1
|
da Costa BB, Lassen PG, Streit DP. Cryopreservation-Induced Morphological Changes in Freshwater Fish Sperm: A Systematic Review. Biopreserv Biobank 2024; 22:416-427. [PMID: 38265831 DOI: 10.1089/bio.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
A systematic review was performed to summarize the scientific evidence and critically evaluate the effects of cryopreservation on sperm morphology in freshwater fish, and to assess the methodologies for sperm morphology classification. The search strategy was applied to four electronic databases (CAB Direct, Pub Med, Scopus, and ISI Web of Science). The main inclusion criteria involved studies on semen from freshwater fish subjected to the cryopreservation process and evaluation of sperm quality through morphology. The risk of bias was assessed with respect to randomization, allocation concealment, blinding, incomplete outcome data, and selective reporting. A total of 6 publications reporting sperm cryopreservation from 4 species with a total 74 fish individuals were included in this review. A high methodological variability among the results of the studies was observed due to the species-specific protocols and diversity of freshwater fish species studied. All included studies reported negative effects of cryopreservation on sperm quality, especially morphology, highlighting the increase in incidence of sperm abnormalities. However, only five studies statistically compared abnormalities between groups (fresh and cryopreserved sperm). Our results suggest the need to elaborate on a new morphological classification of fish spermatozoa, by considering the structure and physiology of fish sperm. This classification should be developed based on the sperm characterization and observing damage caused by different cryopreservation protocols.
Collapse
Affiliation(s)
- Bruna Bitencourt da Costa
- Aquam Research Group, Animal Science Research Program of Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brasil
| | - Paula Graziela Lassen
- Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de Ciências Agrárias, Santo Ângelo, Brazil
| | - Danilo Pedro Streit
- Aquam Research Group, Animal Science Research Program of Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brasil
- Veterinary Science Research Program of Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brasil
| |
Collapse
|
2
|
Larbi A, Li C, Quan G. An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Anim Reprod Sci 2024; 263:107441. [PMID: 38412764 DOI: 10.1016/j.anireprosci.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
This comprehensive review critically examines the application of proteomics in understanding sperm cryoinjury mechanisms in livestock animals, in the context of the widespread use of semen cryopreservation for genetic conservation. Despite its global adoption, cryopreservation often detrimentally affects sperm quality and fertility due to cryoinjuries. These injuries primarily arise from ice crystal formation, osmotic shifts, oxidative stress, and the reorganization of membrane proteins and lipids during freezing and thawing, leading to premature capacitation-like changes. Moreover, the cryopreservation process induces proteome remodeling in mammalian sperm. Although there have been technological advances in semen cryopreservation, the precise mechanisms of mammalian sperm cryoinjury remain elusive. This review offers an in-depth exploration of how recent advancements in proteomic technologies have enabled a detailed investigation into these molecular disruptions. It presents an analysis of protein-level alterations post-thaw and their impact on sperm viability and functionality. Additionally, it discusses the role of proteomics in refining cryopreservation techniques to mitigate cryoinjury and enhance reproductive outcomes in livestock. This work synthesizes current knowledge, highlights gaps, and suggests directions for future research in animal reproductive science and biotechnology.
Collapse
Affiliation(s)
- Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
3
|
Zhang Y, Yuan W, Liu Y, Liu Y, Liang H, Xu Q, Liu Z, Weng X. Plasma membrane lipid composition and metabolomics analysis of Yorkshire boar sperms with high and low resistance to cryopreservation. Theriogenology 2023; 206:28-39. [PMID: 37178672 DOI: 10.1016/j.theriogenology.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/01/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The resistance of sperm to freezing varies widely among boars. The semen ejaculate of different boars can be grouped into poor freezability ejaculate (PFE) and good freezability ejaculate (GFE). In this study, five Yorkshire boars each of the GFE and PFE were selected by comparing the changes in sperm motility before and after cryopreservation. Firstly, we found that the sperm plasma membrane of the PFE group showed weak integrity after PI and 6-CFDA staining. Then the electron microscopy results verified that the plasma membrane condition of all segments of GFE was better than that of PFE segments. Furthermore, the lipid composition of sperm plasma membranes in GPE and PFE sperm was analyzed by using mass spectrometry, and 15 lipids showed differences between the two groups. Among those lipids, only phosphatidylcholine (PC) (14:0/20:4) and phosphatidylethanolamine (PE) (14:0/20:4) were higher in PFE. The remaining lipid contents, including those of dihydroceramide (18:0/18:0), four hexosylceramides (18:1/20:1, 18:0/22:1, 18:1/16:0, 18:1/18:0), lactosylceramide (18:1/16:0), two hemolyzed phosphatidylethanolamines (18:2, 20:2), five phosphatidylcholines (16:1/18:2, 18:2/16:1, 14:0/20:4, 16:0/18:3, 18:1/20:2), and two phosphatidylethanolamines (14:0/20:4, 18:1/18:3), were all positively correlated with resistance to cryopreservation (p < 0.05, r > 0.6). Moreover, we analyzed the metabolic profile of sperm using untarget metabolomic. KEGG annotation analysis revealed that the altered metabolites were mainly involved in fatty acid biosynthesis. Finally, we determined that the contents of oleic acid, oleamideetc, N8-acetylspermidine etc., were different between GFE and PFE sperm. In summary, the different lipid metabolism levels and long-chain polyunsaturated fatty acids (PUFAs) in plasma membrane may be key factors contributing to differences in sperm resistance to cryopreservation among boars.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Wenjing Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yuchen Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Hanlin Liang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Feeding of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Feeding of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
4
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
5
|
Hakala SM, Fujioka H, Gapp K, De Gasperin O, Genzoni E, Kilner RM, Koene JM, König B, Linksvayer TA, Meurville MP, Negroni MA, Palejowski H, Wigby S, LeBoeuf AC. Socially transferred materials: why and how to study them. Trends Ecol Evol 2022; 38:446-458. [PMID: 36543692 DOI: 10.1016/j.tree.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.
Collapse
|
6
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
7
|
Extend the Survival of Human Sperm In Vitro in Non-Freezing Conditions: Damage Mechanisms, Preservation Technologies, and Clinical Applications. Cells 2022; 11:cells11182845. [PMID: 36139420 PMCID: PMC9496714 DOI: 10.3390/cells11182845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Preservation of human spermatozoa in vitro at normothermia or hypothermia maintaining their functions and fertility for several days plays a significant role in reproductive biology and medicine. However, it is well known that human spermatozoa left in vitro deteriorate over time irreversibly as the consequence of various stresses such as the change of osmolarity, energy deficiency, and oxidative damage, leading to substantial limitations including the need for semen examinations, fertility preservation, and assisted reproductive technology. These problems may be addressed with the aid of non-freezing storage techniques. The main and most effective preservation strategies are the partial or total replacement of seminal plasma with culture medium, named as extenders, and temperature-induced metabolic restriction. Semen extenders consist of buffers, osmolytes, and antioxidants, etc. to protect spermatozoa against the above-mentioned adverse factors. Extended preservation of human spermatozoa in vitro has a negative effect on sperm parameters, whereas its effect on ART outcomes remains inconsistent. The storage duration, temperature, and pre-treatment of semen should be determined according to the aims of preservation. Advanced techniques such as nanotechnology and omics have been introduced and show great potential in the lifespan extension of human sperm. It is certain that more patients will benefit from it in the near future. This review provided an overview of the current knowledge and prospects of prolonged non-freezing storage of human sperm in vitro.
Collapse
|
8
|
Fuentes-Albero MC, González-Brusi L, Cots P, Luongo C, Abril-Sánchez S, Ros-Santaella JL, Pintus E, Ruiz-Díaz S, Barros-García C, Sánchez-Calabuig MJ, García-Párraga D, Avilés M, Izquierdo Rico MJ, García-Vázquez FA. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin ( Tursiops truncatus). Front Cell Dev Biol 2021; 9:673961. [PMID: 34336830 PMCID: PMC8323341 DOI: 10.3389/fcell.2021.673961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.
Collapse
Affiliation(s)
- Mari-Carmen Fuentes-Albero
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Paula Cots
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Chiara Luongo
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Silvia Abril-Sánchez
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Sara Ruiz-Díaz
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain
| | | | - María-Jesús Sánchez-Calabuig
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain.,Department of Medicine and Surgery, Faculty of Veterinary Science, Madrid, Spain
| | - Daniel García-Párraga
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Research Department, Fundación Oceanogràfic, Valencia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Mᵃ José Izquierdo Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | |
Collapse
|
9
|
Shaliutina-Kolešová A, Ashtiani S, Xian M, Nian R. Seminal plasma fractions can protect common carp (Cyprinus carpio) sperm during cryopreservation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1461-1468. [PMID: 32430645 DOI: 10.1007/s10695-020-00805-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effect of fractionated seminal plasma on characteristics of common carp Cyprinus carpio cryopreserved sperm. Nanosep® centrifugal devices yielded four seminal plasma fractions with different total protein content ranging in molecular weight from less than 17 to almost 74 kDa. Each protein fraction was added to semen extender medium prior to freezing. Spermatozoon motility characteristics and DNA integrity were analyzed in supplemented and non-supplemented cryopreserved samples. The cryopreservation process strongly affected the swim-up sperm quality. Treatment with fractions 1, 2, 3, and 4 was associated with significantly higher spermatozoon motility rate and curvilinear velocity than seen in extender only, with highest values obtained with fraction 4 (78.21 ± 2.41% and 168.05 ± 4.46 μm/s, respectively). Significantly less DNA damage, expressed as percent tail DNA (12.23 ± 1.27) and olive tail moment (0.68 ± 0.12), was recorded in fraction 4. The findings indicated that addition of fractionated seminal plasma to cryopreservation medium can preserve the quality of common carp sperm. The protective effect of each fraction varied, suggesting the presence of distinct components exerting different effects on cryopreserved sperm function.
Collapse
Affiliation(s)
- Anna Shaliutina-Kolešová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| | - Saeed Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Mo Xian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Rui Nian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
10
|
Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Proteomic analyses techniques are considered strong tools for identifying and quantifying the protein contents in different organisms, organs and secretions. In fish biotechnology, the proteomic analyses have been used for wide range of applications such as identification of immune related proteins during infections and stresses. The proteomic approach has a significant role in understanding pathogen surviving strategies, host defence responses and subsequently, the fish pathogen interactions. Proteomic analyses were employed to highlight the virulence related proteins secreted by the pathogens to invade the fish host's defence barriers and to monitor the kinetics of protein contents of different fish organs in response to infections. The immune related proteins of fish and the virulence related proteins of pathogens are up or down regulated according to their functions in defence or pathogenesis. Therefore, the proteomic analyses are useful in understanding the virulence mechanisms of microorganisms and the fish pathogen interactions thereby supporting the development of new effective therapies. In this review, we focus and summarise the recent proteomic profiling studies exploring pathogen virulence activities and fish immune responses to stressors and infections.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
11
|
Dietrich MA, Irnazarow I, Inglot M, Adamek M, Jurecka P, Steinhagen D, Ciereszko A. Hormonal stimulation of carp is accompanied by changes in seminal plasma proteins associated with the immune and stress responses. J Proteomics 2019; 202:103369. [PMID: 31028945 DOI: 10.1016/j.jprot.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/04/2023]
Abstract
Hormonal stimulation in common carp is a routine practice to enhance sperm production and control gamete maturation. This study aimed to compare the proteome of carp seminal plasma between control and Ovopel-induced males using two-dimensional differential in-gel electrophoresis. Ovopel induction increased sperm volume, total sperm count, seminal plasma osmolality, and pH and decreased seminal plasma protein concentration. In total, 36 spots were identified (23 up- and 13 downregulated), corresponding to 23 proteins differentially abundant in seminal plasma after Ovopel induction (p < .05; fold change 1.2). The majority of proteins were associated with the immune and stress responses including the transport protein (hephaestin), antiproteases (fetuin, α2-macroglobulin, TIMP2), complement components (C3, complement factor B/C2A), regulator of the coagulation cascade (plasminogen), modulators of the innate immune response, such as intelectin, ApoA and ApoE, and the cathepsin/cystatin system, and stress response (enolase1). In addition, hormonal stimulation seems to be related to the proteins involved in lipid metabolism, signal transduction, and tissue remodeling. Our results suggest that hormonal stimulation is not just concomitant with the hydration of testis but also induces the synthesis and secretion of seminal plasma proteins involved in sperm maturation and protection against stress induced by administration of the exogenous hormone. SIGNIFICANCE: It is well known that hormonal stimulation of male fish induces the final maturation of spermatozoa. However, molecular and biochemical basis underlying hormone-induced changes in semen is unknown at present. This study for the first time reveals, using proteomic approach, that hormonal stimulation in addition to hydration of testis is accompanied by significant changes in seminal plasma proteins related mainly to immune and stress response, lipid metabolism, signal transduction and tissue remodeling. These changes are associated with gene expression and synthesis and secretion of seminal plasma proteins by reproductive tissues. Overall, our results provide a framework for understanding the molecular mechanism responsible for hormonal stimulation in the reproductive tract of fish males.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Ilgiz Irnazarow
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Michał Inglot
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Mikołaj Adamek
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Patrycja Jurecka
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Dieter Steinhagen
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
12
|
Dietrich MA, Nynca J, Ciereszko A. Proteomic and metabolomic insights into the functions of the male reproductive system in fishes. Theriogenology 2019; 132:182-200. [PMID: 31029849 DOI: 10.1016/j.theriogenology.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/08/2023]
Abstract
Proteomics and metabolomics are emerging and powerful tools to unravel the complex molecular mechanisms regulating reproduction in male fish. So far, numerous proteins and metabolites have been identified that provide us with valuable information to conduct a comprehensive analysis on seminal plasma and spermatozoa components and their functions. These analyses have allowed a better understanding of the blood-testis barrier functions, the molecular mechanisms underlying spermatogenesis, spermatozoa maturation, motility signaling, and competition as well as the mechanism of cryodamage to sperm structure and functions. To extend, proteins that undergo posttranslational modification, such as phosphorylation and oxidation in response to spermatozoa motility activation and cryopreservation, respectively, have been identified. Proteomic studies resulted in identification of potential proteins that can be used as biomarkers for sperm quality and freezability to enable the control of artificial reproduction, and to improve methods for long-term preservation (cryopreservation) of sperm. The different proteins expressed in the spermatozoa of neomales and normal males can also provide new insights into development of methods for separating X and Y fish sperm, and changes in the protein profiles in haploid and diploid spermatozoa will provide new perspectives to better understand the mechanism of male polyploidy. Overall, the knowledge gained by proteomic and metabolomic studies is important from basic to applied sciences for the development and/or optimisation of techniques in controlled fish reproduction.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Joanna Nynca
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
13
|
Westfalewicz B, Dietrich M, Słowińska M, Judycka S, Ciereszko A. Seasonal changes in the proteome of cryopreserved bull semen supernatant. Theriogenology 2019; 126:295-302. [DOI: 10.1016/j.theriogenology.2018.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023]
|
14
|
Horokhovatskyi Y, Dietrich MA, Lebeda I, Fedorov P, Rodina M, Dzyuba B. Cryopreservation effects on a viable sperm sterlet (Acipenser ruthenus) subpopulation obtained by a Percoll density gradient method. PLoS One 2018; 13:e0202514. [PMID: 30114243 PMCID: PMC6095596 DOI: 10.1371/journal.pone.0202514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/03/2018] [Indexed: 12/26/2022] Open
Abstract
In many fish species, sperm cryopreservation has deleterious effects and leads to a significant decrease in spermatozoa viability. However, the effect of cryopreservation on sperm cells that survive this process and are still viable is not fully understood. The objective of this study was to compare the viability and proteomes of fresh and cryopreserved sterlet (Acipenser ruthenus) sperm samples before and after live-dead cell separation using Percoll density gradient centrifugation. Both fresh and cryopreserved sperm samples were divided into two groups (with or without application of Percoll separation). At each step of the experiment, sperm quality was evaluated by video microscopy combined with integrated computer-assisted sperm analysis software and flow cytometry for live-dead sperm viability analysis. Sperm motility and the percentage of live cells were reduced in the cryopreserved group compared to the fresh group from 89% to 33% for percentage of motility and from 96% to 70% for live cells. Straight line velocity and linearity of track were significantly lower in cryopreserved samples than in those separated by Percoll before and after cryopreservation. However, the percentages of motile and live spermatozoa were higher than 90% in samples subjected to Percoll separation. Proteomic analysis of spermatozoa by two-dimensional differences in-gel electrophoresis coupled with matrix-assisted laser-desorption/ionization time-of-flight/time-of-flight mass spectrometry revealed that 20 protein spot abundances underwent significant changes in cryopreserved samples compared to fresh ones. However, only one protein spot was significantly altered when samples before and after cryopreservation followed by Percoll separation were compared. Thus, the results of this study show that cryopreservation leads to minimal proteomic changes in the spermatozoa population, retaining high motility and viability parameters. The results also suggest that global differences in protein profiles between unselected fresh and cryopreserved samples are mainly due to protein loss or changes in the lethal and sublethal damaged cell subpopulations.
Collapse
Affiliation(s)
- Yevhen Horokhovatskyi
- Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Ievgen Lebeda
- Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Pavlo Fedorov
- Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Borys Dzyuba
- Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
15
|
Dietrich MA, Hliwa P, Adamek M, Steinhagen D, Karol H, Ciereszko A. Acclimation to cold and warm temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism. FISH & SHELLFISH IMMUNOLOGY 2018; 76:305-315. [PMID: 29544770 DOI: 10.1016/j.fsi.2018.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The environmental temperature affects plasma biochemical indicators, antioxidant status and hematological and immunological parameters in fish. So far, only single blood proteins have been identified in response to temperature changes. The aim of this study was to compare the proteome of carp blood plasma from males acclimated to warm (30 °C) and cold (10 °C) temperatures by two-dimensional differential gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. A total of 47 spots were found to be differentially regulated by temperature (>1.2-fold change, p < 0.05): 25 protein spots were more abundant in warm-acclimated males and 22 were enriched in cold-acclimated males. The majority of differentially regulated proteins were associated with acute phase response signalling involved in: i) activation of the complement system (complement C3-H1), ii) neutralization of proteolytic enzymes (inter-alpha inhibitor H3, fetuin, serpinA1, antithrombin, alpha2-macroglobulin), iii) scavenging of free hemoglobin and radicals (haptoglobin, Wap65 kDa), iv) clot-formation (fibrinogen beta and alpha chain, T-kininogen) and v) the host's immune response modulation (ApoA1 and ApoA2). However, quite different sets of these proteins or proteoforms were involved in response to cold and warm temperatures. In addition, cold acclimation seems to be related to the proteins involved in lipid metabolism (apolipoproteins A and 14 kDa) and stress response (corticosteroid binding globulin). We discovered a strongly regulated protein Cap31 upon cold acclimation, which can serve as a potential blood biomarker of cold response in carp. These studies significantly extend our knowledge concerning mechanisms underlying thermal adaptation in poikilotherms.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Piotr Hliwa
- Department of Ichthyology, University of Warmia and Mazury in Olsztyn, Poland
| | - Mikołaj Adamek
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Dieter Steinhagen
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Halina Karol
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
16
|
Dietrich MA, Ciereszko A. Proteomic characterization of fresh spermatozoa and supernatant after cryopreservation in relation to freezability of carp (Cyprinus carpio L) semen. PLoS One 2018; 13:e0192972. [PMID: 29565997 PMCID: PMC5863941 DOI: 10.1371/journal.pone.0192972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
Our recent studies suggested that the freezability of carp semen is related to seminal plasma protein profiles. Here, we aimed to compare the spermatozoa proteomes of good (GF) and poor (PF) freezability semen of carp. To achieve this, we used two-dimensional difference in gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. The semen was classified as GF or PF based on sperm motility after freeze/thawing. We identified proteins enriched in spermatozoa of GF (22 proteins) and PF (18 proteins) semen. We also identified 12 proteins enriched in the supernatant after cryopreservation of PF semen. Good freezability is related to high concentrations of proteins involved in the maintenance of flagella structure, membrane fluidity, efficient control of Ca2+ and sperm motility, energy production, and antioxidative protection, which likely reflects the full maturation status of spermatozoa of GF semen. On the other hand poor freezability seems to be related to the presence of proteins identified as released in high quantities from cryopreserved sperm of PF. Thus, the identified proteins might be useful bioindicators of freezing resilience and could be used to screen carp males before cryopreservation, thus improve long-term sperm preservation in carp. Data are available via ProteomeXchange with identifier PXD008187.
Collapse
Affiliation(s)
- Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima, Olsztyn, Poland
- * E-mail:
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima, Olsztyn, Poland
| |
Collapse
|
17
|
Casares-Crespo L, Fernández-Serrano P, Vicente JS, Marco-Jiménez F, Viudes-de-Castro MP. Rabbit seminal plasma proteome: The importance of the genetic origin. Anim Reprod Sci 2017; 189:30-42. [PMID: 29274750 DOI: 10.1016/j.anireprosci.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/14/2022]
Abstract
The present study was conducted to characterise rabbit seminal plasma proteins (SP proteins) focusing on the influence of the genetic origin and seasonality. In addition, β-NGF protein quantity in SP was determined. Semen samples were recovered from January to December 2014 using 6 males belonging to genotype A and six from genotype R. For each genotype, one pooled sample at the beginning, middle and end of each season was selected to develop the experiment. A total of 24 pools (3 for each season and genetic line) were analysed. SP proteins of the two experimental groups were recovered and subjected to in-solution digestion nano LC-MS/MS and bioinformatics analysis. The resulting library included 402 identified proteins validated with ≥95% Confidence (unused Score ≥ 1.3). These data are available via ProteomeXchange with identifier PXD006308. Only 6 proteins were specifically implicated in reproductive processes according to Gene Ontology annotation. Twenty-three proteins were differentially expressed between genotypes, 11 over-expressed in genotype A and 12 in genotype R. Regarding the effect of season on rabbit SP proteome, results showed that there is no clear pattern of protein variation throughout the year. Similar β-NGF relative quantity was observed between seasons and genotypes. In conclusion, this study generates the largest library of SP proteins reported to date in rabbits and provides evidence that genotype is related to a specific abundance of SP proteins.
Collapse
Affiliation(s)
- Lucía Casares-Crespo
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain
| | - Paula Fernández-Serrano
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain
| | - José S Vicente
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - María Pilar Viudes-de-Castro
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain.
| |
Collapse
|