1
|
Huang J, Peng H, Yang D. Research advances in protein lysine 2-hydroxyisobutyrylation: From mechanistic regulation to disease relevance. J Cell Physiol 2024; 239:e31435. [PMID: 39351825 DOI: 10.1002/jcp.31435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/18/2024]
Abstract
Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.
Collapse
Affiliation(s)
- Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
2
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Song F, Hou C, Huang Y, Liang J, Cai H, Tian G, Jiang Y, Wang Z, Hou J. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia. Cell Signal 2024; 120:111228. [PMID: 38750680 DOI: 10.1016/j.cellsig.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells tend to live in hypoxic environment characterized by enhanced glycolysis and accumulation of lactate. Intracellular lactate is shown to drive a novel type of post-translational modification (PTM), lysine lactylation (Kla). Kla has been confirmed to affect the malignant progression of tumors such as hepatocellular carcinoma (HCC) and colon cancer, whereas the global lactylomic profiling of oral squamous cell carcinoma (OSCC) is unclear. Here, the integrative lactylome and proteome analyses by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1011 Kla sites within 532 proteins and 1197 Kla sites within 608 proteins in SCC25 cells under normoxic and hypoxic environments, respectively. Among these lactylated proteins, histones accounted for only a small fraction, suggesting the presence of Kla modification of OSCC in a large number of non-histone proteins. Notably, Kla preferred to enrich in spliceosome, ribosome and glycolysis/gluconeogenesis pathway in both normoxic and hypoxic cultures. Compared with normoxia, 589 differential proteins with 898 differentially lactylated sites were detected under hypoxia, which were mainly associated with the glycolysis/gluconeogenesis pathway by KEGG analysis. Importantly, we verified the presence of lactylation modification in the spliceosomal proteins hnRNPA1, SF3A1, hnRNPU and SLU7, as well as in glycolytic enzyme PFKP. In addition, the differential alternative splicing analysis described the divergence of pre-mRNA splicing patterns in the presence or absence of sodium lactate and at different oxygen concentrations. Finally, a negative correlation between tissue Kla levels and the prognosis of OSCC patients was revealed by immunohistochemistry. Our study is the first report to elucidate the lactylome and its biological function in OSCC, which deepens our understanding of the mechanisms underlying OSCC progression and provides a novel strategy for targeted therapy for OSCC.
Collapse
Affiliation(s)
- Fan Song
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Chen Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yingzhao Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Guoli Tian
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
4
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
5
|
Chen S, Li D, Zeng Z, Zhang W, Xie H, Tang J, Liao S, Cai W, Liu F, Tang D, Dai Y. Analysis of proteome and post-translational modifications of 2-hydroxyisobutyrylation reveals the glycolysis pathway in oral adenoid cystic carcinoma. World J Surg Oncol 2023; 21:301. [PMID: 37741973 PMCID: PMC10517466 DOI: 10.1186/s12957-023-03155-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/19/2023] [Indexed: 09/25/2023] Open
Abstract
PURPOSE Oral adenoid cystic carcinoma (OACC) has high rates of both local-regional recurrence and distant metastasis. The objective of this study is to investigate the impact of Khib on OACC and its potential as a targeted therapeutic intervention. EXPERIMENTAL DESIGN: We investigated the DEPs (differentially expressed proteins) and DHMPs between OACC-T and OACC-N using LC-MS/MS-based quantitative proteomics and using several bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, subcellular localization prediction, MEA (motif enrichment analysis), and PPI (protein-protein interaction networks) to illustrate how Khib modification interfere with OACC evolution. RESULTS Compared OACC-tumor samples (OACC-T) with the adjacent normal samples (OACC-N), there were 3243 of the DEPs and 2011 Khib sites were identified on 764 proteins (DHMPs). DEPs and DHMPs were strongly associated to glycolysis pathway. GAPDH of K254, ENO of K228, and PGK1 of K323 were modified by Khib in OACC-T. Khib may increase the catalytic efficiency to promote glycolysis pathway and favor OACC progression. CONCLUSIONS AND CLINICAL RELEVANCE Khib may play a significant role in the mechanism of OACC progression by influencing the enzyme activity of the glycolysis pathway. These findings may provide new therapeutic options of OACC.
Collapse
Affiliation(s)
- Sining Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong, 518118, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Hongliang Xie
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Jianming Tang
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Shengyou Liao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Fanna Liu
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China.
- Comprehensive health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou, 318000, China.
- Department of Organ Transplantation, No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guilin, 541002, China.
- The first affiliated hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
6
|
Rong Y, Dong F, Zhang G, Tang M, Zhao X, Zhang Y, Tao P, Cai H. The crosstalking of lactate-Histone lactylation and tumor. Proteomics Clin Appl 2023; 17:e2200102. [PMID: 36853081 DOI: 10.1002/prca.202200102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.
Collapse
Affiliation(s)
- Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Fengyuan Dong
- Geriatrics Department, Lianyungang First People's Hospital, Lianyugang, China
| | - Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Xiashuang Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
7
|
Xie F, Gleue CA, Deschaine M, Dasari S, Sartori-Valinotti JC, Charlesworth MC, Meves A, Lehman JS. Differential proteomic expression in indolent versus transforming oral lichen planus. Exp Dermatol 2023; 32:502-510. [PMID: 36587284 DOI: 10.1111/exd.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Oral lichen planus (OLP) confers an approximately 1% risk of transformation to oral squamous cell carcinoma (OSCC). Early identification of high-risk OLP would be very helpful for optimal patient management. We aimed to discover specific tissue-based protein biomarkers in patients with OLP who developed OSCC compared to those who did not. We used laser capture microdissection- and nanoLC-tandem mass spectrometry to assess protein expression in fixed lesional mucosal specimens in patients with indolent OLP (no OSCC after at least 5-year follow-up, n = 6), transforming OLP (non-dysplastic epithelium with lichenoid inflammation marginal to OSCC, n = 6) or normal oral mucosa (NOM, n = 5). Transforming OLP protein profile was enriched for actin cytoskeleton, mitochondrial dysfunction and oxidative phosphorylation pathways. CA1, TNNT3, SYNM and MB were overexpressed, and FBLN1 was underexpressed in transforming OLP compared with indolent OLP. Integrin signalling and antigen presentation pathways were enriched in both indolent and transforming OLP compared with NOM. This proteomic study provides potential biomarkers, such as CA1 overexpression, for higher-risk OLP. While further validation studies are needed, we propose that epithelial-mesenchymal transition may be involved in OLP carcinogenesis.
Collapse
Affiliation(s)
- Fangyi Xie
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Casey A Gleue
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Deschaine
- Department of Dermatology, Florida State University, Pensacola, Florida, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia S Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Fu Y, Yu J, Li F, Ge S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J Exp Clin Cancer Res 2022; 41:144. [PMID: 35428309 PMCID: PMC9013066 DOI: 10.1186/s13046-022-02338-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
AbstractMetabolites are intermediate products of cellular metabolism catalysed by various enzymes. Metabolic remodelling, as a biochemical fingerprint of cancer cells, causes abnormal metabolite accumulation. These metabolites mainly generate energy or serve as signal transduction mediators via noncovalent interactions. After the development of highly sensitive mass spectrometry technology, various metabolites were shown to covalently modify proteins via forms of lysine acylation, including lysine acetylation, crotonylation, lactylation, succinylation, propionylation, butyrylation, malonylation, glutarylation, 2-hydroxyisobutyrylation and β-hydroxybutyrylation. These modifications can regulate gene expression and intracellular signalling pathways, highlighting the extensive roles of metabolites. Lysine acetylation is not discussed in detail in this review since it has been broadly investigated. We focus on the nine aforementioned novel lysine acylations beyond acetylation, which can be classified into two categories: histone acylations and nonhistone acylations. We summarize the characteristics and common functions of these acylation types and, most importantly, provide a glimpse into their fine-tuned control of tumorigenesis and potential value in tumour diagnosis, monitoring and therapy.
Collapse
|
9
|
Kakurina G, Stakheeva M, Sereda E, Sidenko E, Cheremisina O, Choinzonov E, Kondakova I. A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients. J Biomed Res 2022; 37:213-224. [PMID: 37226274 PMCID: PMC10226087 DOI: 10.7555/jbr.36.20220182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/25/2023] Open
Abstract
Circulating tumor cells (CTCs) play an important role in tumor metastases, which is positively correlated with an increased risk of death. Actin-binding proteins, including cofilin (CFL1), profilin 1 (PFN1), and adenylate cyclase-associated protein 1 (CAP1), are thought to be involved in tumor cell motility and metastasis, specifically in head and neck squamous cell carcinoma (HNSCC). However, currently, there are no published studies on CFL1, PFN1, and CAP1 in CTCs and leukocytes in HNSCC patients. We assessed serum levels of CFL1, PFN1, and CAP1 and the number of CTCs and leukocytes containing these proteins in blood from 31 HNSCC patients (T1-4N0-2M0). The analysis used flow cytometry and an enzyme-linked immunosorbent assay kit. We found that CAP1 + CTCs and CAP1 + leukocyte subpopulations were prevalent in these HNSCC patient samples, while the prevalence rates of CFL1 + and PFN1 + CTCs were relatively low. Patients with stage T2-4N1-2M0 had CFL1 + and PFN1 + CTCs with an elevated PFN1 serum level, compared with the T1-3N0M0 group. In summary, the PFN1 serum level and the relative number of PFN1 +CD326 + CTCs could be valuable prognostic markers for HNSCC metastases. The current study is the first to obtain data regarding the contents of actin-binding proteins (ABPs) in CTCs, and leukocytes in blood from HNSCC patients. This is also the first to assess the relationship between the number of CTCs subgroups and disease characteristics.
Collapse
Affiliation(s)
- Gelena Kakurina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Marina Stakheeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Elena Sereda
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Evgenia Sidenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Olga Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeny Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Irina Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| |
Collapse
|
10
|
Lu Y, Li X, Zhao K, Qiu P, Deng Z, Yao W, Wang J. Global landscape of 2-hydroxyisobutyrylation in human pancreatic cancer. Front Oncol 2022; 12:1001807. [PMID: 36249039 PMCID: PMC9563853 DOI: 10.3389/fonc.2022.1001807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
As a new type of post-translational modification (PTM), lysine 2-hydroxyisobutyrylation (Khib) was firstly identified in histones and functioned as a regulator of transactivation in mammals. However, the role of Khib proteins remains to be investigated. Here, we firstly identified 10,367 Khib sites on 2,325 modified proteins in seven patients with pancreatic cancer by applying liquid chromatography with tandem mass spectrometry (LC-MS/MS) qualitative proteomics techniques. Among them, 27 Khib-modified sites were identified in histones. Bioinformatics analysis revealed that the Khib-modified proteins were mainly distributed in the cytoplasm and enhanced in metabolic pathways, including glycolysis/gluconeogenesis, the tricarboxylic acid cycle (TCA cycle), and fatty acid degradation. In an overlapping comparison of lysine 2-hydroxyisobutyrylation, succinylation, and acetylation in humans, 105 proteins with 80 sites were modified by all three PTMs, suggesting there may be a complex network among the different modified proteins and sites. Furthermore, MG149, which was identified as a Tip60 inhibitor, significantly decreased the total Khib modification level in pancreatic cancer (PC) and strongly suppressed PC’s proliferation, migration, and invasion ability. Overall, our study is the first profiling of lysine 2-hydroxyisobutyrylome and provides a new database for better investigating Khib in PC.
Collapse
Affiliation(s)
- Yun Lu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wei Yao, ; Jianming Wang,
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, China
- *Correspondence: Wei Yao, ; Jianming Wang,
| |
Collapse
|
11
|
Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C, Zhang YQ, Yin L, Tang DE, Zheng ZH, Zhu T, Dai Y. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med 2022; 20:420. [PMID: 36104729 PMCID: PMC9476562 DOI: 10.1186/s12967-022-03629-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. SGLT2 inhibitors are clinically effective in halting DKD progression. However, the underlying mechanisms remain unclear. The serum and kidneys of mice with DKD were analyzed using liquid chromatography with tandem mass spectrometry (LC–MS/MS)-based metabolomic and proteomic analyses. Three groups were established: placebo-treated littermate db/m mice, placebo-treated db/db mice and EMPA-treated db/db mice. Empagliflozin (EMPA) and placebo (10 mg/kg/d) were administered for 12 weeks. EMPA treatment decreased Cys-C and urinary albumin excretion compared with placebo by 78.60% and 57.12%, respectively (p < 0.001 in all cases). Renal glomerular area, interstitial fibrosis and glomerulosclerosis were decreased by 16.47%, 68.50% and 62.82%, respectively (p < 0.05 in all cases). Multi-omic analysis revealed that EMPA treatment altered the protein and metabolic profiles in the db/db group, including 32 renal proteins, 51 serum proteins, 94 renal metabolites and 37 serum metabolites. Five EMPA-related metabolic pathways were identified by integrating proteomic and metabolomic analyses, which are involved in renal purine metabolism; pyrimidine metabolism; tryptophan metabolism; nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism in serum. In conclusion, this study demonstrated metabolic reprogramming in mice with DKD. EMPA treatment improved kidney function and morphology by regulating metabolic reprogramming, including regulation of renal reductive stress, alleviation of mitochondrial dysfunction and reduction in renal oxidative stress reaction.
Collapse
|
12
|
Chen Y, Wang B, Chen Y, Wu Q, Lai WF, Wei L, Nandakumar KS, Liu D. HAPLN1 Affects Cell Viability and Promotes the Pro-Inflammatory Phenotype of Fibroblast-Like Synoviocytes. Front Immunol 2022; 13:888612. [PMID: 35720292 PMCID: PMC9202519 DOI: 10.3389/fimmu.2022.888612] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
HAPLN1 maintains aggregation and the binding activity of extracellular matrix (ECM) molecules (such as hyaluronic acid and proteoglycan) to stabilize the macromolecular structure of the ECM. An increase in HAPLN1 expression is observed in a few types of musculoskeletal diseases including rheumatoid arthritis (RA); however, its functions are obscure. This study examined the role of HAPLN1 in determining the viability, proliferation, mobility, and pro-inflammatory phenotype of RA- fibroblast-like synoviocytes (RA-FLSs) by using small interfering RNA (siHAPLN1), over-expression vector (HAPLN1OE), and a recombinant HAPLN1 (rHAPLN1) protein. HAPLN1 was found to promote proliferation but inhibit RA-FLS migration. Metformin, an AMPK activator, was previously found by us to be able to inhibit FLS activation but promote HAPLN1 secretion. In this study, we confirmed the up-regulation of HAPLN1 in RA patients, and found the positive relationship between HAPLN1 expression and the AMPK level. Treatment with either si-HAPLN1 or HAPLN1OE down-regulated the expression of AMPK-ɑ gene, although up-regulation of the level of p-AMPK-ɑ was observed in RA-FLSs. si-HAPLN1 down-regulated the expression of proinflammatory factors like TNF-ɑ, MMPs, and IL-6, while HAPLN1OE up-regulated their levels. qPCR assay indicated that the levels of TGF-β, ACAN, fibronectin, collagen II, and Ki-67 were down-regulated upon si-HAPLN1 treatment, while HAPLN1OE treatment led to up-regulation of ACAN and Ki-67 and down-regulation of cyclin-D1. Proteomics of si-HAPLN1, rHAPLN1, and mRNA-Seq analysis of rHAPLN1 confirmed the functions of HAPLN1 in the activation of inflammation, proliferation, cell adhesion, and strengthening of ECM functions. Our results for the first time demonstrate the function of HAPLN1 in promoting the proliferation and pro-inflammatory phenotype of RA-FLSs, thereby contributing to RA pathogenesis. Future in-depth studies are required for better understanding the role of HAPLN1 in RA.
Collapse
Affiliation(s)
- Yong Chen
- Division of Rheumatology and Research, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Baojiang Wang
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yanjuan Chen
- School of Basic Medicine, Jinan University, Guangzhou, China
| | - Qunyan Wu
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Wanchai, Hong Kong SAR, China
| | - Laiyou Wei
- Division of Rheumatology and Research, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Kutty Selva Nandakumar
- Southern Medical Universit - Karolinska Institute (SMU-KI) United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dongzhou Liu
- Division of Rheumatology and Research, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
13
|
Dong J, He J, Zhang Z, Zhang W, Li Y, Li D, Xie H, Zuo W, Tang J, Zeng Z, Cai W, Lai L, Yun M, Shen L, Yin L, Tang D, Dai Y. Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics. J Proteomics 2022; 262:104598. [PMID: 35489685 DOI: 10.1016/j.jprot.2022.104598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Lysine acetylation (Kac) on histone promotes relaxation of the chromatin conformation and favors gene transcription to regulate oncogenesis, whereas the total acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilised to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. 282 upregulated Kac sites in 234 proteins and 235 downregulated Kac sites in 162 proteins between OSCC tissues and paired adjacent normal tissues were identified. Different acetylation proteins (DAPs) were analyzed through KEGG-based and MCODE. These DAPs are enriched in the ribosome biogenesis pathway. Survival Analysis of hub genes with TCGA database was performed. In addition, IPA software was used to explore the connection between 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) and the different expression of KATs and KDACs identified in our proteomic. The study is the first comparative study of Kac modification on oral squamous cell carcinoma. We propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC. SIGNIFICANCE: The study is the first comparative study of Kac modification on oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. These DAPs are high enriched in the ribosome biogenesis pathway. Used MCODE and survival analysis, 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) were screened. IPA software was used to explore the connection between 9 core DAPs and the different expression of KATs and KDACs identified in our proteomic. In addition, we propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Jingjing Dong
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zeyu Zhang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Yixi Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Hongliang Xie
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wenxin Zuo
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Jianming Tang
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Liusheng Lai
- Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China
| | - Manhua Yun
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lingjun Shen
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China.
| |
Collapse
|
14
|
Diagnostics of HNSCC Patients: An Analysis of Cell Lines and Patient-Derived Xenograft Models for Personalized Therapeutical Medicine. Diagnostics (Basel) 2022; 12:diagnostics12051071. [PMID: 35626227 PMCID: PMC9139588 DOI: 10.3390/diagnostics12051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are very frequent worldwide, and smoking and chronic alcohol use are recognized as the main risk factors. For oropharyngeal cancers, HPV 16 infection is known to be a risk factor as well. By employing next-generation sequencing, both HPV-positive and negative HNSCC patients were detected as positive for PI3K mutation, which was considered an optimal molecular target. We analyzed scientific literature published in the last 5 years regarding the newly available diagnostic platform for targeted therapy of HNSCC HPV+/−, using HNSCC-derived cell lines cultures and HNSCC pdx (patient-derived xenografts). The research results are promising and require optimal implementation in the management of HNSCC patients.
Collapse
|