1
|
Máthé C, Bóka K, Kónya Z, Erdődi F, Vasas G, Freytag C, Garda T. Microcystin-LR, a cyanotoxin, modulates division of higher plant chloroplasts through protein phosphatase inhibition and affects cyanobacterial division. CHEMOSPHERE 2024; 358:142125. [PMID: 38670509 DOI: 10.1016/j.chemosphere.2024.142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 μm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.
Collapse
Affiliation(s)
- Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Károly Bóka
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Gábor Vasas
- Plant and Algal Natural Product Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; Balaton Limnological Research Institute- HUN-REN, Klebelsberg str. 3, H-8237, Tihany, Hungary
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| |
Collapse
|
2
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Heringer AS, Santa-Catarina C, Silveira V. Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics 2018; 18:e1700265. [DOI: 10.1002/pmic.201700265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Angelo Schuabb Heringer
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia; Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
- Unidade de Biologia Integrativa; Setor de Genômica e Proteômica; Universidade Estadual do Norte Fluminense Darcy Ribeiro; Rio de Janeiro Brazil
| |
Collapse
|