1
|
Koh JMS, Sykes EK, Rukhaya J, Anees A, Zhong Q, Jackson C, Panizza BJ, Reddel RR, Balleine RL, Hains PG, Robinson PJ. The effect of storage time and temperature on the proteomic analysis of FFPE tissue sections. Clin Proteomics 2025; 22:5. [PMID: 39910438 DOI: 10.1186/s12014-025-09529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues present an important resource for cancer proteomics. They are more readily available than fresh frozen (FF) tissues and can be stored at ambient temperature for decades. FFPE blocks are largely stable for long-term preservation of tumour histology, but the antigenicity of some proteins in FFPE sections degrades over time resulting in deteriorating performance of immunohistochemistry (IHC). It is not known whether FFPE sections that have previously been cut from blocks and used for liquid chromatography-mass spectrometry (LC-MS) analysis at a later time are affected by storage time or temperature. We determined the stability of FFPE sections stored at room temperature (RT) versus - 80 °C over 48 weeks. The stored sections were processed at different timepoints (n = 11) and compared to sections that were freshly cut from FFPE blocks at each timepoint (controls). A total of 297 sections (rat brain, kidney and liver stored at RT, - 80 °C or freshly cut) were tryptically digested and analysed on TripleTOF 6600 mass spectrometers in data-dependent acquisition (DDA) mode. Kidney and liver digests were also analysed in data-independent acquisition (DIA) mode. The number of proteins and peptides identified by DDA with ProteinPilot and some common post-translational modifications (PTMs) were unaffected by the storage time or temperature. Nine of the most common FFPE-associated modifications were quantified using DIA data and all were unaffected by storage time or temperature. Therefore, FFPE tissue sections are suitable for proteomic studies for at least 48 weeks from the time of sectioning.
Collapse
Affiliation(s)
- Jennifer M S Koh
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Erin K Sykes
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Jyoti Rukhaya
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Asim Anees
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Qing Zhong
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Christopher Jackson
- Department of Otolaryngology, Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Head and Neck Cancer Centre, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Benedict J Panizza
- Department of Otolaryngology, Head and Neck Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Head and Neck Cancer Centre, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Roger R Reddel
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Rosemary L Balleine
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
- Faculty of Medicine and Health, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Peter G Hains
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- Faculty of Medicine and Health, ProCan®, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
2
|
Kobayashi M, Usui T, Elbadawy M, Kigata T, Kaneda M, Murakami T, Kozono T, Itoh Y, Shibutani M, Yoshida T. Anorectal Remodeling in the Transitional Zone with Increased Expression of LGR5, SOX9, SOX2, and Keratin 13 and 5 in a Dextran Sodium Sulfate-Induced Mouse Model of Ulcerative Colitis. Int J Mol Sci 2024; 25:12706. [PMID: 39684417 PMCID: PMC11640979 DOI: 10.3390/ijms252312706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Although hyperplasia of the anorectal transitional zone (TZ) has been reported in mouse models of ulcerative colitis, the mechanisms underlying this phenomenon are not fully understood. We characterized keratin subtypes and examined the expression of stem cell markers in the TZ. Dextran sodium sulfate-treated mice showed abnormal repair of the anorectal region, which consisted of mixed hyperplastic TZ and regenerating crypts. Liquid chromatography-tandem mass spectrometry from the paraffin-embedded TZ in the treated mice revealed that the major keratins were type I cytokeratin (CK)13 and type II CK5, but notable expression of type I CK10 and CK42 and type II CK1, CK4, CK6a, CK8, and CK15 was also detected. Hyperplastic TZ was characterized by the expression of tumor protein 63, sex-determining region Y-box 2 (SOX2), SOX9, and leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5). Lgr5 was highly expressed in the TZ in the early stages of colitis, followed by higher expression levels of SOX2. The TZ-derived organoids expressed LGR5, SOX2, and SOX9. The present study suggests that transitional zones showing abnormal keratin assembly and stem cell activation may interfere with rectal crypt regeneration, leading to pathological anorectal remodeling in severe colitis.
Collapse
Affiliation(s)
- Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (M.K.); (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (T.U.); (M.E.)
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (T.U.); (M.E.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Tetsuhito Kigata
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (T.K.); (M.K.)
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (T.K.); (M.K.)
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
| | - Takuma Kozono
- Smart-Core-Facility Promotion Organization, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (T.K.); (Y.I.)
| | - Yoshiyuki Itoh
- Smart-Core-Facility Promotion Organization, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (T.K.); (Y.I.)
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (M.K.); (M.S.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; (M.K.); (M.S.)
| |
Collapse
|
3
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Davalieva K, Bozhinovski G, Kiprijanovska S, Kubelka-Sabit K, Plaseska-Karanfilska D. Proteomics Analysis of Human Chorionic Villi Reveals Dysregulated Pathways That Contribute to Recurrent Pregnancy Loss. Proteomics Clin Appl 2024; 18:e202400020. [PMID: 39182192 DOI: 10.1002/prca.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE Recurrent pregnancy loss (RPL) represents a common disorder with consequences on family and society. As more than half of the RPL cases do not have a clearly identified cause, uncovering the mechanisms behind the idiopathic RPL is urgently needed. EXPERIMENTAL DESIGN Using label-free data-independent LC-MS/MS acquisition coupled with ion mobility, we compared the proteome of chorionic villi from 13 RPL cases with 10 age and gestational week-matched elective pregnancies. Transcriptional levels of selected candidate biomarkers were determined in chorionic villi of 35 RPL cases and 25 controls using quantitative polymerase chain reaction (qPCR). RESULTS Statistically significant difference in abundance (Benjamini-Hochberg [B-H] p ≤ 0.05) and fold change ≥1.5 showed 128 proteins. Bioinformatics analysis identified complement and coagulation cascades, platelet activation, tricarboxylic acid cycle (TCA) cycle, and ferroptosis as pathways with the highest significance. Correlation with transcriptome datasets revealed a weak statistically significant positive correlation with 45% of the co-differentially expressed proteins/genes displaying the same regulation trend. The transcription levels of neurofilament light polypeptide (NEFL), dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex_mitochondrial (DLST), nitric oxide synthase 3 (NOS3), and ceruloplasmin (CP) were significantly increased in the RPL, consistent with the proteomics findings. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggests alteration of several pathways as potential causes of idiopathic RPL from the fetal side and opens the way for investigations concerning clinical management.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Gjorgji Bozhinovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | | | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
5
|
Peng M, Zhou Y, Wan C. Identification of phosphorylated small ORF-encoded peptides in Hep3B cells by LC/MS/MS. J Proteomics 2024; 303:105214. [PMID: 38823442 DOI: 10.1016/j.jprot.2024.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Small ORF-encoded peptides (SEPs) are a class of low molecular weight proteins and peptides comprising <100 amino acids with important functions in various life activities. Although the sequence length is short, SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. In this work, we enriched phosphopeptides with IMAC and TiO2 materials and analyzed the phosphorylated SEPs in Hep3B cells. A total of 24 phosphorylated SEPs were identified, and 11 SEPs were coded by ncRNA. For the sequence analysis, we found that the general characteristics of phosphorylated SEPs are roughly the same as canonical proteins. Besides, two phosphorylation SEPs have the Stathmin family signature 2 motif, which can regulate the microtubule cytoskeleton. Some SEPs have domains or signal peptides, indicating their specific functions and subcellular locations. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of some SEPs. However, only one-fifth of the predicted phosphorylation sites were identified by LC/MS/MS, indicating that many SEP PTMs are hidden in the dark, waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation. SIGNIFICANCE: Small ORF-encoded peptides (SEPs) are important in various life activities. Although the sequence length is short (<100AA), SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. We enriched phosphopeptides and analyzed the phosphorylated SEPs in Hep3B cells. That is the first time to explore the PTM of SPEs systematically. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of SEPs. More SEP PTMs are hidden in the dark and waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation.
Collapse
Affiliation(s)
- Mingbo Peng
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yutian Zhou
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
6
|
Faktor J, Kote S, Bienkowski M, Hupp TR, Marek-Trzonkowska N. Novel FFPE proteomics method suggests prolactin induced protein as hormone induced cytoskeleton remodeling spatial biomarker. Commun Biol 2024; 7:708. [PMID: 38851810 PMCID: PMC11162451 DOI: 10.1038/s42003-024-06354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Robotically assisted proteomics provides insights into the regulation of multiple proteins achieving excellent spatial resolution. However, developing an effective method for spatially resolved quantitative proteomics of formalin fixed paraffin embedded tissue (FFPE) in an accessible and economical manner remains challenging. We introduce non-robotic In-insert FFPE proteomics approach, combining glass insert FFPE tissue processing with spatial quantitative data-independent mass spectrometry (DIA). In-insert approach identifies 450 proteins from a 5 µm thick breast FFPE tissue voxel with 50 µm lateral dimensions covering several tens of cells. Furthermore, In-insert approach associated a keratin series and moesin (MOES) with prolactin-induced protein (PIP) indicating their prolactin and/or estrogen regulation. Our data suggest that PIP is a spatial biomarker for hormonally triggered cytoskeletal remodeling, potentially useful for screening hormonally affected hotspots in breast tissue. In-insert proteomics represents an alternative FFPE processing method, requiring minimal laboratory equipment and skills to generate spatial proteotype repositories from FFPE tissue.
Collapse
Affiliation(s)
- Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| | - Michal Bienkowski
- Medical University of Gdansk, University of Gdansk, Mariana Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| |
Collapse
|
7
|
Xavier D, Lucas N, Williams SG, Koh JMS, Ashman K, Loudon C, Reddel R, Hains PG, Robinson PJ. Heat 'n Beat: A Universal High-Throughput End-to-End Proteomics Sample Processing Platform in under an Hour. Anal Chem 2024; 96:4093-4102. [PMID: 38427620 DOI: 10.1021/acs.analchem.3c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.
Collapse
Affiliation(s)
- Dylan Xavier
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Natasha Lucas
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Steven G Williams
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jennifer M S Koh
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Keith Ashman
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Clare Loudon
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Roger Reddel
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Peter G Hains
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Phillip J Robinson
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| |
Collapse
|
8
|
Patton A, Dermawan JK. Current updates in sarcoma biomarker discovery: emphasis on next-generation sequencing-based methods. Pathology 2024; 56:274-282. [PMID: 38185613 DOI: 10.1016/j.pathol.2023.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 01/09/2024]
Abstract
Soft tissue sarcomas comprise a heterogeneous group of neoplasms. Although soft tissue malignancies make up only 2% of adult cancers, classification based on histomorphology presents a diagnostic challenge. Characterisation of soft tissue sarcomas by molecular analysis is rapidly evolving to improve diagnostic accuracy and develop targeted therapies. This review highlights the advances in molecular techniques, including current next-generation sequencing-based assays (fusion detection by RNA sequencing, targeted/whole exome sequencing, microRNA profiling), as well as emerging methods (liquid biopsies, DNA methylation profiling, single-cell molecular profiling and next-generation immunohistochemistry) for future clinical applications.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Samarelli AV, Tonelli R, Raineri G, Bruzzi G, Andrisani D, Gozzi F, Marchioni A, Costantini M, Fabbiani L, Genovese F, Pinetti D, Manicardi L, Castaniere I, Masciale V, Aramini B, Tabbì L, Rizzato S, Bettelli S, Manfredini S, Dominici M, Clini E, Cerri S. Proteomic profiling of formalin-fixed paraffine-embedded tissue reveals key proteins related to lung dysfunction in idiopathic pulmonary fibrosis. Front Oncol 2024; 13:1275346. [PMID: 38322285 PMCID: PMC10844556 DOI: 10.3389/fonc.2023.1275346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) severely affects the lung leading to aberrant deposition of extracellular matrix and parenchymal stiffness with progressive functional derangement. The limited availability of fresh tissues represents one of the major limitations to study the molecular profiling of IPF lung tissue. The primary aim of this study was to explore the proteomic profiling yield of archived formalin-fixed paraffin-embedded (FFPE) specimens of IPF lung tissues. Methods We further determined the protein expression according to respiratory functional decline at the time of biopsy. The total proteins isolated from 11 FFPE samples of IPF patients compared to 3 FFPE samples from a non-fibrotic lung defined as controls, were subjected to label-free quantitative proteomic analysis by liquid chromatography-mass spectrometry (LC-MS/MS) and resulted in the detection of about 400 proteins. Results After the pairwise comparison between controls and IPF, functional enrichment analysis identified differentially expressed proteins that were involved in extracellular matrix signaling pathways, focal adhesion and transforming growth factor β (TGF-β) signaling pathways strongly associated with IPF onset and progression. Five proteins were significantly over- expressed in the lung of IPF patients with either advanced disease stage (Stage II) or impaired pulmonary function (FVC<75, DLCO<55) compared to controls; these were lymphocyte cytosolic protein 1 (LCP1), peroxiredoxin-2 (PRDX2), transgelin 2 (TAGLN2), lumican (LUM) and mimecan (OGN) that might play a key role in the fibrogenic processes. Discussion Our work showed that the analysis of FFPE samples was able to identify key proteins that might be crucial for the IPF pathogenesis. These proteins are correlated with lung carcinogenesis or involved in the immune landscape of lung cancer, thus making possible common mechanisms between lung carcinogenesis and fibrosis progression, two pathological conditions at risk for each other in the real life.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Matteo Costantini
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Luca Fabbiani
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
- Immunohistochemistry Lab, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences-Diagnostic and Specialty Medicine (DIMEC) of the Alma Mater Studiorum, University of Bologna G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Luca Tabbì
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Simone Rizzato
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Bettelli
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Samantha Manfredini
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
10
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
11
|
Davalieva K, Kiprijanovska S, Ivanovski O, Trifunovski A, Saidi S, Dimovski A, Popov Z. Proteomics Profiling of Bladder Cancer Tissues from Early to Advanced Stages Reveals NNMT and GALK1 as Biomarkers for Early Detection and Prognosis of BCa. Int J Mol Sci 2023; 24:14938. [PMID: 37834386 PMCID: PMC10573217 DOI: 10.3390/ijms241914938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
The high recurrence rate and invasive diagnostic and monitoring methods in bladder cancer (BCa) clinical management require the development of new non-invasive molecular tools for early detection, particularly for low-grade and low-stage BCa as well as for risk stratification. By using an in-solution digestion method and label-free data-independent LC-MS/MS coupled with ion mobility, we profiled the BCa tissues from initiation to advanced stages and confidently identified and quantified 1619 proteins (≥2 peptides). A statistically significant difference in abundance (Anova ≤ 0.05) showed 494 proteins. Significant correlation with stage with steady up or down with BCa stages showed 15 proteins. Testing of NNMT, GALK1, and HTRA1 in urine samples showed excellent diagnostic potential for NNMT and GALK1 with AUC of 1.000 (95% CI: 1.000-1.000; p < 0.0001) and 0.801 (95% CI: 0.655-0.947; p < 0.0001), respectively. NNMT and GALK1 also showed very good potential in discriminating non-invasive low-grade from invasive high-grade BCa with AUC of 0.763 (95% CI: 0.606-0.921; p = 0.001) and 0.801 (95% CI: 0.653-0.950; p < 0.0001), respectively. The combination of NNMT and GALK1 increased prognostic accuracy (AUC = 0.813). Our results broaden the range of potential novel candidates for non-invasive BCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia; (S.K.); (A.D.)
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia; (S.K.); (A.D.)
| | - Ognen Ivanovski
- Clinical Centre “Mother Theresa”, University Clinic for Urology, 1000 Skopje, North Macedonia; (O.I.); (A.T.); (S.S.)
| | - Aleksandar Trifunovski
- Clinical Centre “Mother Theresa”, University Clinic for Urology, 1000 Skopje, North Macedonia; (O.I.); (A.T.); (S.S.)
| | - Skender Saidi
- Clinical Centre “Mother Theresa”, University Clinic for Urology, 1000 Skopje, North Macedonia; (O.I.); (A.T.); (S.S.)
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia; (S.K.); (A.D.)
- Faculty of Pharmacy, University “St. Cyril and Methodius”, 1000 Skopje, North Macedonia
| | - Zivko Popov
- Clinical Hospital “Acibadem Sistina”, 1000 Skopje, North Macedonia;
- Medical Faculty, University “St. Cyril and Methodius”, 1000 Skopje, North Macedonia
- Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| |
Collapse
|
12
|
Vavlukis A, Mladenovska K, Davalieva K, Vavlukis M, Dimovski A. Rosuvastatin effects on the HDL proteome in hyperlipidemic patients. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:363-384. [PMID: 37708957 DOI: 10.2478/acph-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
The advancements in proteomics have provided a better understanding of the functionality of apolipoproteins and lipoprotein-associated proteins, with the HDL lipoprotein fraction being the most studied. The focus of this study was to evaluate the HDL proteome in dyslipidemic subjects without an established cardiovascular disease, as well as to test whether rosuvastatin treatment alters the HDL proteome. Patients with primary hypercholesterolemia or mixed dyslipidemia were assigned to 20 mg/day rosuvastatin and blood samples were drawn at study entry and after 12 weeks of treatment. A label-free LC-MS/MS protein profiling was conducted, coupled with bioinformatics analysis. Sixty-nine HDL proteins were identified, belonging to four main biological function clusters: lipid transport and metabolism; platelet activation, degranulation, and aggregation, wound response and wound healing; immune response; inflammatory and acute phase response. Five HDL proteins showed statistically significant differences in the abundance (Anova ≤ 0.05), before and after rosuvastatin treatment. Platelet factor 4 variant (PF4V1), Pregnancy-specific beta-1-glycoprotein 2 (PSG2), Profilin-1 (PFN1) and Keratin type II cytoskeletal 2 epidermal (KRT2) showed decreased expressions, while Integrin alpha-IIb (ITGA2B) showed an increased expression after treatment with rosuvastatin. The ELISA validation of PFN1 segregated the subjects into responders and non-responders, as PFN1 levels after rosuvastatin were shown to mostly depend on the subjects' inflammatory phenotype. Findings from this study introduce novel insights into the HDL proteome and statin pleiotropism.
Collapse
Affiliation(s)
- Ana Vavlukis
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
| | | | - Katarina Davalieva
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| | - Marija Vavlukis
- University Ss Cyril and Methodius Faculty of Medicine, 1000 Skopje RN Macedonia
| | - Aleksandar Dimovski
- University Ss Cyril and Methodius Faculty of Pharmacy, 1000 Skopje RN Macedonia
- Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", 1000 Skopje RN Macedonia
| |
Collapse
|
13
|
Alaa M, Al-Shehaby N, Anwar AM, Farid N, Shawky MS, Zamzam M, Zaky I, Elghounimy A, El-Naggar S, Magdeldin S. Comparative Shotgun Proteomics Reveals the Characteristic Protein Signature of Osteosarcoma Subtypes. Cells 2023; 12:2179. [PMID: 37681913 PMCID: PMC10487120 DOI: 10.3390/cells12172179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor affecting adolescents and young adults. This study aimed to identify proteomic signatures that distinguish between different osteosarcoma subtypes, providing insights into their molecular heterogeneity and potential implications for personalized treatment approaches. Using advanced proteomic techniques, we analyzed FFPE tumor samples from a cohort of pediatric osteosarcoma patients representing four various subtypes. Differential expression analysis revealed a significant proteomic signature that discriminated between these subtypes, highlighting distinct molecular profiles associated with different tumor characteristics. In contrast, clinical determinants did not correlate with the proteome signature of pediatric osteosarcoma. The identified proteomics signature encompassed a diverse array of proteins involved in focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathways, and proteoglycans in cancer, among the top enriched pathways. These findings underscore the importance of considering the molecular heterogeneity of osteosarcoma during diagnosis or even when developing personalized treatment strategies. By identifying subtype-specific proteomics signatures, clinicians may be able to tailor therapy regimens to individual patients, optimizing treatment efficacy and minimizing adverse effects.
Collapse
Affiliation(s)
- Maram Alaa
- Immunology and Microbiology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Nesma Farid
- Clinical Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | | | - Manal Zamzam
- Pediatric Oncology Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Iman Zaky
- Radio Diagnosis Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Radio Diagnosis Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt
| | - Ahmed Elghounimy
- Musculoskeletal Tumor Surgery Unit, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
- Regenerative Medicine Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Bottom-Up Proteomics: Advancements in Sample Preparation. Int J Mol Sci 2023; 24:ijms24065350. [PMID: 36982423 PMCID: PMC10049050 DOI: 10.3390/ijms24065350] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based proteomics is a powerful technique for profiling proteomes of cells, tissues, and body fluids. Typical bottom-up proteomic workflows consist of the following three major steps: sample preparation, LC–MS/MS analysis, and data analysis. LC–MS/MS and data analysis techniques have been intensively developed, whereas sample preparation, a laborious process, remains a difficult task and the main challenge in different applications. Sample preparation is a crucial stage that affects the overall efficiency of a proteomic study; however, it is prone to errors and has low reproducibility and throughput. In-solution digestion and filter-aided sample preparation are the typical and widely used methods. In the past decade, novel methods to improve and facilitate the entire sample preparation process or integrate sample preparation and fractionation have been reported to reduce time, increase throughput, and improve reproducibility. In this review, we have outlined the current methods used for sample preparation in proteomics, including on-membrane digestion, bead-based digestion, immobilized enzymatic digestion, and suspension trapping. Additionally, we have summarized and discussed current devices and methods for integrating different steps of sample preparation and peptide fractionation.
Collapse
|
15
|
Davidson JM, Rayner SL, Liu S, Cheng F, Di Ieva A, Chung RS, Lee A. Inter-Regional Proteomic Profiling of the Human Brain Using an Optimized Protein Extraction Method from Formalin-Fixed Tissue to Identify Signaling Pathways. Int J Mol Sci 2023; 24:ijms24054283. [PMID: 36901711 PMCID: PMC10001664 DOI: 10.3390/ijms24054283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Proteomics offers vast potential for studying the molecular regulation of the human brain. Formalin fixation is a common method for preserving human tissue; however, it presents challenges for proteomic analysis. In this study, we compared the efficiency of two different protein-extraction buffers on three post-mortem, formalin-fixed human brains. Equal amounts of extracted proteins were subjected to in-gel tryptic digestion and LC-MS/MS. Protein, peptide sequence, and peptide group identifications; protein abundance; and gene ontology pathways were analyzed. Protein extraction was superior using lysis buffer containing tris(hydroxymethyl)aminomethane hydrochloride, sodium dodecyl sulfate, sodium deoxycholate, and Triton X-100 (TrisHCl, SDS, SDC, Triton X-100), which was then used for inter-regional analysis. Pre-frontal, motor, temporal, and occipital cortex tissues were analyzed by label free quantification (LFQ) proteomics, Ingenuity Pathway Analysis and PANTHERdb. Inter-regional analysis revealed differential enrichment of proteins. We found similarly activated cellular signaling pathways in different brain regions, suggesting commonalities in the molecular regulation of neuroanatomically-linked brain functions. Overall, we developed an optimized, robust, and efficient method for protein extraction from formalin-fixed human brain tissue for in-depth LFQ proteomics. We also demonstrate herein that this method is suitable for rapid and routine analysis to uncover molecular signaling pathways in the human brain.
Collapse
Affiliation(s)
- Jennilee M. Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
- Correspondence: (J.M.D.); (A.D.I.)
| | - Stephanie L. Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Sidong Liu
- Centre for Health Informatics, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
- Correspondence: (J.M.D.); (A.D.I.)
| | - Roger S. Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| |
Collapse
|
16
|
Rusevski A, Plaseska-Karanfilska D, Davalieva K. Proteomics of azoospermia: Towards the discovery of reliable markers for non-invasive diagnosis. Proteomics Clin Appl 2023; 17:e2200060. [PMID: 36177695 DOI: 10.1002/prca.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Azoospermia, as the most severe form of male infertility, no longer indicates sterility due to modern medical advancements. The current diagnostic procedure based on testicular biopsy has several drawbacks which urges the development of novel, non-invasive diagnostic procedures based on biomarkers. In the last two decades, there have been many proteomics studies investigating potential azoospermia biomarkers. In this review, we aimed to provide a critical evaluation of these studies. EXPERIMENTAL DESIGN Published articles were gathered by systematic literature search using Pubmed, Science Direct, and Google Scholar databases until March 2022 and were further preselected to include only studies on human samples. RESULTS A detailed review of these studies encompassed the proteomics platforms, sources of material, proposed candidate biomarkers, and their potential diagnostic specificity and sensitivity. In addition, emphasis was put on the top, most identified and validated biomarker candidates and their potential for discriminating azoospermia types and subtypes as well as predicting sperm retrieval success rate. CONCLUSIONS Proteomics research of azoospermia has laid the groundwork for the development of a more streamlined biomarker testing. The future research should be focused on well-designed studies including samples from all types/subtypes as well as further testing of the most promising biomarkers identified so far.
Collapse
Affiliation(s)
- Aleksandar Rusevski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
17
|
Ni J, Tian S, Bai L, Lv Q, Liu J, Liu J, Fang Y, Zhai Y, Shen Q, Rao J, Ding C, Xu H. Comparative proteomic analysis of children FSGS FFPE tissues. BMC Pediatr 2022; 22:707. [PMID: 36503536 PMCID: PMC9743561 DOI: 10.1186/s12887-022-03764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In children, focal segmental glomerulosclerosis (FSGS) is the main cause of steroid resistant nephrotic syndrome (SRNS). To identify specific candidates and the mechanism of steroid resistance, we examined the formalin-fixed paraffin embedded (FFPE) renal tissue protein profiles via liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODS Renal biopsies from seven steroid-sensitive (SS) and eleven steroid-resistant (SR) children FSGS patients were obtained. We examined the formalin-fixed paraffin embedded (FFPE) renal tissue protein profiles via liquid chromatography tandem mass spectrometry (LC-MS/MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) analysis, as well as the construction of protein-protein interaction (PPI) network were performed. Two proteins were further valiadated by immunohistochemistry staining in FSGS patients and mice models. RESULTS In total, we quantified more than 4000 proteins, of which 325 were found to be differentially expressed proteins (DEPs) between the SS and SR group (foldchange ≥2, P<0.05). The results of GO revealed that the most significant up-regulated proteins were primarily related to protein transportation, regulation of the complement activation process and cytolysis. Moreover, clustering analysis showed differences in the pathways (lysosome, terminal pathway of complement) between the two groups. Among these potential candidates, validation analyses for LAMP1 and ACSL4 were conducted. LAMP1 was observed to have a higher expression in glomerulus, while ACSL4 was expressed more in tubular epithelial cells. CONCLUSIONS In this study, the potential mechanism and candidates related to steroid resistance in children FSGS patients were identified. It could be helpful in identifying potential therapeutic targets and predicting outcomes with these proteomic changes for children FSGS patients.
Collapse
Affiliation(s)
- Jiajia Ni
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Sha Tian
- grid.413087.90000 0004 1755 3939State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lin Bai
- grid.413087.90000 0004 1755 3939State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Qianying Lv
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jialu Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jiaojiao Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ye Fang
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yihui Zhai
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jia Rao
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Chen Ding
- grid.413087.90000 0004 1755 3939State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Hong Xu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China ,Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
18
|
Davalieva K, Rusevski A, Velkov M, Noveski P, Kubelka-Sabit K, Filipovski V, Plaseski T, Dimovski A, Plaseska-Karanfilska D. Comparative proteomics analysis of human FFPE testicular tissues reveals new candidate biomarkers for distinction among azoospermia types and subtypes. J Proteomics 2022; 267:104686. [PMID: 35914715 DOI: 10.1016/j.jprot.2022.104686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Understanding molecular mechanisms that underpin azoospermia and discovery of biomarkers that could enable reliable, non-invasive diagnosis is highly needed. Using label-free data-independent LC-MS/MS acquisition coupled with ion mobility, we compared the FFPE testicular proteome of patients with obstructive (OA) and non-obstructive azoospermia (NOA) subtypes hypospermatogenesis (Hyp) and Sertoli cell-only syndrome (SCO). Out of 2044 proteins identified based on ≥2 peptides, 61 proteins had the power to quantitatively discriminate OA from NOA and 30 to quantitatively discriminate SCO from Hyp and OA. Among these, H1-6, RANBP1 and TKTL2 showed superior potential for quantitative discrimination among OA, Hyp and SCO. Integrin signaling pathway, adherens junction, planar cell polarity/convergent extension pathway and Dectin-1 mediated noncanonical NF-kB signaling were significantly associated with the proteins that could discriminate OA from NOA. Comparison with 2 transcriptome datasets revealed 278 and 55 co-differentially expressed proteins/genes with statistically significant positive correlation. Gene expression analysis by qPCR of 6 genes (H1-6, RANBP1, TKTL2, TKTL1, H2BC1, and ACTL7B) with the highest discriminatory power on protein level and the same regulation trend with transcriptomic datasets, confirmed proteomics results. In summary, our results suggest some underlying pathways in azoospermia and broaden the range of potential novel candidates for diagnosis. SIGNIFICANCE: Using a comparative proteomics approach on testicular tissue we have identified several pathways associated with azoospermia and a number of testis-specific and germ cell-specific proteins that have the potential to pinpoint the type of spermatogenesis failure. Furthermore, comparison with transcriptomics datasets based on genome-wide gene expression analyses of human testis specimens from azoospermia patients identified proteins that could discriminate between obstructive and non-obstructive azoospermia subtypes on both protein and mRNA levels. Up to our knowledge, this is the first integrated comparative analysis of proteomics and transcriptomics data from testicular tissues. We believe that the data from our study contributes significantly to increase the knowledge of molecular mechanisms of azoospermia and pave the way for new investigations in regards to non-invasive diagnosis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia.
| | - Aleksandar Rusevski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Milan Velkov
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Katerina Kubelka-Sabit
- Laboratory for Histopathology, Clinical Hospital "Sistina", 1000 Skopje, North Macedonia, Macedonia
| | - Vanja Filipovski
- Laboratory for Histopathology, Clinical Hospital "Sistina", 1000 Skopje, North Macedonia, Macedonia
| | - Toso Plaseski
- Faculty of Medicine, Endocrinology and Metabolic Disorders Clinic, 1000 Skopje, North Macedonia, Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 1000 Skopje, North Macedonia, Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia.
| |
Collapse
|
19
|
Zheng W, Yang P, Sun C, Zhang Y. Comprehensive comparison of sample preparation workflows for proteomics. Mol Omics 2022; 18:555-567. [DOI: 10.1039/d2mo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based proteomics experiments can be subject to a large variability, which forms an obstacle to obtaining deep and accurate protein identification. Here, to obtain an optimal sample preparation workflow...
Collapse
|
20
|
Abstract
Proteomics, the large-scale study of all proteins of an organism or system, is a powerful tool for studying biological systems. It can provide a holistic view of the physiological and biochemical states of given samples through identification and quantification of large numbers of peptides and proteins. In forensic science, proteomics can be used as a confirmatory and orthogonal technique for well-built genomic analyses. Proteomics is highly valuable in cases where nucleic acids are absent or degraded, such as hair and bone samples. It can be used to identify body fluids, ethnic group, gender, individual, and estimate post-mortem interval using bone, muscle, and decomposition fluid samples. Compared to genomic analysis, proteomics can provide a better global picture of a sample. It has been used in forensic science for a wide range of sample types and applications. In this review, we briefly introduce proteomic methods, including sample preparation techniques, data acquisition using liquid chromatography-tandem mass spectrometry, and data analysis using database search, spectral library search, and de novo sequencing. We also summarize recent applications in the past decade of proteomics in forensic science with a special focus on human samples, including hair, bone, body fluids, fingernail, muscle, brain, and fingermark, and address the challenges, considerations, and future developments of forensic proteomics.
Collapse
|