1
|
Ciordia S, Santos FM, Dias JML, Lamas JR, Paradela A, Alvarez-Sola G, Ávila MA, Corrales F. Refinement of paramagnetic bead-based digestion protocol for automatic sample preparation using an artificial neural network. Talanta 2024; 274:125988. [PMID: 38569368 DOI: 10.1016/j.talanta.2024.125988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Despite technological advances in the proteomics field, sample preparation still represents the main bottleneck in mass spectrometry (MS) analysis. Bead-based protein aggregation techniques have recently emerged as an efficient, reproducible, and high-throughput alternative for protein extraction and digestion. Here, a refined paramagnetic bead-based digestion protocol is described for Opentrons® OT-2 platform (OT-2) as a versatile, reproducible, and affordable alternative for the automatic sample preparation for MS analysis. For this purpose, an artificial neural network (ANN) was applied to maximize the number of peptides without missed cleavages identified in HeLa extract by combining factors such as the quantity (μg) of trypsin/Lys-C and beads (MagReSyn® Amine), % (w/v) SDS, % (v/v) acetonitrile, and time of digestion (h). ANN model predicted the optimal conditions for the digestion of 50 μg of HeLa extract, pointing to the use of 2.5% (w/v) SDS and 300 μg of beads for sample preparation and long-term digestion (16h) with 0.15 μg Lys-C and 2.5 μg trypsin (≈1:17 ratio). Based on the results of the ANN model, the manual protocol was automated in OT-2. The performance of the automatic protocol was evaluated with different sample types, including human plasma, Arabidopsis thaliana leaves, Escherichia coli cells, and mouse tissue cortex, showing great reproducibility and low sample-to-sample variability in all cases. In addition, we tested the performance of this method in the preparation of a challenging biological fluid such as rat bile, a proximal fluid that is rich in bile salts, bilirubin, cholesterol, and fatty acids, among other MS interferents. Compared to other protocols described in the literature for the extraction and digestion of bile proteins, the method described here allowed identify 385 unique proteins, thus contributing to improving the coverage of the bile proteome.
Collapse
Affiliation(s)
- Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - João M L Dias
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom; Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - José Ramón Lamas
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Gloria Alvarez-Sola
- Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain; IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain; IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Bile Processing Protocol for Improved Proteomic Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:1-10. [PMID: 34905161 DOI: 10.1007/978-1-0716-1936-0_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the critical issues to warrant the success of a proteome-wide analysis is sample preparation. Efficient protein extraction in the absence of interferent material is mandatory to achieve an ample proteome coverage by mass spectrometry. The study of biological fluids is always challenging due to their specific biochemical composition. However, there is increasing interest in their characterization as it will provide proteins that may advice disease setting, state, and progression. In particular, bile is proximal to liver and pancreas, and its study is especially attractive since it might provide valuable information for the clinical management of severe diseases afflicting these organs, which are at an urgent need of new biomarkers. Though previous efforts have been made to optimize protocols to analyze bile proteome, only partial descriptions were achieved due to its complex composition, where proteins represent less than 5% of the organic components. Here we describe a new method that significantly increases the bile proteome coverage while reducing by a factor of six the amount of sample required for the proteomic analysis.
Collapse
|
3
|
Łuczykowski K, Warmuzińska N, Bojko B. Current approaches to the analysis of bile and the determination of bile acids in various biological matrices as supportive tools to traditional diagnostic testing for liver dysfunction and biliary diseases. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Ciordia S, Alvarez-Sola G, Rullán M, Urman JM, Ávila MA, Corrales FJ. Digging deeper into bile proteome. J Proteomics 2021; 230:103984. [PMID: 32932008 DOI: 10.1016/j.jprot.2020.103984] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
The analysis of biological fluids to identify proteins that may indicate a disease setting, state and progression, is an increasingly explored field. Despite the expectatives created, there are several hurdles that must be solved to reach an extensive proteome coverage using mass spectrometry, mainly due to the complex composition of the matrices. In this regard, bile is specially challenging and yet, very attractive, as a proximal fluid that might provide valuable information for the management of liver and pancreas associated diseases. Proteins account for less than 5% of bile organic components and, although optimized protocols for protein extraction have been developed, only partial descriptions of bile proteome have been achieved. In this manuscript a new procedure is described that significantly improves protein recovery from rat bile, which reduces by a factor of six the sample amount required for a typical proteomics analysis. Moreover, the number of proteins reliably identified in a single nanoLC-MS/MS run from 1 μg protein was increased by three-fold. This procedure provides a valuable resource to dig deeper into the molecular composition of bile and open new avenues to identify new hallmarks of disease such as cholangiocarcinoma, hepatocellular carcinoma and pancreatic cancer for their better clinical management.
Collapse
Affiliation(s)
- Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología - CSIC, Proteored-ISCIII, 28049 Madrid, Spain
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Jesús M Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matías A Ávila
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología - CSIC, Proteored-ISCIII, 28049 Madrid, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Miller I, Schlosser S, Palazzolo L, Veronesi MC, Eberini I, Gianazza E. Some more about dogs: Proteomics of neglected biological fluids. J Proteomics 2020; 218:103724. [PMID: 32126321 DOI: 10.1016/j.jprot.2020.103724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023]
Abstract
We report in this manuscript what is known about the protein makeup of a selection of biological fluids in the domestic dog. The samples we review - amniotic and allantoic fluid, seminal fluid, saliva, bile, synovial fluid, tears - are still very poorly characterized in this species. For some of them we can present results from our own, mainly unpublished experiments. SIGNIFICANCE: The dog is one of the most widespread companion animals, and also of medical relevance as model species for some human diseases. Still, investigation of body fluids other than serum and urine is not so commonly undertaken, although - like in humans - also these sample types may have potential for diagnostic purposes. We compile published data about proteomes of fetal fluids, seminal plasma, saliva, bile, synovial fluid and tears, enriched by some yet unpublished data of our own (proteins of amniotic and allantoic fluid, tears). Closing gaps in our knowledge on dog proteins will further our understanding of (patho)physiological processes.
Collapse
Affiliation(s)
- Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| | - Sarah Schlosser
- VetCore, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Maria Cristina Veronesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
6
|
Nguyen DC, Lewis HC, Joyner C, Warren V, Xiao H, Kissick HT, Wu R, Galipeau J, Lee FEH. Extracellular vesicles from bone marrow-derived mesenchymal stromal cells support ex vivo survival of human antibody secreting cells. J Extracell Vesicles 2018; 7:1463778. [PMID: 29713426 PMCID: PMC5917896 DOI: 10.1080/20013078.2018.1463778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) from bone marrow (BM)-derived mesenchymal stromal cells (BM-MSC) are novel mechanisms of cell-cell communication over short and long distances. BM-MSC have been shown to support human antibody secreting cells (ASC) survival ex vivo, but whether the crosstalk between the MSC-ASC interaction can occur via EVs is not known. Thus, we evaluated the role of EVs in ASC survival and IgG secretion. EVs were isolated from irradiated and non-irradiated primary BM-MSC and were quantified. They were further characterized by electron microscopy (EM) and CD63 and CD81 immuno-gold EM staining. Human ASC were isolated via fluorescence-activated cell sorting (FACS) and cultured ex vivo with the EV fractions, the EV-reduced fractions, or conventional media. IgG Elispots were used to measure the survival and functionality of the ASC. Contents of the EV fractions were evaluated by proteomics. We saw that both irradiated and non-irradiated MSC secretome preparations afforded vesicles of a size consistent with EVs. Both preparations appeared comparable in EM morphology and CD63 and CD81 immuno-gold EM. Both irradiated and non-irradiated EV fractions supported ASC function, at 88% and 90%, respectively, by day 3. In contrast, conventional media maintained only 4% ASC survival by day 3. To identify the specific factors that provided in vitro ASC support, we compared proteomes of the irradiated and non-irradiated EV fractions with conventional media. Pathway analysis of these proteins identified factors involved in the vesicle-mediated delivery of integrin signalling proteins. These findings indicate that BM-MSC EVs provide an effective support system for ASC survival and IgG secretion.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary Allergy, Critical Care, & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Holly C. Lewis
- Departments of Pediatrics and Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chester Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vivien Warren
- Division of Pulmonary Allergy, Critical Care, & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haydn T. Kissick
- Emory Vaccine Center and Department of Urology, Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jacques Galipeau
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin in Madison, Madison, WI, USA
| | - F. Eun-Hyung Lee
- Division of Pulmonary Allergy, Critical Care, & Sleep Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Stewart PA, Fang B, Slebos RJC, Zhang G, Borne AL, Fellows K, Teer JK, Chen YA, Welsh E, Eschrich SA, Haura EB, Koomen JM. Relative protein quantification and accessible biology in lung tumor proteomes from four LC-MS/MS discovery platforms. Proteomics 2017; 17. [PMID: 28195392 DOI: 10.1002/pmic.201600300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
Discovery proteomics experiments include many options for sample preparation and MS data acquisition, which are capable of creating datasets for quantifying thousands of proteins. To define a strategy that would produce a dataset with sufficient content while optimizing required resources, we compared (1) single-sample LC-MS/MS with data-dependent acquisition to single-sample LC-MS/MS with data-independent acquisition and (2) peptide fractionation with label-free (LF) quantification to peptide fractionation with relative quantification of chemically labeled peptides (sixplex tandem mass tags (TMT)). These strategies were applied to the same set of four frozen lung squamous cell carcinomas and four adjacent tissues, and the overall outcomes of each experiment were assessed. We identified 6656 unique protein groups with LF, 5535 using TMT, 3409 proteins from single-sample analysis with data-independent acquisition, and 2219 proteins from single-sample analysis with data-dependent acquisition. Pathway analysis indicated the number of proteins per pathway was proportional to the total protein identifications from each method, suggesting limited biological bias between experiments. The results suggest the use of single-sample experiments as a rapid tissue assessment tool and digestion quality control or as a technique to maximize output from limited samples and use of TMT or LF quantification as methods for larger amounts of tumor tissue with the selection being driven mainly by instrument time limitations. Data are available via ProteomeXchange with identifiers PXD004682, PXD004683, PXD004684, and PXD005733.
Collapse
Affiliation(s)
- Paul A Stewart
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bin Fang
- Proteomics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robbert J C Slebos
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Guolin Zhang
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Adam L Borne
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine Fellows
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Y Ann Chen
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Welsh
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Eschrich
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric B Haura
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
8
|
Di Venere M, Viglio S, Cagnone M, Bardoni A, Salvini R, Iadarola P. Advances in the analysis of “less-conventional” human body fluids: An overview of the CE- and HPLC-MS applications in the years 2015-2017. Electrophoresis 2017; 39:160-178. [DOI: 10.1002/elps.201700276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Monica Di Venere
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Simona Viglio
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Anna Bardoni
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Roberta Salvini
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”; Biochemistry Unit; University of Pavia; Pavia PV Italy
| |
Collapse
|