de-Miguel-Díez
- Respiratory Department, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
- Health Research Institute Gregorio Marañón (IISGM), 28009 Madrid, Spain
- Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Francisco Javier González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Klaus R, Barth TK, Imhof A, Thalmeier F, Lange-Sperandio B. Comparison of clean catch and bag urine using LC-MS/MS proteomics in infants. Pediatr Nephrol 2024; 39:203-212. [PMID: 37523035 PMCID: PMC10673958 DOI: 10.1007/s00467-023-06098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Urinary proteomics identifies the totality of urinary proteins and can therefore help in getting an early and precise diagnosis of various pathological processes in the kidneys. In infants, non-invasive urine collection is most commonly accomplished with a urine bag or clean catch. The influence of those two collection methods on urinary proteomics was assessed in this study. METHODS Thirty-two urine samples were collected in infants using urine bag and clean catch within 24 h. Nine boys and seven girls with a mean age of 4.3 ± 2.9 months were included (5 × post-pyelonephritis, 10 × non-kidney disease, 1 × chronic kidney disease (CKD)). Liquid chromatography-mass spectrometry (LC-MS/MS) was performed in data-independent acquisition (DIA) mode. Protein identification and quantification were achieved using Spectronaut. RESULTS A total of 1454 urinary proteins were detected. Albumin and α-1-microglobulin were detected the most. The 18 top-abundant proteins accounted for 50% of total abundance. The number of proteins was slightly, but insignificantly higher in clean catch (957 ± 245) than in bag urine (876 ± 255). The median intensity was 1.2 × higher in the clean catch. Overall, differential detection of proteins was 29% between the collection methods; however, it diminished to 3% in the 96 top-abundant proteins. Pearson's correlation coefficient was 0.81 ± 0.11, demonstrating a high intraindividual correlation. A principal component analysis and a heat map showed clustering according to diagnoses and patients rather than to the collection method. CONCLUSION Urinary proteomics shows a high correlation with minor variation in low-abundant proteins between the two urine collection methods. The biological characteristics overrule this variation. Graphical abstract A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. V. Hauner Children's Hospital, Ludwig-Maximilians University, Lindwurmstraße 4, 80337, Munich, Germany
| | - Teresa K Barth
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians University, Planegg-Martinsried, Munich, Germany
| | - Axel Imhof
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians University, Planegg-Martinsried, Munich, Germany
| | - Franziska Thalmeier
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. V. Hauner Children's Hospital, Ludwig-Maximilians University, Lindwurmstraße 4, 80337, Munich, Germany
| | - Bärbel Lange-Sperandio
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. V. Hauner Children's Hospital, Ludwig-Maximilians University, Lindwurmstraße 4, 80337, Munich, Germany.
| |
Collapse
|
6
|
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Watkins WJ, Heesom KJ, Kotecha S. Characterizing the urinary proteome of prematurity-associated lung disease in school-aged children. Respir Res 2023; 24:191. [PMID: 37474963 PMCID: PMC10357627 DOI: 10.1186/s12931-023-02494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Although different phenotypes of lung disease after preterm birth have recently been described, the underlying mechanisms associated with each phenotype are poorly understood. We, therefore, compared the urinary proteome for different spirometry phenotypes in preterm-born children with preterm- and term-born controls. METHODS Preterm and term-born children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) cohort, underwent spirometry and urine collection. Urine was analysed by Nano-LC Mass-Spectrometry with Tandem-Mass Tag labelling. The preterm-born children were classified into phenotypes of prematurity-associated preserved ratio impaired spirometry (pPRISm, FEV1 < lower limit of normal (LLN), FEV1/FVC ≥ LLN), prematurity-associated obstructive lung disease (POLD, FEV1 < LLN, FEV1/FVC < LLN) and preterm controls (FEV1 ≥ LLN,). Biological relationships between significantly altered protein abundances were analysed using Ingenuity Pathways Analysis software, and receiver operator characteristic curves were calculated. RESULTS Urine was analysed from 160 preterm-born children and 44 term controls. 27 and 21 were classified into the pPRISm and POLD groups, respectively. A total of 785 proteins were detected. Compared to preterm-born controls, sixteen significantly altered proteins in the pPRISm group were linked to six biological processes related to upregulation of inflammation and T-cell biology. In contrast, four significantly altered proteins in the POLD group were linked with neutrophil accumulation. Four proteins (DNASE1, PGLYRP1, B2M, SERPINA3) in combination had an area under the curve of 0.73 for pPRISm and three combined proteins (S100A8, MMP9 and CTSC) had AUC of 0.76 for POLD. CONCLUSIONS In this exploratory study, we demonstrate differential associations of the urinary proteome with pPRISm and POLD. TRIAL REGISTRATION EudraCT: 2015-003712-20.
Collapse
Affiliation(s)
- Christopher W Course
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip A Lewis
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - W John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
7
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
8
|
Shotgun Proteomics of Isolated Urinary Extracellular Vesicles for Investigating Respiratory Impedance in Healthy Preschoolers. Molecules 2021; 26:molecules26051258. [PMID: 33652646 PMCID: PMC7956503 DOI: 10.3390/molecules26051258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Urine proteomic applications in children suggested their potential in discriminating between healthy subjects from those with respiratory diseases. The aim of the current study was to combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in order to establish whether different patterns of respiratory impedance in healthy preschoolers can be characterized from a protein fingerprint. Twenty-one 3-5-yr-old healthy children, representative of 66 recruited subjects, were selected: 12 late preterm (LP) and 9 full-term (T) born. Children underwent measurement of respiratory impedance through Forced Oscillation Technique (FOT) and no significant differences between LP and T were found. Unbiased clustering, based on proteomic signatures, stratified three groups of children (A, B, C) with significantly different patterns of respiratory impedance, which was slightly worse in group A than in groups B and C. Six proteins (Tripeptidyl peptidase I (TPP1), Cubilin (CUBN), SerpinA4, SerpinF1, Thy-1 membrane glycoprotein (THY1) and Angiopoietin-related protein 2 (ANGPTL2)) were identified in order to type the membership of subjects to the three groups. The differential levels of the six proteins in groups A, B and C suggest that proteomic-based profiles of urinary fractionated exosomes could represent a link between respiratory impedance and underlying biological profiles in healthy preschool children.
Collapse
|
9
|
Wang XM, Tian FY, Xie CB, Niu ZZ, Chen WQ. Abnormal placental DNA methylation variation in spontaneous preterm birth. J Matern Fetal Neonatal Med 2020; 35:4704-4712. [PMID: 33327822 DOI: 10.1080/14767058.2020.1863357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Preterm birth (PTB) has become a major public health concern as the leading cause of neonatal death, but little is understood about its etiology. Children born preterm are also at increased risk of long-term consequences such as neurodevelopmental disorders, adulthood hypertension and diabetes. Recent studies have indicated that DNA methylation may be involved in the occurrence of PTB as well as related adverse outcomes. The latest Infinium EPIC BeadChip extends the coverage of the genome and provides a better tool to help investigate the involvement of DNA methylation in these conditions. METHODS We conducted this case-control study in three Women and Children's hospitals in South China, and enrolled 32 spontaneous preterm births and 16 term births. We assessed placental DNA methylation profiling of these participants with the Infinium EPIC BeadChip. We identified PTB and gestational age (GA)-associated CpG sites with limma regression model, and applied seqlm to identify PTB-associated regions. We performed gene ontology analysis to further interpret functional enrichment of the identified differentially methylated genes in PTB. RESULTS We identified a total of 8 differentially methylated positions (DMPs) that were significantly associated with PTB (FDR < 0.1) and a total of 15 DMPs that were associated with GA (FDR < 0.1). In the regional analysis, one differentially methylated region in the SLC23A1 gene overlapped with PTB-associated CpG site. The differentially methylated CpG sites in PTB were mapped to the genes involving in biological processes mainly regarding neurodevelopment, regulation of inflammation and metabolism. CONCLUSION Our findings suggested that preterm placenta have distinct DNA methylation alterations, and these alteration patterns established at birth provide insight into the long-term consequences of preterm birth.
Collapse
Affiliation(s)
- Xi-Meng Wang
- Department of Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Fu-Ying Tian
- Department of Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Chuan-Bo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhong-Zheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei-Qing Chen
- Department of Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Information Management, Xinhua College, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Sergeeva VA, Zakharova NV, Bugrova AE, Starodubtseva NL, Indeykina MI, Kononikhin AS, Frankevich VE, Nikolaev EN. The high-resolution mass spectrometry study of the protein composition of amyloid-like urine aggregates associated with preeclampsia. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:158-161. [PMID: 31291787 DOI: 10.1177/1469066719860076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study of protein misfolding and post-translational processing abnormalities is a promising diagnostic approach for socially significant pathologies associated with the accumulation of abnormal forms of proteins. Recently, it was shown that amyloid-like aggregates can be observed in the urine of pregnant women with preeclampsia, which is the most severe hypertensive complication that can lead to fateful outcomes. The protein composition of urine aggregates may clarify the molecular mechanisms underlying the pathology and has not yet been studied in detail. Using a proteomic approach based on high-resolution mass spectrometry, we studied the protein composition of amyloid-like structures that aggregate in the presence of Congo red azo-dye in the urine of pregnant women with preeclampsia. Fragments of β-sheets of α-1-antitrypsin, complement 3, haptoglobin, ceruloplasmin, and trypstatin were identified as most likely targets for Congo red binding.
Collapse
Affiliation(s)
- Victoria A Sergeeva
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physic of RAS, Moscow, Russia
| | - Natalia V Zakharova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Natalia L Starodubtseva
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria I Indeykina
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vladimir E Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | |
Collapse
|
11
|
Starodubtseva NL, Brzhozovskiy AG, Bugrova AE, Kononikhin AS, Indeykina MI, Gusakov KI, Chagovets VV, Nazarova NM, Frankevich VE, Sukhikh GT, Nikolaev EN. Label-free cervicovaginal fluid proteome profiling reflects the cervix neoplastic transformation. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:693-703. [PMID: 31116903 DOI: 10.1002/jms.4374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Cervicovaginal fluid (CVF) is a valuable source of clinical information about the female reproductive tract in both nonpregnant and pregnant women. The aim of this study is to specify the CVF proteome at different stages of cervix neoplastic transformation by label-free quantitation approach based on liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The proteome composition of CVF from 40 women of reproductive age with human papillomavirus (HPV)-associated cervix neoplastic transformation (low-grade squamous intraepithelial lesion [LSIL], high-grade squamous intraepithelial lesion [HSIL], and CANCER) was investigated. Hierarchical clustering and principal component analysis (PCA) of the proteomic data obtained by a label-free quantitation approach show the distribution of the sample set between four major clusters (no intraepithelial lesion or malignancy [NILM], LSIL, HSIL and CANCER) depending on the form of cervical lesion. Multisample ANOVA with subsequent Welch's t test resulted in 117 that changed significantly across the four clinical stages, including 27 proteins significantly changed in cervical cancer. Some of them were indicated as promising biomarkers previously (ACTN4, VTN, ANXA1, CAP1, ANXA2, and MUC5B). CVF proteomic data from the discovery stage were analyzed by the partial least squares-discriminant analysis (PLS-DA) method to build a statistical model, allowing to differentiate severe dysplasia (HSIL and CANCER) from the mild/normal stage (NILM and LSIL), and receiver operating characteristic (ROC) area under the curve (AUC) were obtained on an independent set of 33 samples. The sensitivity of the model was 77%, and the specificity was 94%; AUC was equal to 0.87. CVF proteome proved to be reflect the stage of cervical epithelium neoplastic process.
Collapse
Affiliation(s)
- Natalia L Starodubtseva
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexander G Brzhozovskiy
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna E Bugrova
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- Laboratory of Ion and Molecular Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Mass Specrometry, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria I Indeykina
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Kiril I Gusakov
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Vitaliy V Chagovets
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Niso M Nazarova
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Vladimir E Frankevich
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady T Sukhikh
- System Biology Department, V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Eugene N Nikolaev
- Laboratory of Ion and Molecular Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Mass Specrometry, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
12
|
Moiseenko KV, Savinova OS, Vasina DV, Kononikhin AS, Tyazhelova TV, Fedorova TV. Laccase Isoenzymes of Trametes hirsuta LE-BIN072: Degradation of Industrial Dyes and Secretion under the Different Induction Conditions. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Introduction to the HUPO 2015 Special Issue. J Proteomics 2018; 149:1-2. [PMID: 27776693 DOI: 10.1016/j.jprot.2016.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|