1
|
Li H, Gao J, Song H, Yang X, Li C, Zhang Y, Wang J, Liu Y, Wang D, Li H. Changes in the medial prefrontal cortex metabolites after 6 months of medication therapy for patients with bipolar disorder: A 1H-MRS study. CNS Neurosci Ther 2024; 30:e70048. [PMID: 39300492 PMCID: PMC11412791 DOI: 10.1111/cns.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS The study aimed to assess brain metabolite differences in the medial prefrontal cortex (mPFC) between acute and euthymic episodes of bipolar disorder (BD) with both mania and depression over a 6-month medication treatment period. METHODS We utilized 1H-MRS technology to assess the metabolite levels in 53 individuals with BD (32 in depressive phase, 21 in manic phase) and 34 healthy controls (HCs) at baseline. After 6 months of medication treatment, 40 subjects underwent a follow-up scan in euthymic state. Metabolite levels, including N-acetyl aspartate (NAA), glutamate (Glu), and Glutamine (Gln), were measured in the mPFC. RESULTS Patients experiencing depressive and manic episodes exhibited a notable reduction in NAA/Cr + PCr ratios at baseline compared to healthy controls (p = 0.004; p = 0.006) in baseline, compared with HCs. Over the 6-month follow-up period, the manic group displayed a significant decrease in Gln/Cr + PCr compared to the initial acute phase (p = 0.03). No significant alterations were found in depressed group between baseline and follow-up. CONCLUSION This study suggests that NAA/Cr + PCr ratios and Gln/Cr + PCr ratios in the mPFC may be associated with manic and depressive episodes, implicating that Gln and NAA might be useful biomarkers for distinguishing mood phases in BD and elucidating its mechanisms.
Collapse
Affiliation(s)
- Haijin Li
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ju Gao
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Huihui Song
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Xuna Yang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Cai Li
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yue Zhang
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiahui Wang
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yitong Liu
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Hong Li
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
2
|
Zhou Y, Chen Z, Su F, Tao Y, Wang P, Gu J. NMR-based metabolomics approach to study the effect and related molecular mechanisms of Saffron essential oil against depression. J Pharm Biomed Anal 2024; 247:116244. [PMID: 38810330 DOI: 10.1016/j.jpba.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Depression currently ranks as the fourth leading cause of disability globally, affecting approximately 20% of the world's population. we established a chronic restraint stress (CRS) induced depression model in mice and employed fluoxetine as a reference drug. We assessed the therapeutic potential of saffron essential oil (SEO) and elucidated its underlying mechanisms through behavioral indices and NMR-based metabolomic analysis. The findings indicate that SEO ameliorates behavioral symptoms of depression, such as the number of entries into the central area, fecal count, latency to immobility, and duration of immobility in both the Tail Suspension Test (TST) and the Forced Swim Test (FST), along with correcting the dysregulation of 5-serotonin. Metabolomic investigations identified sixteen potential biomarkers across the liver, spleen, and kidneys. SEO notably modulated nine of these biomarkers: dimethylglycine, glycerol, adenosine, β-glucose, α-glucose, uridine, mannose, sarcosine, and aspartate, with glycerol emerging as a common biomarker in both the liver and spleen. Pathway analysis suggests that these biomarkers participate in glycolysis, glycine serine threonine metabolism, and energy metabolism, potentially implicating a role in neural regulation. In summary, SEO effectively mitigates depressive-like behaviors in CRS mice, predominantly via modulation of glycolysis, amino acid metabolism, and energy metabolism, and potentially exerts antidepressant effects through neural regulation. Our study offers insights into small molecule metabolite alterations in CRS mice through a metabolomics lens, providing evidence for the antidepressant potential of plant essential oils and contributing to our understanding of the mechanisms of traditional Chinese medicine in treating depression.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Feng Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
3
|
Circulating N-Acetylaspartate does not track brain NAA concentrations, cognitive function or features of small vessel disease in humans. Sci Rep 2022; 12:11530. [PMID: 35798828 PMCID: PMC9262942 DOI: 10.1038/s41598-022-15670-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/15/2022] [Indexed: 01/07/2023] Open
Abstract
N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebral disease has not been investigated. To study whether circulating NAA tracks cerebral NAA levels, and whether circulating NAA correlates with cognitive function and features of cerebral small vessel disease (SVD). Two datasets were analyzed. In dataset 1, structural MRI was acquired in 533 subjects to assess four features of cerebral SVD. Cognitive function was evaluated with standardized test scores (N = 824). In dataset 2, brain 1H-MRS from the occipital region was acquired (N = 49). In all subjects, fasting circulating NAA was measured with mass spectrometry. Dataset 1: in univariate and adjusted for confounders models, we found no correlation between circulating NAA and the examined features of cerebral SVD. In univariate analysis, circulating NAA levels were associated inversely with the speed in information processing and the executive function score, however these associations were lost after accounting for confounders. In line with the negative findings of dataset 1, in dataset 2 there was no correlation between circulating and central NAA or total NAA levels. This study indicates that circulating NAA levels do not reflect central (occipital) NAA levels, cognitive function, or cerebral small vessel disease in man.
Collapse
|
4
|
Morphological Biomarkers in the Amygdala and Hippocampus of Children and Adults at High Familial Risk for Depression. Diagnostics (Basel) 2022; 12:diagnostics12051218. [PMID: 35626374 PMCID: PMC9141256 DOI: 10.3390/diagnostics12051218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Major Depressive Disorder (MDD) is highly familial, and the hippocampus and amygdala are important in the pathophysiology of MDD. Whether morphological markers of risk for familial depression are present in the hippocampus or amygdala is unknown. We imaged the brains of 148 individuals, aged 6 to 54 years, who were members of a three-generation family cohort study and who were at either high or low familial risk for MDD. We compared surface morphological features of the hippocampus and amygdala across risk groups and assessed their associations with depression severity. High- compared with low-risk individuals had inward deformations of the head of both hippocampi and the medial surface of the left amygdala. The hippocampus findings persisted in analyses that included only those participants who had never had MDD, suggesting that these are true endophenotypic biomarkers for familial MDD. Posterior extension of the inward deformations was associated with more severe depressive symptoms, suggesting that a greater spatial extent of this biomarker may contribute to the transition from risk to the overt expression of symptoms. Significant associations of these biomarkers with corresponding biomarkers for cortical thickness suggest that these markers are components of a distributed cortico-limbic network of familial vulnerability to MDD.
Collapse
|
5
|
The neurochemical pathology of schizophrenia: post-mortem studies from dopamine to parvalbumin. J Neural Transm (Vienna) 2021; 129:643-647. [PMID: 34935080 PMCID: PMC9188531 DOI: 10.1007/s00702-021-02453-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Research in Peter Riederer’s lab in Vienna in the late 1970’s came from a strong tradition in post-mortem neurochemical studies, at that time a relatively niche approach in neuroscience research. He was also early to recognise the value of post-mortem brain tissue in elucidating pharmacological mechanisms of neuropsychiatric treatments. I was fortunate to have Peter Riederer as a mentor in my early post-doctoral career; his generous support and the opportunities to use post-mortem brain tissue provided an invaluable grounding on which much of my future research was based. In this paper, I shall provide a brief overview of one trajectory of my research into the neurobiology of schizophrenia that started in the Riederer lab in Vienna investigating dopamine and the D2 receptor. Subsequent research to understand findings of increased dopamine resulted in the identification of reduced GABAergic innervation, culminating in the finding of a deficit in the parvalbumin-containing subtype of GABAergic neurons. Most recent work has been studying how changes in DNA methylation of the parvalbumin gene may relate to these findings in psychotic illness and its animal models.
Collapse
|
6
|
A Role of BDNF in the Depression Pathogenesis and a Potential Target as Antidepressant: The Modulator of Stress Sensitivity "Shati/Nat8l-BDNF System" in the Dorsal Striatum. Pharmaceuticals (Basel) 2021; 14:ph14090889. [PMID: 34577589 PMCID: PMC8469819 DOI: 10.3390/ph14090889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is one of the most common mental diseases, with increasing numbers of patients globally each year. In addition, approximately 30% of patients with depression are resistant to any treatment and do not show an expected response to first-line antidepressant drugs. Therefore, novel antidepressant agents and strategies are required. Although depression is triggered by post-birth stress, while some individuals show the pathology of depression, others remain resilient. The molecular mechanisms underlying stress sensitivity remain unknown. Brain-derived neurotrophic factor (BDNF) has both pro- and anti-depressant effects, dependent on brain region. Considering the strong region-specific contribution of BDNF to depression pathogenesis, the regulation of BDNF in the whole brain is not a beneficial strategy for the treatment of depression. We reviewed a novel finding of BDNF function in the dorsal striatum, which induces vulnerability to social stress, in addition to recent research progress regarding the brain regional functions of BDNF, including the prefrontal cortex, hippocampus, and nucleus accumbens. Striatal BDNF is regulated by Shati/Nat8l, an N-acetyltransferase through epigenetic regulation. Targeting of Shati/Nat8l would allow BDNF to be striatum-specifically regulated, and the striatal Shati/Nat8l-BDNF pathway could be a promising novel therapeutic agent for the treatment of depression by modulating sensitivity to stress.
Collapse
|
7
|
Miyanishi H, Muramatsu SI, Nitta A. Striatal Shati/Nat8l-BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation. Neuropsychopharmacology 2021; 46:1594-1605. [PMID: 34099867 PMCID: PMC8280178 DOI: 10.1038/s41386-021-01033-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The global number of patients with depression increases in correlation to exposure to social stress. Chronic stress does not trigger depression in all individuals, as some remain resilient. The underlying molecular mechanisms that contribute to stress sensitivity have been poorly understood, although revealing the regulation of stress sensitivity could help develop treatments for depression. We previously found that striatal Shati/Nat8l, an N-acetyltransferase, was increased in a depression mouse model. We investigated the roles of Shati/Nat8l in stress sensitivity in mice and found that Shati/Nat8l and brain-derived neurotrophic factor (BDNF) levels in the dorsal striatum were increased in stress-susceptible mice but not in resilient mice exposed to repeated social defeat stress (RSDS). Knockdown of Shati/Nat8l in the dorsal striatum induced resilience to RSDS. In addition, blockade of BDNF signaling in the dorsal striatum by ANA-12, a BDNF-specific receptor tropomyosin-receptor-kinase B (TrkB) inhibitor, also induced resilience to stress. Shati/Nat8l is correlated with BDNF expression after RSDS, and BDNF is downstream of Shati/Nat8l pathways in the dorsal striatum; Shati/Nat8l is epigenetically regulated by BDNF via histone acetylation. Our results demonstrate that striatal Shati/Nat8l-BDNF pathways determine stress sensitivity through epigenetic regulation. The striatal Shati/Nat8l-BDNF pathway could be a novel target for treatments of depression and could establish a novel therapeutic strategy for depression patients.
Collapse
Affiliation(s)
- Hajime Miyanishi
- grid.267346.20000 0001 2171 836XDepartment of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-ichi Muramatsu
- grid.410804.90000000123090000Division of Neurological Gene Therapy, Open Innovation Center, Jichi Medical University, Shimotsuke, Japan ,grid.26999.3d0000 0001 2151 536XCenter for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
8
|
Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomed Pharmacother 2021; 141:111866. [PMID: 34225013 DOI: 10.1016/j.biopha.2021.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Depressive disorder is a kind of emotional disorder that is mainly manifested with spontaneous and persistent low mood. Its etiology is complex and still not fully understood. Metabolomics, an important part of system biology characterized by its integrity and systematicness, analyzes endogenous metabolites of small molecules in vivo and examines the metabolic status of the organism. It is widely used in the field of disease research for its unique advantage in the disease molecular marker discovering Due to fewer adverse reactions and high safety, Chinese herbal medicine (CHM) has great advantages in the treatment of chronic diseases including depression. Metabolomics has been gradually applied to the efficacy evaluation of CHM in treatment of depression and the metabolomics analysis exhibits a systemic metabolic shift in amino acids (such as alanine, glutamic acid, valine, etc.), organic acids (lactic acid, citric acid, stearic acid, palmitic acid, etc.), and sugars, amines, etc. These differential metabolites are mainly involved in energy metabolism, amino acid metabolism, lipid metabolism, etc. In this review, we have exemplified the study of CHM in animals or clinics on the depression, and revealed that CHM treatment has significantly changed the metabolic disorders associated with depression, promoting metabolic network reorganization through restoring of key metabolites, and metabolic pathways, which may be the main mechanism basis of CHM's treatment on depression. Besides, we further envisioned the future application of metabolomics in the study of CHM treatment of depression.
Collapse
|
9
|
Lowe PA. Cross-National Comparisons between Canadian and US Higher Education Students on a New, Brief, Multidimensional Measure of Test Anxiety. JOURNAL OF PSYCHOEDUCATIONAL ASSESSMENT 2021. [DOI: 10.1177/07342829211016933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cross-cultural equivalence, country and gender differences, and external relations with other measures were examined on a new, brief measure of test anxiety, the Test Anxiety Measure for College Students-Short Form (TAMC-SF), in a sample of Canadian and US higher education students. The sample of 1204 students completed the TAMC-SF and other measures online. The results of tests of invariance found support for partial scalar invariance across country and gender on the TAMC-SF. In addition, results of a multivariate analysis of variance (MANOVA) and analysis of variances (ANOVAs) found country and gender differences on the TAMC-SF scales. Furthermore, validity evidence for the TAMC-SF scores with the scores of external measures was found. Overall, the findings support the use of the same test score interpretation for Canadian and US higher education students on the TAMC-SF and the use of the TAMC-SF in Canadian higher education students.
Collapse
Affiliation(s)
- Patricia A. Lowe
- Department of Educational Psychology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
10
|
Miyanishi H, Uno K, Iwata M, Kikuchi Y, Yamamori H, Yasuda Y, Ohi K, Hashimoto R, Hattori K, Yoshida S, Goto YI, Sumiyoshi T, Nitta A. Investigating DNA Methylation of SHATI/NAT8L Promoter Sites in Blood of Unmedicated Patients with Major Depressive Disorder. Biol Pharm Bull 2020; 43:1067-1072. [PMID: 32612069 DOI: 10.1248/bpb.b19-01099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric diseases. However, early detection and diagnosis of MDD is difficult, largely because there is no known biomarker or objective diagnostic examination, and its diagnosis is instead based on a clinical interview. The aim of this study was to develop a novel diagnostic tool using DNA methylation as a blood biomarker. We sought to determine whether unmedicated patients with MDD showed significant differences in DNA methylation in the promoter region of the SHATI/N-acetyltransferase 8 like (SHATI/NAT8L) gene compared to healthy controls. Sixty participants with MDD were recruited from all over Japan. They were diagnosed and assessed by at least two trained psychiatrists according to DSM-5 criteria. DNA was extracted from peripheral blood. We then assessed DNA methylation of the SHATI/NAT8L promoter regions in patients with MDD by pyrosequencing. Methylation levels of the SHATI/NAT8L promoter region at CpG sites in peripheral blood from unmedicated patients were significantly higher than in healthy controls. In contrast, medicated patients with MDD showed significantly lower methylation levels in the same region compared to healthy controls. Since previous studies of DNA methylation in MDD only assessed medicated patients, the methylation status of the SHATI/NAT8L promoter region in unmedicated patients presented herein may prove useful for the diagnosis of MDD. To our knowledge, this is the first attempt to measure methylation of the SHATI/NAT8L gene in drug-naïve patients with psychiatric diseases. Based on our findings, methylation of SHATI/NAT8L DNA might be a diagnostic biomarker of MDD.
Collapse
Affiliation(s)
- Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama.,Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Mina Iwata
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Yuu Kikuchi
- Department of Psychiatry, Osaka University Graduate School of Medicine
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry
| | - Sumiko Yoshida
- Medical Genome Center, National Center of Neurology and Psychiatry
| | - Yu-Ichi Goto
- Department of Preventive Intervention, National Institute of Mental Health, National Center of Neurology and Psychiatry
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention, National Institute of Mental Health, National Center of Neurology and Psychiatry
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
11
|
White TL, Gonsalves MA, Cohen RA, Harris AD, Monnig MA, Walsh EG, Nitenson AZ, Porges EC, Lamb DG, Woods AJ, Borja CB. The neurobiology of wellness: 1H-MRS correlates of agency, flexibility and neuroaffective reserves in healthy young adults. Neuroimage 2020; 225:117509. [PMID: 33127477 PMCID: PMC7869459 DOI: 10.1016/j.neuroimage.2020.117509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is a noninvasive imaging technique that measures the concentration of metabolites in defined areas of the human brain in vivo. The underlying structure of natural metabolism-emotion relationships is unknown. Further, there is a wide range of between-person differences in metabolite concentration in healthy individuals, but the significance of this variation for understanding emotion in healthy humans is unclear. Here we investigated the relationship of two emotional constructs, agency and flexibility, with the metabolites glutamate and glutamine (Glx), N-acetylaspartate (tNAA), choline (Cho), creatine (tCr), and myo-inositol (Ins) in the right dorsal anterior cingulate cortex (dACC) in medically and psychiatrically healthy volunteers (N = 20, 9 female; mean age = 22.8 years, SD = 3.40). The dACC was selected because this region is an integrative hub involved in multiple brain networks of emotion, cognition and behavior. Emotional traits were assessed using the Multidimensional Personality Questionnaire Brief Form (MPQ-BF), an empirically derived self-report instrument with an orthogonal factor structure. Phenotypes evaluated were positive and negative agency (MPQ-BF Social Potency, Aggression), emotional and behavioral flexibility (MPQ-BF Absorption, Control-reversed), and positive and negative affect (MPQ-BF Social Closeness; Stress Reaction, Alienation). The resting concentration of tNAA in the dACC was robustly positively correlated with Absorption (r = +0.56, unadjusted p = .005), moderately positively correlated with Social Potency (r = +0.42, unadjusted p = .03), and robustly negatively correlated with Aggression (r = −0.59, unadjusted p = .003). Absorption and Aggression accounted for substantial variance in tNAA (R2 = 0.31, 0.35; combined R2 = 0.50), and survived correction for multiple comparisons (Holm-Bonferroni adjusted p = .032, 0.021, respectively). dACC Glx and Cho had modest relationships with behavioral flexibility and social affiliation that did not survive this multiple correction, providing effect sizes for future work. Principal Component Analysis (PCA) revealed a three-factor orthogonal solution indicating specific relationships between: 1) Glx and behavioral engagement; 2) Cho and affiliative bonding; and 3) tNAA and a novel dimension that we term neuroaffective reserves. Our results inform the neurobiology of agency and flexibility and lay the groundwork for understanding mechanisms of natural emotion using 1H-MRS.
Collapse
Affiliation(s)
- Tara L White
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-4, 121 South Main St., Providence, RI 02912, USA; Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | | | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, and McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA
| | - Ashley D Harris
- Department of Radiology, CAIR Program, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mollie A Monnig
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-4, 121 South Main St., Providence, RI 02912, USA
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Adam Z Nitenson
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, and McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Psychiatry, and Center for Cognitive Aging and Memory, McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, and McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA
| | - Cara B Borja
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Chen G, Wang Y, Li Y, Zhang L, Dong M. A novel hippocampus metabolite signature in diabetes mellitus rat model of diabetic encephalopathy. Metab Brain Dis 2020; 35:895-904. [PMID: 32367268 DOI: 10.1007/s11011-020-00541-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Diabetic encephalopathy (DE) is one of the chronic complications of diabetes. Even then, the molecular mechanism underlying DE remains unexplored. In this study, we have made an attempt to investigate the metabolic changes associated with the streptozocin (STZ)-induced cognitive dysfunction in the hippocampus of the rat model, a classical rodent model for DE, with the help of Gas Chromatography-Mass Spectrometry-based method. The STZ injections led to the rise of mean blood glucose levels in the diabetes mellitus (DM) group of rats as compared to the control (CON) group of rats throughout the experiment. However, we did not find any significant difference between the blood glucose levels of the DM & the CON groups of rats before the STZ injection. The results indicated a behavioral and morphological cognitive dysfunction in the DM groups of rats. The metabolomic investigation of these DE rats demonstrated a lower level of N-acetylaspartate and dihydroxyacetone phosphate accompanied by a higher level of homocysteine and glutamate as against the CON group of rats. The outcome of this study may unravel the underlying pathophysiological mechanism of DE. Also, the metabolomic data from this study may provide a platform for the development of DE biomarkers.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Yizhong Wang
- Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yang Li
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Lujun Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 430071, No.99, Zhang zhi dong Road, Wuchang District, Wuhan, Hubei Province, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, 430071, No.99, Zhang zhi dong Road, Wuchang District, Wuhan, Hubei Province, China.
| |
Collapse
|
13
|
Zavorotnyy M, Zöllner R, Rekate H, Dietsche P, Bopp M, Sommer J, Meller T, Krug A, Nenadić I. Intermittent theta-burst stimulation moderates interaction between increment of N-Acetyl-Aspartate in anterior cingulate and improvement of unipolar depression. Brain Stimul 2020; 13:943-952. [PMID: 32380445 DOI: 10.1016/j.brs.2020.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intermittent theta-burst stimulation (iTBS), a novel repetitive transcranial magnetic stimulation (rTMS) technique, appears to have antidepressant effects when applied over left dorsolateral prefrontal cortex (DLPFC). However, its underlying neurobiological mechanisms are unclear. Proton magnetic resonance spectroscopy (1H-MRS) provides in vivo measurements of cerebral metabolites altered in major depressive disorder (MDD) like N-acetyl-aspartate (NAA) and choline-containing compounds (Cho). We used MRS to analyse effects of iTBS on the associations between the shifts in the NAA and Cho levels during therapy and MDD improvement. METHODS In-patients with unipolar MDD (N = 57), in addition to treatment as usual, were randomized to receive 20 iTBS or sham stimulations applied over left DLPFC over four weeks. Single-voxel 1H-MRS of the anterior cingulate cortex (ACC) was performed at baseline and follow-up. Increments of concentrations, as well as MDD improvement, were defined as endpoints. We tested a moderated mediation model of effects using the PROCESS macro (an observed variable ordinary least squares and logistic regression path analysis modeling tool) for SPSS. RESULTS Improvement of depressive symptoms was significantly associated with decrease of Cho/NAA ratio, mediated by NAA. iTBS had a significant moderating effect enhancing the relationship between NAA change and depression improvement. CONCLUSIONS Our findings suggest a potential neurochemical pathway and mechanisms of antidepressant action of iTBS, which may moderate the improvement of metabolic markers of neuronal viability. iTBS might increase neuroplasticity, thus facilitating normalization of neuronal circuit function.
Collapse
Affiliation(s)
- Maxim Zavorotnyy
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland; Marburg Center for Mind, Brain and Behavior, MCMBB, University of Marburg, Germany.
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Health Protection Authority, Frankfurt, Main, Germany
| | - Henning Rekate
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Patricia Dietsche
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Miriam Bopp
- Marburg Center for Mind, Brain and Behavior, MCMBB, University of Marburg, Germany; Department of Neurosurgery, University of Marburg, Germany
| | - Jens Sommer
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Marburg Center for Mind, Brain and Behavior, MCMBB, University of Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Marburg Center for Mind, Brain and Behavior, MCMBB, University of Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Marburg Center for Mind, Brain and Behavior, MCMBB, University of Marburg, Germany
| |
Collapse
|
14
|
Metabolic effects induced by chronic stress in the amygdala of diabetic rats: A study based on ex vivo 1H NMR spectroscopy. Brain Res 2019; 1723:146377. [DOI: 10.1016/j.brainres.2019.146377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
|
15
|
Uno K, Miyanishi H, Sodeyama K, Fujiwara T, Miyazaki T, Muramatsu SI, Nitta A. Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice. Behav Brain Res 2019; 376:112227. [PMID: 31520691 DOI: 10.1016/j.bbr.2019.112227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The number of patients with depressive disorders is increasing. However, the mechanism of depression onsets has not been completely revealed. We previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. In this study, we revealed the involvement of Shati/Nat8l in the vulnerability to major depression. Shati/Nat8l mRNA was increased only in the striatum of mice, which were exposed to chronic social defeat stress. Shati/Nat8l-overexpressed mice showed impairment in social interaction and sucrose preference after the subthreshold social defeat (microdefeat) stress. These depression-like behaviors were restored by fluvoxamine and LY341495 injection prior to these tests. Furthermore, the intracerebral administration of only fluvoxamine, but not of LY341495, to the dorsal striatum and direct infusion of LY341495 to the dorsal raphe also rescued. Taken together, Shati/Nat8l in the striatum has an important role in the vulnerability to depression onsets by regulating the origin of serotonergic neuronal system via GABAergic projection neuron in the dorsal raphe from the dorsal striatum.
Collapse
Affiliation(s)
- Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan; Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kengo Sodeyama
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Toshiyuki Fujiwara
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Toh Miyazaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan; Center for Gene & Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
16
|
Parshukova D, Smirnova LP, Ermakov EA, Bokhan NA, Semke AV, Ivanova SA, Buneva VN, Nevinsky GA. Autoimmunity and immune system dysregulation in schizophrenia: IgGs from sera of patients hydrolyze myelin basic protein. J Mol Recognit 2018; 32:e2759. [PMID: 30112774 DOI: 10.1002/jmr.2759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Several different theories of schizophrenia (SCZ) were discussed; the causes of this disease are not yet clear. Using ELISA, it was shown that titers of autoantibodies against myelin basic protein (MBP) in SCZ patients are ~1.8-fold higher than in healthy individuals but 5.0-fold lower than in patients with multiple sclerosis. Several rigid criteria were checked to show that the MBP-hydrolyzing activity is an intrinsic property of SCZ IgGs. Approximately 82% electrophoretically homogeneous SCZ IgGs purified using several affinity sorbents including Sepharose with immobilized MBP hydrolyze specifically only MBP but not many other tested proteins. The average relative activity of IgGs from patients with negative symptoms was 2.5-fold higher than that of patients with positive symptoms of SCZ, and it increases with the duration of this pathology. It was shown that abzymes are the earliest statistically significant markers of many autoimmune pathologies. Our findings surmise that the immune systems of individual SCZ patients can generate a variety of anti-MBP abzymes with different catalytic properties, which can attack MBP of the myelin-proteolipid shell of axons. Therefore, autoimmune processes together with other mechanisms can play an important role in SCZ pathogenesis. MBP-hydrolyzing antibodies were previously detected in the blood of 80% to 90% of patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, some similar neuropsychiatric indicators of disease common to SLE, MS, and SCZ were described in the literature. Thus, the destruction of the myelin sheath and the production of MBP-hydrolyzing antibodies can be a common phenomenon for some different diseases.
Collapse
Affiliation(s)
- Daria Parshukova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Liudmila P Smirnova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Evgeny A Ermakov
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Arkadiy V Semke
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Tomsk, Russia
| | - Valentina N Buneva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
17
|
Ermakov EA, Ivanova SA, Buneva VN, Nevinsky GA. Blood-Derived RNA- and microRNA-Hydrolyzing IgG Antibodies in Schizophrenia Patients. BIOCHEMISTRY (MOSCOW) 2018; 83:507-526. [PMID: 29738685 DOI: 10.1134/s0006297918050048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abzymes with various catalytic activities are the earliest statistically significant markers of existing and developing autoimmune diseases (AIDs). Currently, schizophrenia (SCZD) is not considered to be a typical AID. It was demonstrated recently that antibodies from SCZD patients efficiently hydrolyze DNA and myelin basic protein. Here, we showed for the first time that autoantibodies from 35 SCZD patients efficiently hydrolyze RNA (cCMP > poly(C) > poly(A) > yeast RNA) and analyzed site-specific hydrolysis of microRNAs involved in the regulation of several genes in SCZD (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p). All four microRNAs were cleaved by IgG preparations (n = 21) from SCZD patients in a site-specific manner. The RNase activity of the abzymes correlated with SCZD clinical parameters. The data obtained showed that SCZD patients might display signs of typical autoimmune processes associated with impaired functioning of microRNAs resulting from their hydrolysis by the abzymes.
Collapse
Affiliation(s)
- E A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - S A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634014, Russia
| | - V N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - G A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Ermakov EA, Ivanova SA, Buneva VN, Nevinsky GA. Hydrolysis by catalytic IgGs of microRNA specific for patients with schizophrenia. IUBMB Life 2018; 70:153-164. [PMID: 29341394 DOI: 10.1002/iub.1712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Significant importance of autoimmune changes in the pathogenesis of schizophrenia (SCZ) is not established. Here, we present the first evidence that autoantibodies of 100% SCZ patients possess RNase activity: сCMP > poly(C) > poly(A) > yeast RNA. In addition, we have got an unexpected result: there was revealed site-specific hydrolysis of four known SCZ specific microRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p) playing an important role in the regulation of several genes functioning. Three major of cleavage sites are located in the microRNA loops or duplex parts directly articulated with the loops. RNase abzymes can contribute to decreasing of microRNAs effects on the functioning of numerous genes and the products of their transcription. Therefore, abzymes with RNase activity may be to some extent important for the development of schizophrenia. © 2018 IUBMB Life, 70(2):153-164, 2018.
Collapse
Affiliation(s)
- Evgeny A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Ave., Tomsk, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, Russia
| |
Collapse
|
19
|
Huang M, Guo W, Lu S, Pan F, Chen J, Hu J, Hu S, Xu W, Shang D, Xu Y. The relationship between the alterations in metabolite levels in the dorsolateral prefrontal cortex and clinical symptoms of patients with first-episode schizophrenia: a one year follow-up study. Oncotarget 2018; 10:606-615. [PMID: 30728911 PMCID: PMC6355173 DOI: 10.18632/oncotarget.23983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Background Reduced brain metabolites such as N-acetyl-aspartate (NAA), glutamate (Glx), Choline (Cho) and myo-inositol (MI) have been repeatedly found in first-episode schizophrenia (FES) and suggest neuronal loss or dysfunction. However, the potential relationship between the metabolite level and the clinical symptoms or the recovery of FES remained unclear. Objectives This study aimed to investigate the correlation between the alterations in dorsolateral prefrontal cortex (DLPFC) metabolite levels of patients with first-episode schizophrenia (FES) and the changes in clinical symptoms after one year treatment. Materials and Methods FES patients underwent 1H-MRS scan twice: one time at the baseline and the other one year later, while the healthy group patients underwent only once at the baseline time. The symptom severity of patients was measured by PANSS. Principal Observations An increase in the NAA/Cr level was detected in the left DLPFC of patients with FES. The change in the NAA/Cr level was significantly correlated with the alteration in their PANSS-P score. The Cho/Cr levels on both sides of DLPFC in patients with FES were lower compared with the healthy controls both at the baseline and after the treatment. The NAA/Cr and MI/Cr levels in the right DLPFC were decreased after the treatment. Conclusions (1) the depletion of NAA in left DLPFC might be a state characteristic; (2) the Cho/Cr level might be the potential endophenotype of schizophrenia; (3) the decrease of NAA/Cr and MI/Cr level in right DLPFC might be due to the development of schizophrenia.
Collapse
Affiliation(s)
- Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Wuqiu Guo
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou 310028, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Jinkai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Jianbo Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Weijuan Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
20
|
Ermakov EA, Smirnova LP, Bokhan NA, Semke AV, Ivanova SA, Buneva VN, Nevinsky GA. Catalase activity of IgG antibodies from the sera of healthy donors and patients with schizophrenia. PLoS One 2017; 12:e0183867. [PMID: 28945759 PMCID: PMC5612456 DOI: 10.1371/journal.pone.0183867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022] Open
Abstract
We present first evidence showing that some electrophoretically homogeneous IgGs from the sera of patients with schizophrenia (36.4%) and their Fab and F(ab)2 fragments as well as from healthy donors (33.3%) possess catalase activity. The relative catalase activity of IgGs from the sera of individual schizophrenia patients (and healthy donors) significantly varied from patient to patient, but the activity of IgGs from healthy donors is on average 15.8-fold lower than that for schizophrenia patients. After extensive dialysis of purified IgGs against EDTA chelating metal ions, the relative catalase activity of IgGs decreases on average approximately 2.5-3.7-fold; all IgGs possess metal-dependent and independent catalase activity. The addition of external Me2+ ions to dialyzed and non-dialyzed IgGs leads to a significant increase in their activity. The best activator of dialyzed and non-dialyzed IgGs is Co2+, the activation by Cu2+, Mn2+, and Ni2+ ions were rare and always lower than by Co2+. Every IgG preparation demonstrates several individual sets of very well expressed pH optima in the pH range from 4.0 to 9.5. These data speak for the individual repertoire of catalase IgGs in every person and an extreme diversity of abzymes in their pH optima and activation by different metal ions. It is known that antioxidant enzymes such as superoxide dismutases, catalases, and glutathione peroxidases represent critical defense mechanisms preventing oxidative modifications of DNA, proteins, and lipids. Catalase activity of human IgGs could probably also play a major role in the protection of organisms from oxidative stress and toxic compounds.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila P. Smirnova
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Arkadiy V. Semke
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
21
|
Miyamoto Y, Iegaki N, Fu K, Ishikawa Y, Sumi K, Azuma S, Uno K, Muramatsu SI, Nitta A. Striatal N-Acetylaspartate Synthetase Shati/Nat8l Regulates Depression-Like Behaviors via mGluR3-Mediated Serotonergic Suppression in Mice. Int J Neuropsychopharmacol 2017; 20:1027-1035. [PMID: 29020418 PMCID: PMC5716104 DOI: 10.1093/ijnp/pyx078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several clinical studies have suggested that N-acetylaspartate and N-acetylaspartylglutamate levels in the human brain are associated with various psychiatric disorders, including major depressive disorder. We have previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. Shati/Nat8l synthesizes N-acetylaspartate from L-aspartate and acetyl-coenzyme A. Further, N-acetylaspartate is converted into N-acetylaspartylglutamate, a neurotransmitter for metabotropic glutamate receptor 3. METHODS Because Shati/Nat8l mRNA levels were increased in the dorsal striatum of mice following the exposure to forced swimming stress, Shati/Nat8l was overexpressed in mice by the microinjection of adeno-associated virus vectors containing Shati/Nat8l gene into the dorsal striatum (dS-Shati/Nat8l mice). The dS-Shati/Nat8l mice were further assessed using behavioral and neurochemical tests. RESULTS The dS-Shati/Nat8l mice exhibited behavioral despair in the forced swimming and tail suspension tests and social withdrawal in the 3-chamber social interaction test. These depression-like behaviors were attenuated by the administration of a metabotropic glutamate receptor 2/3 antagonist and a selective serotonin reuptake inhibitor. Furthermore, the metabolism of N-acetylaspartate to N-acetylaspartylglutamate was decreased in the dorsal striatum of the dS-Shati/Nat8l mice. This finding corresponded with the increased expression of glutamate carboxypeptidase II, an enzyme that metabolizes N-acetylaspartylglutamate present in the extracellular space. Extracellular serotonin levels were lower in the dorsal striatum of the dS-Shati/Nat8l and normal mice that were repeatedly administered a selective glutamate carboxypeptidase II inhibitor. CONCLUSIONS Our findings indicate that the striatal expression of N-acetylaspartate synthetase Shati/Nat8l plays a role in major depressive disorder via the metabotropic glutamate receptor 3-mediated functional control of the serotonergic neuronal system.
Collapse
Affiliation(s)
- Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Noriyuki Iegaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kequan Fu
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Yudai Ishikawa
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kazuyuki Sumi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Sota Azuma
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Shin-ichi Muramatsu
- Division of Neurology, Jichi Medical University, Shimotsuke, Japan (Dr Muramatsu),Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (Dr Muramatsu)
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta),Correspondence: Atsumi Nitta, PhD, Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan ()
| |
Collapse
|
22
|
Neuroprotective Effect of Modified Electroconvulsive Therapy for Schizophrenia: A Proton Magnetic Resonance Spectroscopy Study. J Nerv Ment Dis 2017; 205:480-486. [PMID: 28141630 DOI: 10.1097/nmd.0000000000000652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The underlying mechanism of modified electroconvulsive therapy (MECT) treatment for drug-resistant and catatonic schizophrenia remains unclear. Here, we aim to investigate whether MECT exerts its antipsychotic effects through elevating N-acetylaspartate (NAA) concentration measured by proton magnetic resonance spectroscopy (H-MRS). Multiple-voxel H-MRS was acquired in the bilateral prefrontal cortex (PFC) and thalamus to obtain measures of neurochemistry in 32 MECT, 34 atypical antipsychotic-treated schizophrenic patients, and 34 healthy controls. We found that both MECT and atypical antipsychotic treatments showed significant antipsychotic efficacy. MECT and atypical antipsychotic treatments reversed the reduced NAA/creatine ratio (NAA/Cr) in the left PFC and left thalamus in schizophrenic patients compared with healthy controls. Furthermore, the NAA/Cr ratio after treatments was significant higher in the MECT group, but not in the medication group. Our findings demonstrate that eight times of MECT elevated the relative NAA concentration to display neuroprotective effect, which may be the underlying mechanism of rapid antipsychotic efficacy.
Collapse
|
23
|
Du H, Wang K, Su L, Zhao H, Gao S, Lin Q, Ma X, Zhu B, Dong X, Lou Z. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression. J Pharm Biomed Anal 2016; 128:469-479. [DOI: 10.1016/j.jpba.2016.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
|
24
|
GC-MS-based metabolomic study on the antidepressant-like effects of diterpene ginkgolides in mouse hippocampus. Behav Brain Res 2016; 314:116-24. [PMID: 27498146 DOI: 10.1016/j.bbr.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Ginkgo biloba extract (GBE), including EGb-761, have been suggested to have antidepressant activity based on previous behavioral and biochemical analyses. However, because GBE contain many constituents, the mechanisms underlying this suggested antidepressant activity are unclear. Here, we investigated the antidepressant-like effects of diterpene ginkgolides (DG), an important class of constituents in GBE, and studied their effects in the mouse hippocampus using a GC-MS-based metabolomics approach. Mice were randomly divided into five groups and injected daily until testing with 0.9% NaCl solution, one of three doses of DG (4.06, 12.18, and 36.54mg/kg), or venlafaxine. Sucrose preference (SPT) and tail suspension (TST) tests were then performed to evaluate depressive-like behaviors in mice. DG (12.18 and 36.54mg/kg) and venlafaxine (VLX) administration significantly increased hedonic behavior in mice in the SPT. DG (12.18mg/kg) treatment also shortened immobility time in the TST, suggestive of antidepressant-like effects. Significant differences in the metabolic profile in the DG (12.18mg/kg) compared with the control or VLX group indicative of an antidepressant-like effect were observed using multivariate analysis. Eighteen differential hippocampal metabolites were identified that discriminated the DG (12.18mg/kg) and control groups. These biochemical changes involved neurotransmitter metabolism, oxidative stress, glutathione metabolism, lipid metabolism, energy metabolism, and kynurenic acid, providing clues to the therapeutic mechanisms of DG. Thus, this study showed that DG has antidepressant-like activities in mice and shed light on the biological mechanisms underlying the effects of diterpene ginkgolides on behavior, providing an important drug candidate for the treatment of depression.
Collapse
|
25
|
Ermakov EA, Smirnova LP, Parkhomenko TA, Dmitrenok PS, Krotenko NM, Fattakhov NS, Bokhan NA, Semke AV, Ivanova SA, Buneva VN, Nevinsky GA. DNA-hydrolysing activity of IgG antibodies from the sera of patients with schizophrenia. Open Biol 2016; 5:150064. [PMID: 26382278 PMCID: PMC4593665 DOI: 10.1098/rsob.150064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is believed that damage to the membranes of brain cells of schizophrenia (SCZ) patients induces the formation of autoantigens and autoantibodies. Nevertheless, the importance of immunological changes leading to the loss of tolerance to self-antigens in the genesis of SCZ has not been established. The MALDI mass spectra of the IgG light chains of 20 healthy donors were relatively homogeneous and characterized by one peak with only one maximum. In contrast to the healthy donors, the MALDI mass spectra of IgG light chains corresponding to 20 SCZ patients demonstrated, similarly to 20 autoimmune systemic lupus erythematosus (SLE) patients, two maxima of a comparable intensity. In addition, the MALDI spectra of the IgG light chains of five SLE and four SCZ patients contained a small additional brightly pronounced peak with remarkably lower molecular mass compared with the main one. DNase autoantibodies (abzymes) can be found in the blood of patients with several autoimmune diseases, while the blood of healthy donors or patients with diseases without a significant disturbance of the immune status does not contain DNase abzymes. Here, we present the first analysis of anti-DNA antibodies and DNase abzymes in the sera of SCZ patients. Several strict criteria have been applied to show that the DNase activity is an intrinsic property of IgGs from the sera of SCZ patients. The sera of approximately 30% of SCZ patients displayed a higher content of antibodies (compared with 37% of SLE) interacting with single- and double-stranded DNA compared with healthy donors. Antibodies with DNase activity were revealed in 80% of the patients. These data indicate that some SCZ patients may show signs of typical autoimmune processes to a certain extent.
Collapse
Affiliation(s)
- Evgeny A Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Ludmila P Smirnova
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Taisiya A Parkhomenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel S Dmitrenok
- Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Nina M Krotenko
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Nikolai S Fattakhov
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Nikolay A Bokhan
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Arkadiy V Semke
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Russian Academy of Medical Sciences, 4 Aleutskaya Avenue, Tomsk 634014, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Gong MJ, Han B, Wang SM, Liang SW, Zou ZJ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal 2016; 123:63-73. [DOI: 10.1016/j.jpba.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
|
27
|
DNA Damage in Major Psychiatric Diseases. Neurotox Res 2016; 30:251-67. [PMID: 27126805 DOI: 10.1007/s12640-016-9621-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022]
Abstract
Human cells are exposed to exogenous insults and continuous production of different metabolites. These insults and unwanted metabolic products might interfere with the stability of genomic DNA. Recently, many studies have demonstrated that different psychiatric disorders show substantially high levels of oxidative DNA damage in the brain accompanied with morphological and functional alterations. It reveals that damaged genomic DNA may contribute to the pathophysiology of these mental illnesses. In this article, we review the roles of oxidative damage and reduced antioxidant ability in some vastly studied psychiatric disorders and emphasize the inclusion of treatment options involving DNA repair. In addition, while most currently used antidepressants are based on the manipulation of the neurotransmitter regulation in managing different mental abnormalities, they are able to prevent or reverse neurotoxin-induced DNA damage. Therefore, it may be plausible to target on genomic DNA alterations for psychiatric therapies, which is of pivotal importance for future antipsychiatric drug development.
Collapse
|
28
|
Hermens DF, Naismith SL, Chitty KM, Lee RSC, Tickell A, Duffy SL, Paquola C, White D, Hickie IB, Lagopoulos J. Cluster analysis reveals abnormal hippocampal neurometabolic profiles in young people with mood disorders. Eur Neuropsychopharmacol 2015; 25:836-45. [PMID: 25795519 DOI: 10.1016/j.euroneuro.2015.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 01/01/2023]
Abstract
While numerous studies have employed magnetic resonance spectroscopy (MRS) to determine in vivo neurometabolite levels associated with mood disorders the findings in both unipolar depression and bipolar disorder have been mixed. Data-driven studies may shed new light on this literature by identifying distinct subgroups of patients who may benefit from different treatment strategies. The objective of the present study was to utilize hierarchical cluster analysis in order to generate new hypotheses with respect to neurometabolic profiling of mood disorder. Participants were 165 young persons (18-30 yrs) with a mood disorder and 40 healthy controls. Neurometabolite levels were recorded via proton-MRS ((1)H MRS). The ratios (relative to creatine) of glutamate (GLU), N-acetyl aspartate (NAA) and myo-inositol (MI) measured within the hippocampus. Self-reported and clinician rated symptoms as well as cognition were also measured. The unipolar depression (N=90) and bipolar disorder (N=75) groups did not significantly differ (from each other or controls) in their levels of GLU, NAA or MI. Cluster analyses derived four subgroups of patients who were distinguished by all three metabolites. There was a pattern of positive association between NAA and GLU, whereby clusters were abnormally increased (clusters 1, 2) or normal (cluster 4) or abnormally decreased (cluster 3) in these neurometabolites. These findings suggest that there are neurometabolic abnormalities in subgroups of young people with mood disorder, which may occur despite diagnostic similarities. Such evidence highlights that the underlying neurobiology of mood disorder is complex and MRS may have unique utility in delineating underlying neurobiology and targeting treatment strategies.
Collapse
Affiliation(s)
- Daniel F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia.
| | - Sharon L Naismith
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Kate M Chitty
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Rico S C Lee
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Ashleigh Tickell
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Shantel L Duffy
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Casey Paquola
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Django White
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Ian B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| | - Jim Lagopoulos
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, Australia
| |
Collapse
|
29
|
Wijtenburg SA, Yang S, Fischer BA, Rowland LM. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci Biobehav Rev 2015; 51:276-95. [PMID: 25614132 PMCID: PMC4427237 DOI: 10.1016/j.neubiorev.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy ((1)H MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3T or higher, and summarizes the neurochemical findings in schizophrenia. Overall, (1)H MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Radiology, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA
| | - Bernard A Fischer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Veterans Affairs Capital Network (VISN 5) Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs, 10 N. Greene Street, Baltimore, MD 21201, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD 21228, USA
| |
Collapse
|
30
|
Gan JL, Cheng ZX, Duan HF, Yang JM, Zhu XQ, Gao CY. Atypical antipsychotic drug treatment for 6 months restores N-acetylaspartate in left prefrontal cortex and left thalamus of first-episode patients with early onset schizophrenia: A magnetic resonance spectroscopy study. Psychiatry Res 2014; 223:23-7. [PMID: 24831926 DOI: 10.1016/j.pscychresns.2014.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
Abstract
Early onset schizophrenia (EOS) is often associated with poorer outcomes, including lack of school education, higher risk of mental disability and resistance to treatment. But the knowledge of the neurobiological mechanism of EOS is limited. Here, using proton magnetic resonance spectroscopy, we investigated the possible neurochemical abnormalities in prefrontal cortex (PFC) and thalamus of first-episode drug-naïve patients with EOS, and followed up the effects of atypical antipsychotic treatment for 6 months on neurochemical metabolites and clinical symptoms. We measured the ratios of N-acetylaspartate (NAA), choline (Cho) to creatine (Cr) in 41 adolescents with first episode of EOS and in 28 healthy controls matched for age, gender, and years of education. The EOS patients presented with abnormally low NAA/Cr values in the left PFC and left thalamus with a reduced tendency in the right PFC compared with healthy controls. No significant differences were detected between groups for Cho/Cr in PFC and thalamus in any hemisphere. After atypical antipsychotic treatment for 6 months, the reduced NAA/Cr in the left PFC and left thalamus in EOS patients was elevated to the normal level in healthy controls, without any alteration in Cho/Cr. We also found that there was no significant correlation between the neurochemical metabolite ratios in the PFC and thalamus in patients with EOS, and clinical characteristics. Our results suggest that there was neurochemical metabolite abnormalities in PFC and thalamus in EOS patients, atypical antipsychotic treatment can effectively relieve the symptoms and restore the reduced NAA in PFC and thalamus.
Collapse
Affiliation(s)
- Jing-Li Gan
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China.
| | - Zheng-Xiang Cheng
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Hui-Feng Duan
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Jia-Ming Yang
- Center for Medical Imaging, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Xi-Quan Zhu
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| | - Cun-You Gao
- Mental Diseases Prevention and Treatment Institute of Chinese PLA, PLA 91st Central Hospital, Jiaozuo 454003, PR China
| |
Collapse
|
31
|
Amino acid metabolic dysfunction revealed in the prefrontal cortex of a rat model of depression. Behav Brain Res 2014; 278:286-92. [PMID: 24861712 DOI: 10.1016/j.bbr.2014.05.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) is a debilitating mood disorder. However, the molecular mechanism(s) underlying depression remain largely unknown. Here, we applied a GC-MS-based metabonomic approach in the chronic unpredictable mild stress (CUMS) model, a well-established rodent model of depression, to investigate significant metabolic changes in the rat prefrontal cortex (PFC). Multivariate statistical analysis - including principal component analysis, partial least squares-discriminate analysis, and pair-wise orthogonal projections to latent structures discriminant - was applied to identify differential PFC metabolites between CUMS rats and healthy controls. As compared to healthy control rats, CUMS rats were characterized by lower levels of isoleucine and glycerol in combination with higher levels of N-acetylaspartate and β-alanine. These findings should provide insight into the pathophysiological mechanism(s) underlying MDD and preliminary leads relevant to diagnostic biomarker discovery for depression.
Collapse
|
32
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
33
|
Ariyannur PS, Arun P, Barry ES, Andrews-Shigaki B, Bosomtwi A, Tang H, Selwyn R, Grunberg NE, Moffett JR, Namboodiri AM. Do reductions in brainN-acetylaspartate levels contribute to the etiology of some neuropsychiatric disorders? J Neurosci Res 2013; 91:934-42. [DOI: 10.1002/jnr.23234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Prasanth S. Ariyannur
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Erin S. Barry
- Department of Medical and Clinical Psychology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Brian Andrews-Shigaki
- Department of Military and Emergency Medicine; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Asamoah Bosomtwi
- Department of Radiology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Haiying Tang
- Department of Radiology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Reed Selwyn
- Department of Radiology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Aryan M.A. Namboodiri
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| |
Collapse
|
34
|
de Diego-Adeliño J, Portella MJ, Gómez-Ansón B, López-Moruelo O, Serra-Blasco M, Vives Y, Puigdemont D, Pérez-Egea R, Álvarez E, Pérez V. Hippocampal abnormalities of glutamate/glutamine, N-acetylaspartate and choline in patients with depression are related to past illness burden. J Psychiatry Neurosci 2013; 38:107-16. [PMID: 23425950 PMCID: PMC3581591 DOI: 10.1503/jpn.110185] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Smaller hippocampal volumes in major depressive disorder (MDD) have been linked with earlier onset, previous recurrences and treatment refractoriness. The aim of our study was to investigate metabolite abnormalities in the hippocampus associated with past depressive illness burden. METHODS Glutamate/glutamine (Glx), N-acetylaspartate (NAA) and choline (Cho), potential markers of glial/neuronal integrity and membrane turnover, respectively, were measured in adults with depression and healthy controls using a 3 T magnetic resonance spectroscopy scanner. Voxels were placed in the head of the right and left hippocampus. We controlled for systematic differences resulting from volume-of-interest (VOI) tissue composition and total hippocampal volume. RESULTS Our final sample comprised a total of 16 healthy controls and 52 adult patients with depression in different stages of the illness (20 treatment-resistant/chronic, 18 remitted-recurrent and 14 first-episode), comparable for age and sex distribution. Patients with treatment-resistant/chronic and remitted-recurrent depression had significantly lower levels of Glx and NAA than controls, especially in the right hippocampal region (p ≤ 0.025). Diminished levels of Glx were correlated with longer illness duration (left VOI r = -0.34, p = 0.01). By contrast, Cho levels were significantly higher in patients with treatment-resistant/chronic depression than those with first-episode depression or controls in the right and left hippocampus (up to 19% higher; all p ≤ 0.025) and were consistently related to longer illness duration (right VOI r = 0.30, p = 0.028; left VOI r = 0.38, p = 0.004) and more previous episodes (right VOI r = 0.46, p = 0.001; left VOI r = 0.44, p = 0.001). LIMITATIONS The cross-sectional design and the inclusion of treated patients are the main limitations of the study. CONCLUSION Our results support that metabolite alterations within the hippocampus are more pronounced in patients with a clinical evolution characterized by recurrences and/or chronicity and add further evidence to the potential deleterious effects of stress and depression on this region.
Collapse
Affiliation(s)
| | - Maria J. Portella
- Correspondence to: M.J. Portella, Department of Psychiatry, Hospital de la Santa Creu i Sant Pau (UAB, CIBERSAM), Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Antoni Ma. Claret, 167, 08025 Barcelona, Spain;
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Current world literature. Curr Opin Psychiatry 2012; 25:155-62. [PMID: 22297717 DOI: 10.1097/yco.0b013e3283514a53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci 2012; 11:199-251. [PMID: 22294088 DOI: 10.1007/7854_2011_197] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The measurement of brain metabolites with magnetic resonance spectroscopy (MRS) provides a unique perspective on the brain bases of neuropsychiatric disorders. As a context for interpreting MRS studies of neuropsychiatric disorders, we review the characteristic MRS signals, the metabolic dynamics,and the neurobiological significance of the major brain metabolites that can be measured using clinical MRS systems. These metabolites include N-acetylaspartate(NAA), creatine, choline-containing compounds, myo-inositol, glutamate and glutamine, lactate, and gamma-amino butyric acid (GABA). For the major adult neuropsychiatric disorders (schizophrenia, bipolar disorder, major depression, and the anxiety disorders), we highlight the most consistent MRS findings, with an emphasis on those with potential clinical or translational significance. Reduced NAA in specific brain regions in schizophrenia, bipolar disorder, post-traumatic stress disorder, and obsessive–compulsive disorder corroborate findings of reduced brain volumes in the same regions. Future MRS studies may help determine the extent to which the neuronal dysfunction suggested by these findings is reversible in these disorders. Elevated glutamate and glutamine (Glx) in patients with bipolar disorder and reduced Glx in patients with unipolar major depression support models of increased and decreased glutamatergic function, respectively, in those conditions. Reduced phosphomonoesters and intracellular pH in bipolar disorder and elevated dynamic lactate responses in panic disorder are consistent with metabolic models of pathogenesis in those disorders. Preliminary findings of an increased glutamine/glutamate ratio and decreased GABA in patients with schizophrenia are consistent with a model of NMDA hypofunction in that disorder. As MRS methods continue to improve, future studies may further advance our understanding of the natural history of psychiatric illnesses, improve our ability to test translational models of pathogenesis, clarify therapeutic mechanisms of action,and allow clinical monitoring of the effects of interventions on brain metabolicmarkers
Collapse
|
37
|
Abasolo N, Torrell H, Roig B, Moyano S, Vilella E, Martorell L. RT-qPCR study on post-mortem brain samples from patients with major psychiatric disorders: reference genes and specimen characteristics. J Psychiatr Res 2011; 45:1411-8. [PMID: 21704324 DOI: 10.1016/j.jpsychires.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/17/2011] [Accepted: 06/01/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Gene expression studies conducted in post-mortem human brain samples have the potential to identify relevant genes implicated in psychiatric disorders. Although reverse transcription quantitative real-time PCR (RT-qPCR) has emerged as the method of choice for specific gene expression studies, it requires the use of stable reference genes, and it is necessary to control for pre- and post-mortem factors to obtain reliable data. OBJECTIVE The aim of this study was to identify suitable reference genes and specimen characteristics that can be taken into account when comparing mRNA expression data between post-mortem brain specimens from psychiatric patients and controls. METHOD We used a selection of suitably matched occipital cortex specimens from subjects in each of the following groups: schizophrenia (N = 15), bipolar disorder (N = 13), major depressive disorder (N = 15), and control (N = 15). Quantitative and qualitative RNA analyses were performed prior to RT-qPCR and gene expression stability was evaluated with geNorm and NormFinder. RESULTS We identified GAPDH, RPS17, RPL30, RPLP0, and TFRC as potential reference genes from a sample plate containing 32 candidates commonly used as reference genes. Further analyses of these 5 genes highlighted that 1) they are suitable reference genes for RT-qPCR studies in these post-mortem brain samples from psychiatric patients, and 2) the RNA quality index is highly correlated with gene expression values (r = -0.681, p < 0.0001). CONCLUSIONS In addition to controlling for pre- and post-mortem factors and selecting stable reference genes for normalization, sample sets should be matched with regard to RNA quality.
Collapse
Affiliation(s)
- Nerea Abasolo
- Hospital Universitari Psiquiàtric Institut Pere Mata, IISPV. Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Song Z, Ge D, Ishii K, Yamada H, Toriumi K, Watanabe H, Nabeshima T, Fukushima T. Determination of N-acetylaspartic acid concentration in the mouse brain using HPLC with fluorescence detection. Biomed Chromatogr 2011; 26:147-51. [DOI: 10.1002/bmc.1639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Ziyu Song
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Dan Ge
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Kana Ishii
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Hiroshi Yamada
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Kazuya Toriumi
- Department of Chemical Pharmacology; Meijo University Graduate School of Pharmaceutical Sciences; Nagoya; 468-8503; Japan
| | - Hiroyuki Watanabe
- Department of Chemical Pharmacology; Meijo University Graduate School of Pharmaceutical Sciences; Nagoya; 468-8503; Japan
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology; Meijo University Graduate School of Pharmaceutical Sciences; Nagoya; 468-8503; Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| |
Collapse
|