1
|
Adnane M, de Almeida AM, Chapwanya A. Unveiling the power of proteomics in advancing tropical animal health and production. Trop Anim Health Prod 2024; 56:182. [PMID: 38825622 DOI: 10.1007/s11250-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, 14000, Algeria.
| | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
2
|
Peinado-Izaguerri J, Corbishley A, Zarzuela E, Pina-Beltrán B, Riva F, McKeegan DEF, Bain M, Muñoz J, Bhide M, McLaughlin M, Preston T. Effect of an immune challenge and two feed supplements on broiler chicken individual breast muscle protein synthesis rate. J Proteomics 2024; 299:105158. [PMID: 38484873 DOI: 10.1016/j.jprot.2024.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken's growth. Despite its importance, research on broiler chicken muscle protein dynamics has mostly been limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of citrus and cucumber extracts on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. Twenty-one day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analysed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein synthesis which could be essential for improving the efficiency of broiler chicken meat production. SIGNIFICANCE: The present study constitutes the first dynamic proteomics study conducted in a farm animal species which has characterized FSR in a large number of proteins, establishing a precedent for biomarker discovery and assessment of health and growth status. Moreover, it has been evidenced that the decrease in broiler chicken breast muscle protein following an immune challenge is a coordinated event which seems to be the main cause of the decreased growth observed in these animals.
Collapse
Affiliation(s)
- Jorge Peinado-Izaguerri
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom; University of Veterinary Medicine and Pharmacy in Košice, Laboratory of biomedical microbiology and immunology, Komenskeho 73, Košice 04001, Slovakia.
| | - Alexander Corbishley
- University of Edinburgh, Roslin Institute, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom.
| | - Eduardo Zarzuela
- Spanish National Cancer Research Center, Proteomics Unit, Calle de Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - Blanca Pina-Beltrán
- Aix-Marseille Université, Marseille, Centre de Recherche en Cardiovasculaire et Nutrition, Bd Jean Moulin 27, Marseille 13385, France.
| | - Francesca Riva
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom; University of Zagreb, Clinic for Internal Diseases faculty of Veterinary Medicine, Heinzelova 55, Zagreb 10000, Croatia.
| | - Dorothy E F McKeegan
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Maureen Bain
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Javier Muñoz
- Spanish National Cancer Research Center, Proteomics Unit, Calle de Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Laboratory of biomedical microbiology and immunology, Komenskeho 73, Košice 04001, Slovakia.
| | - Mark McLaughlin
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Tom Preston
- University of Glasgow, SUERC, Stable Isotope Biochemistry Laboratory, East Kilbride, Glasgow G75 0QF, United Kingdom.
| |
Collapse
|
3
|
Peinado-Izaguerri J, Zarzuela E, McLaughlin M, Small AC, Riva F, McKeegan DEF, Bain M, Muñoz J, Bhide M, Preston T. A novel dynamic proteomics approach for the measurement of broiler chicken protein fractional synthesis rate. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9497. [PMID: 36851885 DOI: 10.1002/rcm.9497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE The study of protein synthesis in farm animals is uncommon despite its potential to increase knowledge about metabolism and discover new biomarkers of health and growth status. The present study describes a novel dynamic proteomics approach for the measurement of protein fractional synthesis rate (FSR) in broiler chickens. METHODS Chickens received a 10 g/kg oral dose of 2 H2 O at day 21 of their life. Body water 2 H abundance was measured in plasma samples using a portable Fourier transform infrared spectrometer. Free and protein-bound amino acids (AAs) were isolated and had their 2 H enrichment measured by gas chromatography with mass spectrometry (GC/MS). Peptide 2 H enrichment was measured by proteomics analysis of plasma and muscle samples. Albumin, fibrinogen and muscle protein FSR were calculated from GC/MS and proteomics data. RESULTS Ala appeared to be more enriched at the site of protein synthesis than in the AA free pools. Glu was found to be the AA closest to isotopic equilibrium between the different AA pools. Glu was used as an anchor to calculate n(AA) values necessary for chicken protein FSR calculation in dynamic proteomics studies. FSR values calculated using proteomics data and GC/MS data showed good agreement as evidenced by a Bland-Altman residual plot. CONCLUSIONS A new dynamic proteomics approach for the measurement of broiler chicken individual protein FSR based on the administration of a single 2 H2 O oral bolus has been developed and validated. The proposed approach could facilitate new immunological and nutritional studies on free-living animals.
Collapse
Affiliation(s)
- Jorge Peinado-Izaguerri
- University of Glasgow, Glasgow, UK
- University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Center, Madrid, Spain
| | | | | | - Francesca Riva
- University of Glasgow, Glasgow, UK
- University of Zagreb, Zagreb, Croatia
| | | | | | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Center, Madrid, Spain
- Cell Signalling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute, Biocruces Bizkaia, Barakaldo, Spain
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | | |
Collapse
|
4
|
Martins CF, Ribeiro DM, Matzapetakis M, Pinho MA, Kuleš J, Horvatić A, Guillemin N, Eckersall PD, Freire JPB, de Almeida AM, Prates JAM. Effect of dietary Spirulina (Arthrospira platensis) on the intestinal function of post-weaned piglet: An approach combining proteomics, metabolomics and histological studies. J Proteomics 2022; 269:104726. [PMID: 36096433 DOI: 10.1016/j.jprot.2022.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
The effect of dietary Spirulina (Arthrospira platensis) and CAZyme supplementation was assessed on the gut of weaned piglets, using an integrated NMR-metabolomics approach combined with Tandem Mass Tag labelled proteomics. Thirty weaned male piglets were assigned to one of the three following diets (n = 10): cereal and soybean meal basal diet (Control), basal diet with 10% Spirulina inclusion (SP) and SP diet supplemented with 0.01% lysozyme (SP + L). The experiment lasted 4 weeks and, upon slaughter, small intestine samples were collected for histological, metabolomic and proteomic analysis. No significant differences were found for the histology and metabolomics analysis between the three experimental groups. Lactate, glutamate, glycine and myo-inositol were the most abundant metabolites. Proteomics results showed 1502 proteins identified in the intestine tissue. A total of 23, 78, 27 differentially abundant proteins were detected respectively for the SP vs. Control, SP + L vs. Control and SP + L vs. SP comparisons. The incorporation of Spirulina and supplementation of lysozyme in the piglet's diets is associated to intestinal proteomic changes. These include increased protein synthesis and abundance of contractile apparatus proteins, related with increased nutrient availability, which has beneficial (increased glucose uptake) and detrimental (increased digesta viscosity) metabolic effects. SIGNIFICANCE: The use of conventional feedstuffs becomes increasingly prohibitive due to its environmental toll. To increase the sustainability of the livestock sector, novel feedstuffs such as microalgae need to be considered. However, its recalcitrant cell wall has antinutritional effects that can inhibit high dietary inclusion levels. The supplementation with CAZymes is a possible solution to this issue. The small intestine is a central piece in monogastric digestion and of particular importance for the weaned piglet. Studying the effect of dietary Spirulina and CAZyme supplementation on its histomorphology, metabolome and proteome allows studying relevant physiological adaptations to these diets.
Collapse
Affiliation(s)
- Cátia F Martins
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Manolis Matzapetakis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Av., 11635 Athens, Greece
| | - Mário A Pinho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Anita Horvatić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottieva 6, 10 000 Zagreb, Croatia
| | - Nicolas Guillemin
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Peter David Eckersall
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Herkenhoff ME, Bovolenta LA, Broedel O, Dos Santos LD, de Oliveira AC, Chuffa LGA, Ribeiro ADO, Lupi LA, Dias MAD, Hilsdorf AWS, Frohme M, Pinhal D. Variant expression signatures of microRNAs and protein related to growth in a crossbreed between two strains of Nile tilapia (Oreochromis niloticus). Genomics 2021; 113:4303-4312. [PMID: 34774982 DOI: 10.1016/j.ygeno.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Lucilene D Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arthur C de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Amanda de O Ribeiro
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz A Lupi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Marco A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Alexandre W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
6
|
Influence of Dietary Supplementation with an Amino Acid Mixture on Inflammatory Markers, Immune Status and Serum Proteome in LPS-Challenged Weaned Piglets. Animals (Basel) 2021; 11:ani11041143. [PMID: 33923708 PMCID: PMC8073091 DOI: 10.3390/ani11041143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
In order to investigate the effect of a dietary amino acid mixture supplementation in lipopolysaccharide (LPS)-challenged weaned piglets, twenty-seven 28-day-old (8.2 ± 1.0 kg) newly weaned piglets were randomly allocated to one of three experimental treatments for five weeks. Diet 1: a CTRL treatment. Diet 2: an LPS treatment, where piglets were intraperitoneally administered LPS (25 μg/kg) on day 7. Diet 3: an LPS+MIX treatment, where piglets were intraperitoneally administered LPS on day 7 and fed a diet supplemented with a mixture of 0.3% of arginine, branched-chain amino acids (leucine, valine, and isoleucine), and cystine (MIX). Blood samples were drawn on day 10 and day 35, and serum was analysed for selected chemical parameters and proteomics. The LPS and LPS+MIX groups exhibited an increase in haptoglobin concentrations on day 10. The LPS group showed an increased cortisol concentration, while this concentration was reduced in the LPS+MIX group compared to the control group. Similarly, the LPS+MIX group showed a decreased haptoglobin concentration on day 35 compared to the two other groups. Immunoglobulin concentrations were affected by treatments. Indeed, on day 10, the concentrations of IgG and IgM were decreased by the LPS challenge, as illustrated by the lower concentrations of these two immunoglobulins in the LPS group compared to the control group. In addition, the supplementation with the amino acid mixture in the LPS+MIX further decreased IgG and increased IgM concentrations compared to the LPS group. Although a proteomics approach did not reveal important alterations in the protein profile in response to treatments, LPS-challenged piglets had an increase in proteins linked to the immune response, when compared to piglets supplemented with the amino acid mixture. Overall, data indicate that LPS-challenged piglets supplemented with this amino acid mixture are more protected against the detrimental effects of LPS.
Collapse
|
7
|
Almeida AM, Ali SA, Ceciliani F, Eckersall PD, Hernández-Castellano LE, Han R, Hodnik JJ, Jaswal S, Lippolis JD, McLaughlin M, Miller I, Mohanty AK, Mrljak V, Nally JE, Nanni P, Plowman JE, Poleti MD, Ribeiro DM, Rodrigues P, Roschitzki B, Schlapbach R, Starič J, Yang Y, Zachut M. Domestic animal proteomics in the 21st century: A global retrospective and viewpoint analysis. J Proteomics 2021; 241:104220. [PMID: 33838350 DOI: 10.1016/j.jprot.2021.104220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Animal production and health are of significant economic importance, particularly regarding the world food supply. Animal and veterinary sciences have evolved immensely in the past six decades, particularly in genetics, nutrition, housing, management and health. To address major challenges such as those posed by climate change or metabolic disorders, it is of utmost importance to use state-of-the-art research tools. Proteomics and the other post-genomic tools (transcriptomics or metabolomics) are among them. Proteomics has experienced a considerable development over the last decades. This brought developments to different scientific fields. The use and adoption of proteomics tools in animal and veterinary sciences has some limitations (database availability or access to proteomics platforms and funding). As a result, proteomics' use by animal science researchers varies across the globe. In this viewpoint article, we focus on the developments of domestic animal proteomics over the last decade in different regions of the globe and how the researchers have coped with such challenges. In the second part of the article, we provide examples of funding, educational and laboratory establishment initiatives designed to foster the development of (animal-based) proteomics. International scientific collaboration is a definitive and key feature in the development and advancement of domestic animal proteomics. SIGNIFICANCE: Animal production and health are very important for food supply worldwide particularly as a source of proteinaceous foods. Animal and veterinary sciences have evolved immensely in the last decades. In order to address the major contemporary challenges facing animal and veterinary sciences, it is of utmost importance to use state-of-the-art research tools such as Proteomics and other Omics. Herein, we focus on the major developments in domestic animal proteomics worldwide during the last decade and how different regions of the world have used the technology in this specific research field. We address also major international efforts aiming to increase the research output in this area and highlight the importance of international cooperation to address specific problems inherent to domestic animal proteomics.
Collapse
Affiliation(s)
- André M Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy
| | - P David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lorenzo E Hernández-Castellano
- Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jaka J Hodnik
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Mark McLaughlin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ingrid Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Jarlath E Nally
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Paolo Nanni
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | - Mirele D Poleti
- FZEA - Faculty of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | - David M Ribeiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Pedro Rodrigues
- CCMAR - Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Jože Starič
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization/Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
8
|
Liu YX, Ma XM, Xiong L, Wu XY, Liang CN, Bao PJ, Yu QL, Yan P. Effects of Intensive Fattening With Total Mixed Rations on Carcass Characteristics, Meat Quality, and Meat Chemical Composition of Yak and Mechanism Based on Serum and Transcriptomic Profiles. Front Vet Sci 2021; 7:599418. [PMID: 33553278 PMCID: PMC7859351 DOI: 10.3389/fvets.2020.599418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the effects of intensive fattening with total mixed rations (TMR) on carcass characteristics, meat quality, and chemical composition of the yak meat. Theoretical data has been provided for evaluating the quality of yak meat during natural grazing and short-term fattening. Based on the analysis, we found that in fattening yak, the carcass weight (CWT) was increased by 106.43%, whereas the cooking loss, tenderness, and drop loss were significantly improved due to higher intramuscular fat content and lower moisture (P < 0.05). Protein, fat, calcium, and amino acids were also much higher (P < 0.01) in fattening yak compared with the grazing yak. The levels of albumin (ALB), lactate dehydrogenase (LDH), triglyceride (TRIG), and amylase (AMYL) in serum indicated better nutritional status for fattening yaks. The transcriptomics analysis showed that the high expression of ACSL1 and ACACB genes improved the synthesis and deposition of fat in fattening yak, whereas the regulation of SLC7A8, ATP1A4, ATP1A1, SLC3A2, and CPA3 gene expression weakened the proteolysis. These results indicated that fattening with TMR improves the yield and quality of the yak meat.
Collapse
Affiliation(s)
- Yi-Xuan Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiao-Ming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xiao-Yun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Chun-Nian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Peng-Jia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Qun-Li Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
9
|
Mullins Y, Keogh K, Blackshields G, Kenny DA, Kelly AK, Waters SM. Transcriptome assisted label free proteomics of hepatic tissue in response to both dietary restriction and compensatory growth in cattle. J Proteomics 2020; 232:104048. [PMID: 33217582 DOI: 10.1016/j.jprot.2020.104048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Compensatory growth (CG) is a naturally occurring phenomenon where, following a period of under nutrition, an animal exhibits accelerated growth upon re-alimentation. The objective was to identify and quantify hepatic proteins involved in the regulation of CG in cattle. Forty Holstein Friesian bulls were equally assigned to one of four groups. Groups; A1 and A2 had ad libitum access to feed for 125 days, groups R1 and R2 were feed restricted. Following this, R1 and A1 animals were slaughtered. Remaining animals (R2 and A2) were slaughtered following ad libitum feeding for a successive 55 days. At slaughter hepatic tissue samples were collected and label-free quantitative proteomics undertaken with spectra searched against a custom built transcriptome database specific to the animals in this study. 24 differentially abundant proteins were identified during CG (R2 vs. R1) including; PSPH, ASNS and GSTM1, which are involved in nutrient metabolism, immune response and cellular growth. Proteins involved in biochemical pathways related to nutrient metabolism were down-regulated during CG, indicating a possible adaptive response by the liver to a period of fluctuating nutrient availability. The livers ability to regulate its metabolic activity may have profound effects on the efficiency of whole body energy utilization during CG. SIGNIFICANCE: This study is the first to unravel the effect of compensatory growth on the hepatic proteome of cattle using transcriptome-assisted shot gun proteomics. Proteins identified as being affected by dietary restriction and subsequent expression of compensatory growth in this study may, following appropriate validation, contribute to the identification of functional genetic variants. Such information could be harnessed within the context of genomic selection in cattle breeding programs to identify animals with a greater genetic potential to undergo compensatory growth, thus increasing the profitability of the beef sector and accelerating genetic gain.
Collapse
Affiliation(s)
- Yvonne Mullins
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Gordon Blackshields
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
10
|
Ribeiro D, Bandarrinha J, Nanni P, Alves S, Martins C, Bessa R, Falcão-e-Cunha L, Almeida A. The effect of Nannochloropsis oceanica feed inclusion on rabbit muscle proteome. J Proteomics 2020; 222:103783. [DOI: 10.1016/j.jprot.2020.103783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023]
|
11
|
Ribeiro DM, Planchon S, Leclercq CC, Dentinho MTP, Bessa RJB, Santos-Silva J, Paulos K, Jerónimo E, Renaut J, Almeida AM. The effects of improving low dietary protein utilization on the proteome of lamb tissues. J Proteomics 2020; 223:103798. [PMID: 32380293 DOI: 10.1016/j.jprot.2020.103798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Cistus ladanifer L. is a common shrub endemic to the Mediterranean region with high levels of condensed tannins (CT). CT form complexes with dietary protein resisting microbial degradation in the rumen, which enhances dietary protein utilization in ruminant diets. The objective of this study was to evaluate the utilization of CT in the diet of lambs on the proteomes of muscle, hepatic and adipose tissues. Twenty-four Merino Branco ram lambs were randomly allocated to three treatments (n = 8): C - control (160 g crude protein (CP)) per kg DM, RP - reduced protein (120 g CP/kg DM); and RPCT - reduced protein (120 g CP/kg DM) treated with CT extract. At the end of the trial, lambs were slaughtered and the longissimus lumborum muscle, hepatic and peri-renal adipose tissues sampled. A two-way approach was used for proteomic analysis: 2D-DIGE and nanoLC-MS. In the muscle, C lambs had lower abundance proteins that partake in the glycolysis pathway than the lambs of other treatments. Control lambs had lower abundance of Fe-carrying proteins in the hepatic tissue than RP and RPCT lambs. The latter lambs had highest abundance of hepatic flavin reductase. In the adipose tissue, C lambs had lowest abundance of fatty-acid synthase. SIGNIFICANCE: soybean meal is an expensive feedstuff in which intensive animal production systems heavily rely on. It is a source of protein extensively degraded in the rumen, leading to efficiency losses on dietary protein utilization during digestion. Protection of dietary protein from extensive ruminal degradation throughout the use of plants or extracts rich in CT allow an increase in the digestive utilization of feed proteins. In addition to enhance the protein digestive utilization, dietary CT may induce other beneficial effects in ruminants such as the improvement of the antioxidant status.
Collapse
Affiliation(s)
- D M Ribeiro
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal; Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - S Planchon
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - C C Leclercq
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - M T P Dentinho
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - R J B Bessa
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal
| | - J Santos-Silva
- CIISA - Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Av. Univ. Técnica, Lisboa, Portugal; Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - K Paulos
- Instituto Nacional de Investigação Agrária e Veterinária, Pólo Investigação da Fonte Boa (INIAV-Fonte Boa), 2005-048 Santarém, Portugal
| | - E Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal; MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - J Renaut
- Luxembourg Institute of Science and Technology (LIST), Green Tech platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - A M Almeida
- LEAF Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
12
|
Mullins Y, Keogh K, Kenny DA, Kelly A, O' Boyle P, Waters SM. Label-free quantitative proteomic analysis of M. longissimus dorsi from cattle during dietary restriction and subsequent compensatory growth. Sci Rep 2020; 10:2613. [PMID: 32054912 PMCID: PMC7018817 DOI: 10.1038/s41598-020-59412-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Compensatory growth (CG) is a naturally occurring physiological process whereby an animal has the ability to undergo enhanced growth following a period of restricted feeding. This studies objective was to identify key proteins involved in the expression of CG. Forty Holstein Friesian bulls were equally assigned to one of four groups. R1 and R2 groups were subjected to restricted feed allowance for 125 days (Period 1). A1 and A2 animals had ad libitum access to feed in Period 1. Following Period 1, all animals from R1 and A1 were slaughtered. Remaining animals (R2 and A2) were slaughtered following ad libitum access to feed for successive 55 days (Period 2). M. longissimus dorsi samples were collected at slaughter from all animals. Proteins were isolated from samples and subjected to label-free mass spectrometry proteomic quantification. Proteins which were differentially abundant during CG (n = 39) were involved in cellular binding processes, oxidative phosphorylation and mitochondrial function. There was also evidence for up regulation of three pathways involved in nucleotide biosynthesis. Genetic variants in or regulating genes pertaining to proteins identified in this study may hold potential for use as DNA based biomarkers for genomic selection of animals with a greater ability to undergo CG.
Collapse
Affiliation(s)
- Yvonne Mullins
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Alan Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Padraig O' Boyle
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Co., Galway, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland.
| |
Collapse
|
13
|
Ma C, Wang W, Wang Y, Sun Y, Kang L, Zhang Q, Jiang Y. TMT-labeled quantitative proteomic analyses on the longissimus dorsi to identify the proteins underlying intramuscular fat content in pigs. J Proteomics 2019; 213:103630. [PMID: 31881348 DOI: 10.1016/j.jprot.2019.103630] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/11/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
Abstract
The Laiwu pig is famous for its excessively extremely high level of intramuscular fat content (IMF), however, the exact regulatory mechanism underlying intramuscular fat deposition in skeletal muscle is still unknown. As an economically important trait in pigs, IMF is controlled by multiple genes and biological pathways. In this study, we performed an integrated transcriptome-assisted TMT-labeled quantitative proteomic analysis of the longissimus dorsi (LD) muscle in Laiwu pigs at the fastest IMF deposition stage and identified 5074 unique proteins and 52 differentially abundant proteins (DAPs) (>1.5-fold cutoff, p < .05). These DAPs were hierarchically clustered in the LD muscle over two developmental stages from 120 d to 240 d. A comparison between transcriptomic (mRNA) and proteomic data revealed two differentially expressed genes corresponding to the DAPs. Changes in the levels of the nine proteins were further analyzed using RT-qPCR and parallel reaction monitoring (PRM). The proteins identified in this study could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs. SIGNIFICANCE: The intramuscular fat content (IMF) refers to the amount of fat within muscles and plays an important role in meat quality by affecting meat quality-related traits, such as tenderness, juiciness and flavor. Using the integrated transcriptome-assisted TMT-labeled quantitative proteomic approach to characterize changes in the proteomic profile of the longissimus dorsi muscle, we identified differentially abundant proteins, such as ALDH1B1, OTX2, AnxA6 and Zfp512, that are associated with intramuscular fat deposition and fat biosynthesis in pigs. These proteins could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs.
Collapse
Affiliation(s)
- Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yuding Wang
- Department of Biology Science and Technology, Taishan 271018, PR China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
14
|
Ribeiro D, Planchon S, Leclercq C, Raundrup K, Alves S, Bessa R, Renaut J, Almeida A. The muscular, hepatic and adipose tissues proteomes in muskox (Ovibos moschatus): Differences between males and females. J Proteomics 2019; 208:103480. [DOI: 10.1016/j.jprot.2019.103480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
|
15
|
Poleti MD, Moncau CT, Silva-Vignato B, Rosa AF, Lobo AR, Cataldi TR, Negrão JA, Silva SL, Eler JP, de Carvalho Balieiro JC. Label-free quantitative proteomic analysis reveals muscle contraction and metabolism proteins linked to ultimate pH in bovine skeletal muscle. Meat Sci 2018; 145:209-219. [DOI: 10.1016/j.meatsci.2018.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022]
|
16
|
Use of liquid isoelectric focusing (OFFGEL) on the discovery of meat tenderness biomarkers. J Proteomics 2018; 183:25-33. [PMID: 29751105 DOI: 10.1016/j.jprot.2018.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/22/2022]
Abstract
Protein biomarkers of meat tenderness are known to be of primary importance for the prediction of meat quality, and hence, industry profitability. Proteome analysis was performed on meat from 8 Main Anjou beef cattle, previously classified as tender or tough meats by Warner Bratzler shear force measurements. Myofibrillar fraction of Longissimus thoracis muscle was separated by a novel fractionation approach based on liquid isoelectric focusing (OFFGEL) and further analyzed by SDS-PAGE and liquid chromatography coupled to tandem mass spectrometry. Obtained OFFGEL fraction profiles were reproducible allowing the comparison of both meat qualities and revealing 7 protein bands capable to discriminate between tender and tough samples. The proteins present in these bands were troponin T, Heat Shock protein beta-1, creatine kinase, actin, troponin C, myosins 1 and 2 and myozenin-1. The latter protein has not been previously reported as a marker of meat tenderness. SIGNIFICANCE This study introduces an innovative proteomic approach for the study of muscle proteome. The fact of obtaining fractions in liquid state after OFFGEL fractionation allows for a faster analysis of proteins by mass spectrometry, being an interesting alternative to more classical proteomic approaches based on two dimensional gel electrophoresis (2-DE).
Collapse
|
17
|
Poleti MD, Regitano LC, Souza GH, Cesar AS, Simas RC, Silva-Vignato B, Oliveira GB, Andrade SC, Cameron LC, Coutinho LL. Longissimus dorsi muscle label-free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. J Proteomics 2018; 179:30-41. [DOI: 10.1016/j.jprot.2018.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
|