1
|
Jiang W, Gong M, Shen L, Yu C, Ruan H, Chen P, Gao S, Xiao Z. The Receptor for Advanced Glycation End-products in the Mouse Anterior Cingulate Cortex is Involved in Neuron‒Astrocyte Coupling in Chronic Inflammatory Pain and Anxiety Comorbidity. Mol Neurobiol 2025:10.1007/s12035-025-04713-y. [PMID: 39863743 DOI: 10.1007/s12035-025-04713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Previous studies have shown that astrocyte activation in the anterior cingulate cortex (ACC), accompanied by upregulation of the astrocyte marker S100 calcium binding protein B (S100B), contributes to comorbid anxiety in chronic inflammatory pain (CIP), but the exact downstream mechanism is still being explored. The receptor for advanced glycation end-products (RAGE) plays an important role in chronic pain and psychosis by recognizing ligands, including S100B. Therefore, we speculate that RAGE may be involved in astrocyte regulation of the comorbidity between CIP and anxiety by recognizing S100B. Here, we investigated the potential role of RAGE and the correlation between RAGE and astrocyte regulation in the ACC using a mouse model of complete Freund's adjuvant (CFA)-induced inflammatory pain. We detected substantial upregulation of RAGE expression in ACC neurons when anxiety-like behaviors occurred in CFA-treated mice. The inhibition of RAGE expression decreased the hyperexcitability of ACC neurons and alleviated both hyperalgesia and anxiety in CFA-treated mice. Furthermore, we found that the ACC astrocytic S100B level increased over a similar time course. Intra-ACC application of S100B or downregulation of ACC astrocytic S100B via suppression of astrocyte activation significantly affected RAGE levels and the relative behaviors of CFA-treated mice. Taken together, these findings suggest that the upregulation of ACC neuronal RAGE results from the activation of astrocytic S100B and leads to the maintenance of pain perception and anxiety in the late phase after CFA injection, which may partly explain the mechanism by which ACC neuron‒astrocyte coupling promotes the maintenance of CIP and anxiety comorbidity.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of Education, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, Guizhou, China
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, No. 10 Changjiang branch Road, Chongqing, 400042, China
| | - Minmin Gong
- Graduate School, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, Guizhou, China
- Department of Physiology, School of Preclinical Medicine Science, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, Guizhou, China
| | - Linlin Shen
- Department of Respiratory and Critical Care Medicine, Xinqiao Hospital, Army Medical University, No. 83 Xinqiao Street, Chongqing, 400037, China
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Chongqing Technology and Business University, Eshibaoshan, Chongqing, 400067, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Penghui Chen
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, No. 10 Changjiang branch Road, Chongqing, 400042, China.
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, China.
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, China.
| |
Collapse
|
2
|
Al-Hakeim HK, Altufaili MF, Alhaideri AF, Almulla AF, Moustafa SR, Maes M. Increased AGE-RAGE axis stress in methamphetamine abuse and methamphetamine-induced psychosis: Associations with oxidative stress and increased atherogenicity. Addict Biol 2023; 28:e13333. [PMID: 37753569 DOI: 10.1111/adb.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Methamphetamine (MA)-induced psychosis (MIP) is associated with increased oxidative toxicity (especially lipid peroxidation) and lowered antioxidant defences. Advanced glycation end products (AGEs) cause oxidative stress upon ligand binding to AGE receptors (RAGEs). There is no data on whether MA use may cause AGE-RAGE stress or whether the latter is associated with MIP. This case-control study recruited 60 patients with MA use disorder and 30 normal controls and measured serum levels of oxidative stress toxicity (OSTOX, lipid peroxidation), antioxidant defences (ANTIOX), magnesium, copper, atherogenicity, AGE and soluble RAGE (sRAGE) and computed a composite reflecting AGE-RAGE axis activity. MA dependence and use were associated with elevated levels of AGE, sRAGE, OSTOX/ANTIOX, Castelli Risk Index 1 and atherogenic index of plasma. Increased sRAGE concentrations were strongly correlated with dependence severity and MA dose. Increased AGE-RAGE stress was correlated with OSTOX, OSTOX/ANTIOX and MA-induced intoxication symptoms, psychosis, hostility, excitement and formal thought disorders. The regression on AGE-RAGE, the OSTOX/ANTIOX ratio, decreased magnesium and increased copper explained 54.8% of the variance in MIP symptoms, and these biomarkers mediated the effects of increasing MA concentrations on MIP symptoms. OSTOX/ANTIOX, AGE-RAGE and insufficient magnesium were found to explain 36.0% of the variance in the atherogenicity indices. MA causes intertwined increases in AGE-RAGE axis stress and oxidative damage, which together predict the severity of MIP symptoms and increased atherogenicity.
Collapse
Affiliation(s)
| | | | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Kyung Hee University, Seoul, Dongdaemun-gu, South Korea
| |
Collapse
|
3
|
Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol 2023; 13:1209381. [PMID: 37520442 PMCID: PMC10373507 DOI: 10.3389/fcimb.2023.1209381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic β-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.
Collapse
Affiliation(s)
- Shuxian Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Robinson DJ, Hanson K, Jain AB, Kichler JC, Mehta G, Melamed OC, Vallis M, Bajaj HS, Barnes T, Gilbert J, Honshorst K, Houlden R, Kim J, Lewis J, MacDonald B, MacKay D, Mansell K, Rabi D, Sherifali D, Senior P. Diabetes and Mental Health. Can J Diabetes 2023; 47:308-344. [PMID: 37321702 DOI: 10.1016/j.jcjd.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
5
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
6
|
Yuan XY, He J, Su H, Liu H, Sun B. Magnetically Controlled Nanorobots Based on Red Emissive Peptide Dots and Artificial Antibodies for Specific Recognition and Smart Scavenging of Nε-(Carboxymethyl)lysine in Dairy Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4970-4981. [PMID: 36897289 DOI: 10.1021/acs.jafc.2c08777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Food-borne advanced glycation end products (AGEs) are highly related to various irreversible diseases, and Nε-(carboxymethyl)lysine (CML) is the typical hazardous AGE. The development of feasible strategies to monitor and reduce CML exposure has become desirable to address the problems. In this work, we proposed magnetically controlled nanorobots by integrating an optosensing platform with specific recognition and binding capability, realizing specific anchoring and accurate determination as well as efficient scavenging of CML in dairy products. The artificial antibodies offered CML imprinted cavities for highly selective absorption, and the optosensing strategy was designed based on electron transfer from red emissive self-assembling peptide dots (r-SAPDs) to CML, which was responsible for the identity, response, and loading process. The r-SAPDs overcame the interference from autofluorescence, and the limit of detection was 0.29 μg L-1, which bestowed accuracy and reliability for in situ monitoring. The selective binding process was accomplished within 20 min with an adsorption capacity of 23.2 mg g-1. Through an external magnetic field, CML-loaded nanorobots were oriented, moved, and separated from the matrix, which enabled their scavenging effects and reusability. The fast stimuli-responsive performance and recyclability of the nanorobots provided a versatility strategy for effective detection and control of hazards in food.
Collapse
Affiliation(s)
- Xin-Yue Yuan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jingbo He
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
7
|
Geng Y, Mou Y, Xie Y, Ji J, Chen F, Liao X, Hu X, Ma L. Dietary Advanced Glycation End Products: An Emerging Concern for Processed Foods. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| |
Collapse
|
8
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
9
|
Higashida H, Furuhara K, Lopatina O, Gerasimenko M, Hori O, Hattori T, Hayashi Y, Cherepanov SM, Shabalova AA, Salmina AB, Minami K, Yuhi T, Tsuji C, Fu P, Liu Z, Luo S, Zhang A, Yokoyama S, Shuto S, Watanabe M, Fujiwara K, Munesue SI, Harashima A, Yamamoto Y. Oxytocin Dynamics in the Body and Brain Regulated by the Receptor for Advanced Glycation End-Products, CD38, CD157, and Nicotinamide Riboside. Front Neurosci 2022; 16:858070. [PMID: 35873827 PMCID: PMC9301327 DOI: 10.3389/fnins.2022.858070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother’s milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- *Correspondence: Haruhiro Higashida,
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa Medical University, Kanazawa, Japan
| | - Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anna A. Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Alla B. Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Kana Minami
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - PinYue Fu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Zhongyu Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shuxin Luo
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anpei Zhang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Sei-ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
10
|
Lago SG, Tomasik J, van Rees GF, Rustogi N, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B, Bahn S. Peripheral lymphocyte signaling pathway deficiencies predict treatment response in first-onset drug-naïve schizophrenia. Brain Behav Immun 2022; 103:37-49. [PMID: 35381347 DOI: 10.1016/j.bbi.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
Despite being a major cause of disability worldwide, the pathophysiology of schizophrenia and molecular basis of treatment response heterogeneity continue to be unresolved. Recent evidence suggests that multiple aspects of pathophysiology, including genetic risk factors, converge on key cell signaling pathways and that exploration of peripheral blood cells might represent a practical window into cell signaling alterations in the disease state. We employed multiplexed phospho-specific flow cytometry to examine cell signaling epitope expression in peripheral blood mononuclear cell (PBMC) subtypes in drug-naïve schizophrenia patients (n = 49) relative to controls (n = 61) and relate these changes to serum immune response proteins, schizophrenia polygenic risk scores and clinical effects of treatment, including drug response and side effects, over the longitudinal course of antipsychotic treatment. This revealed both previously characterized (Akt1) and novel cell signaling epitopes (IRF-7 (pS477/pS479), CrkL (pY207), Stat3 (pS727), Stat3 (pY705) and Stat5 (pY694)) across PBMC subtypes which were associated with schizophrenia at disease onset, and correlated with type I interferon-related serum molecules CD40 and CXCL11. Alterations in Akt1 and IRF-7 (pS477/pS479) were additionally associated with polygenic risk of schizophrenia. Finally, changes in Akt1, IRF-7 (pS477/pS479) and Stat3 (pS727) predicted development of metabolic and cardiovascular side effects following antipsychotic treatment, while IRF-7 (pS477/pS479) and Stat3 (pS727) predicted early improvements in general psychopathology scores measured using the Brief Psychiatric Rating Scale (BPRS). These findings suggest that peripheral blood cells can provide an accessible surrogate model for intracellular signaling alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic and cardiovascular side effects following antipsychotic therapy.
Collapse
Affiliation(s)
- Santiago G Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Geertje F van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain; Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain; Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocio, IBiS, Sevilla, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sevilla, Spain
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
11
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
12
|
Pandolfo G, Genovese G, Bruno A, Campolo D, Tigano V, Cristani M, Casciaro M, Pioggia G, Gangemi S. Advanced glycation end-products and advanced oxidation protein products in schizophrenia. Psychiatry Res 2022; 311:114527. [PMID: 35344686 DOI: 10.1016/j.psychres.2022.114527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/21/2022] [Accepted: 03/20/2022] [Indexed: 11/19/2022]
Abstract
Schizophrenia pathophysiology is still not well understood. Genetic factors involving biochemical systems are key players and oxidative stress takes part to the development and worsening of SZ. Oxidative stress led to the permanent production of oxidation products such as advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs). These proteins interact with their receptor amplifying ROS production and pro-inflammatory cytokines sustaining a permanent loop. We tested plasma levels of AGEs and AOPPs in 30 SZ patients. Their levels were statistically higher than controls confirming their involvement in mental disorders. Antioxidant nutraceuticals and a healthy lifestyle could diminish oxidative stress and ameliorate SZ symptoms.
Collapse
Affiliation(s)
- Gianluca Pandolfo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98125 Messina, Italy.
| | - Giovanni Genovese
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98125 Messina, Italy.
| | - Antonio Bruno
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98125 Messina, Italy.
| | - Domenica Campolo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98125 Messina, Italy.
| | - Valeria Tigano
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico "G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico "G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico "G. Martino", Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
13
|
Juchnowicz D, Dzikowski M, Rog J, Waszkiewicz N, Zalewska A, Maciejczyk M, Karakuła-Juchnowicz H. Oxidative Stress Biomarkers as a Predictor of Stage Illness and Clinical Course of Schizophrenia. Front Psychiatry 2021; 12:728986. [PMID: 34867519 PMCID: PMC8636114 DOI: 10.3389/fpsyt.2021.728986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pro/antioxidant imbalance has been reported in schizophrenia (SZ). However, the results of studies are inconsistent and usually do not include other factors that are highly affected by oxidative stress (OS).This cross-sectional study aimed to determine the serum levels of OS markers and their potential connection with schizophrenia. The total sample comprised 147: 98 individuals with SZ -47 first-episode (FS) and 49 chronic patients (CS)-and 49 healthy individuals (HC) as a control group. The examination included clinical variables and serum levels of antioxidants and oxidative damage products. The significant changes were observed in concentrations of all examined markers, without any specific direction of the pro/antioxidant balance shift between SZ and HC. In the regression model adjusted for cofounders, catalase: OR = 0.81 (95%CI: 0.74-0.88); glutathione peroxidase: OR = 1.06 (95%CI: 1.02-1.10); total antioxidant capacity: OR = 0.85 (95%CI: 0.75-0.98); oxidative stress index: OR = 1.25 (95%CI: 1.03-1.52); ferric reducing ability of plasma: OR = 0.79 (95%CI: 0.69-0.89); advanced glycation end products: OR = 1.03 (95%CI: 1.01-1.04); and advanced oxidation protein products (AOPP): OR = 1.05 (95%CI: 1.03-1.07) turned out to be significant predictors of schizophrenia. In the multiple stepwise regression model, pro/antioxidant status and their interaction with the duration of illness-related factors affected schizophrenia symptoms: positive symptoms (FRAPxKYN), negative (DITYR, FRAP, CAT), general (KYN), and over-all psychopathology (KYNxNFK). The results confirm differences in serum levels of oxidative biomarkers between SZ patients and healthy individuals. The pro/antioxidant status could be considered a predictor of schizophrenia and the factor affects patients' symptom severity.
Collapse
Affiliation(s)
- Dariusz Juchnowicz
- Department of Psychiatric Nursing, Medical University of Lublin, Lublin, Poland
| | - Michał Dzikowski
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| | - Joanna Rog
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory and Department of Restorative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Hanna Karakuła-Juchnowicz
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Fingertip advanced glycation end products and psychotic symptoms among adolescents. NPJ SCHIZOPHRENIA 2021; 7:37. [PMID: 34385440 PMCID: PMC8361014 DOI: 10.1038/s41537-021-00167-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Case control studies have suggested that advanced glycation end products play a key role in the pathophysiology of chronic schizophrenia. However, the longitudinal association between advanced glycation end products and psychotic symptoms among drug-naïve adolescents remains unclear. This study examined whether advanced glycation end products could predict the trajectory of psychotic symptoms in drug-naive adolescents using data from prospective population-based biomarker subsample study of the Tokyo Teen Cohort. A total of 277 community-dwelling adolescents aged 13 years without antipsychotic medication were analyzed. Fingertip advanced glycation end products were measured in adolescents using noninvasive technology that can be used quickly. The trajectory of psychotic symptoms in a 12-month follow-up was assessed by experienced psychiatrists using a semi-structured interview. Of the 277 participants, 13 (4.7%) experienced persistent psychotic symptoms (psychotic symptoms at baseline and follow-up), 65 (23.5%) experienced transient psychotic symptoms (psychotic symptoms at baseline or follow-up), and 199 (71.8%) did not have psychotic symptoms. Multinomial logistic regression analysis adjusted for age and sex revealed that baseline fingertip advanced glycation end products might predict the risk of persistent psychotic symptoms (odds ratio = 1.68; 95% confidence interval, 1.05-2.69; P = 0.03). Altogether, fingertip advanced glycation end products potentially predicted the trajectory of psychotic symptoms among drug-naive adolescents, which indicated its involvement in the pathophysiology of early psychosis. Further studies are required to identify strategies to reduce adolescent advanced glycation end products, which may contribute to preventing the onset of psychosis.
Collapse
|
15
|
Li NN, Xiang SY, Huang XX, Li YT, Luo C, Ju PJ, Xu YF, Chen JH. Network pharmacology-based exploration of therapeutic mechanism of Liu-Yu-Tang in atypical antipsychotic drug-induced metabolic syndrome. Comput Biol Med 2021; 134:104452. [PMID: 33984751 DOI: 10.1016/j.compbiomed.2021.104452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) is prevalent in patients receiving atypical antipsychotic drugs (AADs), but there are few effective interventions. The Traditional Chinese herbal decoction Liu-Yu-Tang (LYT) has achieved clinical improvement for AAD-induced MetS, but its pharmacological mechanism remains unclear. METHOD A network pharmacology-based method was utilized in this study. First, the TCMSP and SwissTargetPrediction database were used to acquire plasma-absorbed components and putative targets of LYT, respectively. Second, an interaction network between shared targets of LYT and MetS was constructed using STRING online tool. Topological analyses were performed to extract hub gene targets. Finally, we did a pathway analysis of gene targets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) to find biological pathways of LYT. RESULTS We obtained 655 putative targets of LYT, 434 known targets of AADs, and 1577 MetS-related gene targets. There are 232 shared targets between LYT and MetS. Interaction network construction and topological analysis yielded 60 hub targets, of which 18 were major hub targets, among which IL-6, IL-8, TNF, PI3K, MAPK, and NF-κB (RELA) are the most important in LYT's treatment of AAD-induced MetS. Pathway enrichment analysis revealed a statistically high significance of the AGE-RAGE signaling pathway in diabetic complications, lipid and atherosclerosis and the insulin resistance pathway. CONCLUSIONS LYT may control activities of the pro-inflammatory cytokines IL-6, IL-8, TNF and the important signal transduction molecules PI3K, MAPKs, and NF-κB (RELA), regulating metabolic disturbance-related pathways like the AGE-RAGE signaling pathway in diabetic complications, lipid and atherosclerosis, and the insulin resistance pathway, generating therapeutic effects for AAD-induced MetS.
Collapse
Affiliation(s)
- Ning-Ning Li
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Si-Ying Xiang
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xin-Xin Huang
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yu-Ting Li
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Chao Luo
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Pei-Jun Ju
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yi-Feng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| | - Jian-Hua Chen
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
16
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
17
|
Hagen JM, Sutterland AL, Liefers T, Schirmbeck F, Cohn DM, Lok A, Tan HL, Zwinderman AH, de Haan L. Skin autofluorescence of advanced glycation end products and mortality in affective disorders in the lifelines cohort study: A mediation analysis. J Affect Disord 2021; 282:1082-1089. [PMID: 33601681 DOI: 10.1016/j.jad.2020.12.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Life expectancy in patients suffering from affective disorders is considerably diminished. We investigated whether skin autofluorescence (SAF), indicating concentration of advanced glycation end products in the skin and oxidative stress, mediates the association between affective disorders and excess mortality. METHODS Included were 81,041 participants of the Lifelines cohort study. Presence of major depressive disorder, dysthymia, generalised anxiety disorder, panic disorder or social phobia was assessed with the Mini-International Neuropsychiatric Interview. SAF was assessed as mediator in Cox proportional hazards models for all-cause or natural-cause mortality. RESULTS Mortality was increased in cases with major depression compared to controls (36.4 vs. 22.5 per 100,000 person years). Partial mediation by SAF of the association between affective disorders and mortality was shown (9.0-10.5%, P<.001-.002), although attenuated by cardiometabolic parameters and history of physical illness. For major depressive disorder, partial mediation by 5.5-10.3% was shown (crude model: P<.001; fully adjusted model: P=.03). LIMITATIONS The relatively short duration of follow-up and the relatively young cohort resulted in a lack of power to detect an association between mortality and dysthymia, social phobia and two or more comorbid disorders. CONCLUSION Evidence of partial mediation by SAF of the association between affective disorders and all-cause and natural-cause mortality was demonstrated, although attenuated by health factors. For major depression, mediation by SAF was largest and remained significant after adjustment for sociodemographic and health factors, identifying oxidative stress as possible determinant of premature death.
Collapse
Affiliation(s)
- Julia M Hagen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands.
| | - Arjen L Sutterland
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
| | - Tessa Liefers
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
| | - Frederike Schirmbeck
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Arkin Mental Health Institute, Amsterdam, the Netherlands
| | - Danny M Cohn
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; The Amsterdam Public Health research institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanno L Tan
- The Amsterdam Public Health research institute, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Cardiology, Heart Center, Amsterdam, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Aeilko H Zwinderman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Arkin Mental Health Institute, Amsterdam, the Netherlands; The Amsterdam Public Health research institute, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Safwat NA, ELkhamisy MM, Abdel-Wahab SEA, Hamza MT, Boshnak NH, Kenny MA. Polymorphisms of the receptor for advanced glycation end products as vasculopathy predictor in sickle cell disease. Pediatr Res 2021; 89:185-190. [PMID: 32544923 DOI: 10.1038/s41390-020-1014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The genetic variants of the receptor for advanced glycation end products (RAGE) gene have been associated with vascular disease risk. The objective of this work was to explore the association of three single-nucleotide polymorphisms (SNPs) of RAGE gene (374T/A, 429T/C, and G82S) with vascular complications in SCD. METHODS The study was conducted on 40 children with SCD and 40 healthy children served as controls. All participants were genotyped for the three studied RAGE polymorphisms by polymerase chain reaction (PCR). RESULTS Regarding 374T/A polymorphism, the frequency of TA, TT genotypes and T allele were higher in patients (p < 0.001). T allele was associated with higher incidence of sickling crisis and stroke (p < 0.05). In the subgroup analyses of 429T/C polymorphism, an association between C allele and SCD vascular complications was observed (p < 0.05). Concerning the frequency of G82S genotypes of RAGE, GG variant was detected in 39 (97.5%) of the patients, as compared with 40 (100%) of controls (p = 0.3). A regression analysis proved that HbS%, serum ferritin, and the -374T and 429C alleles were significant independent predictors of frequent sickling episodes (p < 0.05). CONCLUSIONS The C allele of -429T/C and T allele of 374T/A RAGE polymorphisms may be considered as predictors for vascular dysfunction in SCD. IMPACT The C allele of -429T/C and T allele of 374T/A RAGE polymorphisms may be considered as predictors for vascular dysfunction in SCD patients. To our knowledge, our study is the first exploring the association of three single-nucleotide polymorphisms of RAGE gene (374T/A, 429T/C, and G82S) with vascular complications in SCD. Early identification of patients carrying these genetic variants might be of great importance not only to identify subjects at risk of vasculopathy but also to direct them to RAGE-targeted treatments.
Collapse
Affiliation(s)
- Nesma Ahmed Safwat
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mai Mohamed ELkhamisy
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mohamed Tarif Hamza
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha Hussein Boshnak
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Adel Kenny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Nash A, Noh SY, Birch HL, de Leeuw NH. Lysine-arginine advanced glycation end-product cross-links and the effect on collagen structure: A molecular dynamics study. Proteins 2020; 89:521-530. [PMID: 33320391 PMCID: PMC8048459 DOI: 10.1002/prot.26036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of advanced glycation end‐products is a fundamental process that is central to age‐related decline in musculoskeletal tissues and locomotor system function and other collagen‐rich tissues. However, although computational studies of advanced glycation end‐product cross‐links could be immensely valuable, this area remains largely unexplored given the limited availability of structural parameters for the derivation of force fields for Molecular Dynamics simulations. In this article, we present the bonded force constants, atomic partial charges and geometry of the arginine‐lysine cross‐links DOGDIC, GODIC, and MODIC. We have performed in vacuo Molecular Dynamics simulations to validate their implementation against quantum mechanical frequency calculations. A DOGDIC advanced glycation end‐product cross‐link was then inserted into a model collagen fibril to explore structural changes of collagen and dynamics in interstitial water. Unlike our previous studies of glucosepane, our findings suggest that intra‐collagen DOGDIC cross‐links furthers intra‐collagen peptide hydrogen‐bonding and does not promote the diffusion of water through the collagen triple helices.
Collapse
Affiliation(s)
- Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sang Young Noh
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Helen L Birch
- Department of Orthopaedics and Musculoskeletal Science, Stanmore Campus, University College London, London, UK
| | | |
Collapse
|
20
|
Hagen JM, Sutterland AL, da Fonseca Pereira de Sousa PAL, Schirmbeck F, Cohn DM, Lok A, Tan HL, Zwinderman AH, de Haan L. Association between skin autofluorescence of advanced glycation end products and affective disorders in the lifelines cohort study. J Affect Disord 2020; 275:230-237. [PMID: 32734913 DOI: 10.1016/j.jad.2020.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Oxidative stress may be a mechanistic link between affective disorders (depressive and anxiety disorders) and somatic disease. Advanced glycation end products are produced under the influence of oxidative stress and in the skin (measured by skin autofluorescence [SAF]) serve as marker for cumulative oxidative stress. Aim of study was to determine whether SAF is associated with presence of affective disorders. METHODS Participants in the Lifelines cohort study who had completed the Mini-International Neuropsychiatric Interview for affective disorders and a SAF-measurement were included. Cross-sectional associations between SAF and presence of the following psychiatric disorders were investigated through logistic regression analyses adjusted for sociodemographic factors, cardiometabolic parameters, and somatic morbidities: major depressive disorder, dysthymia, generalised anxiety disorder, panic disorder or social phobia. RESULTS Of 81,041 included participants (41.7% male, aged 18-91 years), 6676 (8.2%) were cases with an affective disorder. SAF was associated with presence of affective disorders (OR=1.09 [95%CI 1.07-1.12], P<.001 adjusted for sociodemographic factors). Association with major depressive disorder was strongest and significant after adjustment for all confounders (OR=1.31 [95%CI 1.25-1.36], P<.001 in the crude model; OR=1.12 [95%CI 1.07-1.17], P<.001 in the fully adjusted model). For other disorders, associations lost significance after adjustment for cardiometabolic parameters and somatic morbidities. LIMITATIONS Persons of non-Western descent and severely (mentally or physically) ill individuals were underrepresented. CONCLUSIONS SAF was associated with presence of affective disorders, suggesting a link between these disorders and cumulative oxidative stress. For major depressive disorder, this association was strongest and independent of sociodemographic, cardiometabolic factors, and somatic morbidities.
Collapse
Affiliation(s)
- Julia M Hagen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, Netherlands
| | - Arjen L Sutterland
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, Netherlands.
| | | | - Frederike Schirmbeck
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, Netherlands; Arkin Mental Health Institute, Amsterdam, Netherlands
| | - Danny M Cohn
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam, Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, Netherlands; The Amsterdam Public Health research institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Hanno L Tan
- The Amsterdam Public Health research institute, Amsterdam UMC, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Department of Cardiology, Heart Center, Amsterdam, Netherlands; Netherlands Heart Institute, Utrecht, Netherlands
| | - Aeilko H Zwinderman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, Netherlands
| | - Lieuwe de Haan
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, Netherlands; Arkin Mental Health Institute, Amsterdam, Netherlands; The Amsterdam Public Health research institute, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
21
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
22
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
23
|
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019; 9:biom9120888. [PMID: 31861217 PMCID: PMC6995512 DOI: 10.3390/biom9120888] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Maillard reaction is a simple but ubiquitous reaction that occurs both in vivo and ex vivo during the cooking or processing of foods under high-temperature conditions, such as baking, frying, or grilling. Glycation of proteins is a post-translational modification that forms temporary adducts, which, on further crosslinking and rearrangement, form permanent residues known as advanced glycation end products (AGEs). Cooking at high temperature results in various food products having high levels of AGEs. This review underlines the basis of AGE formation and their corresponding deleterious effects on the body. Glycated Maillard products have a direct association with the pathophysiology of some metabolic diseases, such as diabetes mellitus type 2 (DM2), acute renal failure (ARF), Alzheimer’s disease, dental health, allergies, and polycystic ovary syndrome (PCOS). The most glycated and structurally abundant protein is collagen, which acts as a marker for diabetes and aging, where decreased levels indicate reduced skin elasticity. In diabetes, high levels of AGEs are associated with carotid thickening, ischemic heart disease, uremic cardiomyopathy, and kidney failure. AGEs also mimic hormones or regulate/modify their receptor mechanisms at the DNA level. In women, a high AGE diet directly correlates with high levels of androgens, anti-Müllerian hormone, insulin, and androstenedione, promoting ovarian dysfunction and/or infertility. Vitamin D3 is well-associated with the pathogenesis of PCOS and modulates steroidogenesis. It also exhibits a protective mechanism against the harmful effects of AGEs. This review elucidates and summarizes the processing of infant formula milk and the associated health hazards. Formulated according to the nutritional requirements of the newborn as a substitute for mother’s milk, formula milk is a rich source of primary adducts, such as carboxy-methyl lysine, which render an infant prone to inflammation, dementia, food allergies, and other diseases. We therefore recommend that understanding this post-translational modification is the key to unlocking the mechanisms and physiology of various metabolic syndromes.
Collapse
Affiliation(s)
- Vidhu Gill
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| |
Collapse
|
24
|
Huang J, Ren J, Tao G, Chen Y, Yao S, Han D, Qiu R. Maize bran feruloylated oligosaccharides inhibited AGEs formation in glucose/amino acids and glucose/BSA models. Food Res Int 2019; 122:443-449. [DOI: 10.1016/j.foodres.2019.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023]
|
25
|
Tani E, Ohnuma T, Hirose H, Nakayama K, Mao W, Nakadaira M, Orimo N, Yamashita H, Takebayashi Y, Miki Y, Katsuta N, Nishimon S, Hasegawa T, Komiyama E, Suga Y, Ikeda S, Arai H. Skin advanced glycation end products as biomarkers of photosensitivity in schizophrenia. Int J Methods Psychiatr Res 2019; 28:e1769. [PMID: 30701623 PMCID: PMC6877242 DOI: 10.1002/mpr.1769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Photosensitivity to ultraviolet A (UVA) radiation from sunlight is an important side effect of treatment with antipsychotic agents. However, the pathophysiology of drug-induced photosensitivity remains unclear. Recent studies demonstrated the accumulation of advanced glycation end products (AGEs), annotated as carbonyl stress, to be associated with the pathophysiology of schizophrenia. In this study, we investigated the relationship among skin AGE levels, minimal response dose (MRD) with UVA for photosensitivity, and the daily dose of antipsychotic agents in patients with schizophrenia and healthy controls. METHODS We enrolled 14 patients with schizophrenia and 14 healthy controls. Measurement of skin AGE levels was conducted with AGE scanner, a fluorometric method for assaying skin AGE levels. Measurement of MRD was conducted with UV irradiation device. RESULTS Skin AGE levels and MRD at 24, 48, and 72 hr in patients with schizophrenia showed a higher tendency for photosensitivity than in the controls, but the difference was statistically insignificant. Multiple linear regression analysis using skin AGE levels failed to show any influence of independent variables. MRD did not affect skin AGE levels. CONCLUSIONS Photosensitivity to UVA in patients with schizophrenia receiving treatment with antipsychotic agents might not be affected by skin AGE levels.
Collapse
Affiliation(s)
- Eriko Tani
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Tohru Ohnuma
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hitoki Hirose
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ken Nakayama
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Wanyi Mao
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Mariko Nakadaira
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Narihiro Orimo
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroki Yamashita
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuto Takebayashi
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yasue Miki
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Narimasa Katsuta
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shohei Nishimon
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Etsuko Komiyama
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Suga
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Heii Arai
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
26
|
Wei Q, Liu T, Sun DW. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Robinson DJ, Coons M, Haensel H, Vallis M, Yale JF. Diabetes and Mental Health. Can J Diabetes 2018; 42 Suppl 1:S130-S141. [PMID: 29650085 DOI: 10.1016/j.jcjd.2017.10.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/28/2023]
|
28
|
Emmerink D, Bakker S, Van Bemmel T, Noorthoorn EO, Naarding P. Skin autofluorescence assessment of cardiovascular risk in people with severe mental illness. BJPsych Open 2018; 4:313-316. [PMID: 30083385 PMCID: PMC6066984 DOI: 10.1192/bjo.2018.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND People with severe mental illness (SMI) show significantly shorter life expectancy, mostly due to more prevalent cardiovascular disease. Although age is a prominent contributor to contemporary risk assessment and SMI usually affects younger people, these assessments still do not reveal the actual risk. By assessing advanced glycation end products (AGEs), cardiovascular risk can be assessed independent of age. AIMS To establish whether detection of AGEs with the AGE-reader will give a more accurate cardiovascular risk assessment in people with SMI. METHOD We compared assessment with the AGE-reader with that of the Systematic Coronary Risk Evaluation (SCORE) table in a group of 120 patients with SMI. RESULTS The AGE-reader showed an increased cardiovascular risk more often than the SCORE table, especially in the youngest group. CONCLUSIONS Because of its ease of use and substantiation by studies done on other chronic diseases, we advocate use of the AGE-reader in daily care for patients with SMI to detect cardiovascular risk as early as possible. However, the findings of the current study should be evaluated with caution and should be seen as preliminary findings that require confirmation by a prospective longitudinal cohort study with a substantial follow-up observation period. DECLARATION OF INTEREST None.
Collapse
Affiliation(s)
- Daniëlle Emmerink
- Psychiatrist, Department of Old-Age Psychiatry, GGNet Mental Health, Apeldoorn, The Netherlands
| | - Sybiel Bakker
- Nurse Practitioner, Department of Internal Medicine, Gelre Hospital, Apeldoorn, The Netherlands
| | - Thomas Van Bemmel
- Internist, Department of Internal Medicine, Gelre Hospital, Apeldoorn, The Netherlands
| | - Eric O Noorthoorn
- Senior Researcher, Department of Old-Age Psychiatry, GGNet Mental Health, Apeldoorn, The Netherlands
| | - Paul Naarding
- Psychiatrist, Department of Old-Age Psychiatry, GGNet Mental Health, Apeldoorn, The Netherlands and Department of Psychiatry, University Medical Centre Groningen, The Netherlands
| |
Collapse
|
29
|
Tao H, Zhou X, Zhao B, Li K. Conflicting Effects of Methylglyoxal and Potential Significance of miRNAs for Seizure Treatment. Front Mol Neurosci 2018; 11:70. [PMID: 29556176 PMCID: PMC5845011 DOI: 10.3389/fnmol.2018.00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
According to an update from the World Health Organization, approximately 50 million people worldwide suffer from epilepsy, and nearly one-third of these individuals are resistant to the currently available antiepileptic drugs, which has resulted in an insistent pursuit of novel strategies for seizure treatment. Recently, methylglyoxal (MG) was demonstrated to serve as a partial agonist of the gamma-aminobutyric acid type A (GABAA) receptor and to play an inhibitory role in epileptic activities. However, MG is also a substrate in the generation of advanced glycation end products (AGEs) that function by activating the receptor of AGEs (RAGE). The AGE/RAGE axis is responsible for the transduction of inflammatory cascades and appears to be an adverse pathway in epilepsy. This study systematically reviewed the significance of GABAergic MG, glyoxalase I (GLO1; responsible for enzymatic catalysis of MG cleavage) and downstream RAGE signaling in epilepsy. This work also discussed the potential of miRNAs that target multiple mRNAs and introduced a preliminary scheme for screening and validating miRNA candidates with the goal of reconciling the conflicting effects of MG for the future development of seizure treatments.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Surgical Management of Obesity Among People with Schizophrenia and Bipolar Disorder: a Systematic Review of Outcomes and Recommendations for Future Research. Obes Surg 2018; 27:1889-1895. [PMID: 28508277 DOI: 10.1007/s11695-017-2715-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND People with schizophrenia or bipolar disorder (BD) exhibit very high levels of obesity. Little is known about the potential benefits/risks of obesity surgery. We conducted a narrative review to summarize the available knowledge on bariatric surgery in people with schizophrenia or BD. METHODS A systematic search was conducted of major electronic databases from inception to October 2016 for studies investigating bariatric surgery among people with schizophrenia or BD. Data were presented in a narrative synthesis and future research strategies proposed. RESULTS The electronic database searches identified 44 records. Eight studies (BD, n = 265; schizophrenia: n = 14) were included with a mean study length of 15.7 months (12-24). Seven found that bariatric surgery resulted in weight loss in those with psychiatric disorders with an excess weight loss ranging -31 to -70%. Six studies found that weight loss from bariatric surgery was similar in people with schizophrenia or BD versus controls. However, most of the studies limited their outcomes to only weight loss and did not measure whether obesity surgery affected the status and treatment of psychiatric symptoms. Although few adverse events were reported among patients with BD, data from two studies demonstrated no significant deterioration of psychiatric symptoms post-surgery in people with schizophrenia. CONCLUSIONS Growing evidence suggests that bariatric surgery may improve short-term weight status among people with BD. However, given the paucity of studies for schizophrenia, and the lack of information on medium-to long-term results, future large-scale high-quality studies are required.
Collapse
|
31
|
Franklin TC, Wohleb ES, Zhang Y, Fogaça M, Hare B, Duman RS. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior. Biol Psychiatry 2018; 83:50-60. [PMID: 28882317 PMCID: PMC6369917 DOI: 10.1016/j.biopsych.2017.06.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. METHODS Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. RESULTS The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. CONCLUSIONS Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure.
Collapse
|
32
|
Probing Protein Glycation by Chromatography and Mass Spectrometry: Analysis of Glycation Adducts. Int J Mol Sci 2017; 18:ijms18122557. [PMID: 29182540 PMCID: PMC5751160 DOI: 10.3390/ijms18122557] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Glycation is a non-enzymatic post-translational modification of proteins, formed by the reaction of reducing sugars and α-dicarbonyl products of their degradation with amino and guanidino groups of proteins. Resulted early glycation products are readily involved in further transformation, yielding a heterogeneous group of advanced glycation end products (AGEs). Their formation is associated with ageing, metabolic diseases, and thermal processing of foods. Therefore, individual glycation adducts are often considered as the markers of related pathologies and food quality. In this context, their quantification in biological and food matrices is required for diagnostics and establishment of food preparation technologies. For this, exhaustive protein hydrolysis with subsequent amino acid analysis is the strategy of choice. Thereby, multi-step enzymatic digestion procedures ensure good recoveries for the most of AGEs, whereas tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode with stable isotope dilution or standard addition represents “a gold standard” for their quantification. Although the spectrum of quantitatively assessed AGE structures is continuously increases, application of untargeted profiling techniques for identification of new products is desired, especially for in vivo characterization of anti-glycative systems. Thereby, due to a high glycative potential of plant metabolites, more attention needs to be paid on plant-derived AGEs.
Collapse
|
33
|
Serum galectin-3, but not galectin-1, levels are elevated in schizophrenia: implications for the role of inflammation. Psychopharmacology (Berl) 2017; 234:2919-2927. [PMID: 28698921 DOI: 10.1007/s00213-017-4683-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/27/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Previous studies have reported that galectin-3 is involved in inflammatory processes in the central nervous system and that neuroinflammation may play a role in the pathogenesis of schizophrenia. However, the link between schizophrenia and various galectins is unclear. OBJECTIVE The objective of the present study is to determine whether galectin, a well-known lectin protein that binds to μ-galactoside, is associated with chronic schizophrenia. METHODS Thirty-six patients with schizophrenia and 36 healthy controls participated in this study. Schizophrenia symptoms were assessed using the Brief Psychiatry Rating Scale (BPRS). Serum galectin-1 and galectin-3 levels were evaluated using ELISA and compared between the participant groups. Correlation analyses were also performed to examine the relationship between BPRS scores and each galectin level. RESULTS Serum galectin-3 levels were significantly higher in patients with schizophrenia than they were in controls (p = 0.009, d = 0.640); however, serum galectin-1 levels were not significantly different between the groups (p = 0.513). No significant correlation was identified between serum galectin-3 level and the total BPRS score; however, a significant positive correlation was found between the serum galectin-3 level and the positive symptom score of the BPRS (ρ = 0.355; p = 0.033). Additionally, a significant negative correlation was identified between serum galectin-3 levels and the negative symptom score of the BPRS (ρ = -0.387; p = 0.020). CONCLUSIONS Given the high serum levels of galectin-3 found in patients with schizophrenia compared with that in controls, these findings may support the inflammation hypothesis of schizophrenia.
Collapse
|
34
|
Abstract
The aim of this study was to measure advanced glycation end products (AGEs) among participants maintained on antipsychotics using the AGE Reader and to compare them with controls from the general population. Participants maintained on antipsychotics for at least 6 months were recruited from the Psychiatry Department at Rumailah Hospital, Doha, Qatar. Healthy controls were recruited from the primary healthcare centers in Doha, Qatar. AGEs of a total of 86 participants (48 patients and 38 controls) were recorded. Among the group maintained on antipsychotics, women, smokers, and Arabs had significantly higher AGEs levels compared with men, nonsmokers, and non-Arabs, respectively (P<0.05). The levels of AGEs were higher among the group of patients maintained on antipsychotics in comparison to controls; however, the difference did not reach statistical significance. This is the first study to examine AGEs in patients maintained on antipsychotics. Our findings showed that such patients do not differ significantly from controls comparing AGEs levels. Future investigations might need to consider recruiting a larger sample size using a prospective design.
Collapse
|
35
|
Sannohe T, Ohnuma T, Takeuchi M, Tani E, Miki Y, Takeda M, Katsuta N, Takebayashi Y, Nakamura T, Nishimon S, Kimoto A, Higashiyama R, Shibata N, Gohda T, Suzuki Y, Yamagishi SI, Tomino Y, Arai H. High doses of antipsychotic polypharmacy are related to an increase in serum levels of pentosidine in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:42-48. [PMID: 28282638 DOI: 10.1016/j.pnpbp.2017.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Carbonyl stress in patients with schizophrenia has been reported to be reflected by an increase in peripheral pentosidine levels. This cohort study tested whether the accumulation of pentosidine was related to the disease severity or the treatment (routine administration of high antipsychotic doses). METHODS We followed up our original investigation using a new group of 137 patients with acute schizophrenia and 45 healthy subjects, and then pooled the two cohorts to conduct the following analysis on a total of 274 patients. The associations of serum pentosidine and pyridoxal levels with duration of education, estimated duration of medication, the severity of symptoms, and daily doses of antipsychotics, antiparkinsonian drugs, and anxiolytics were evaluated by multiple linear regression analysis. RESULTS The combined cohort of 274 patients exhibited abnormally high serum levels of pentosidine, were associated with a higher daily dose of antipsychotic drugs and a longer estimated duration of medication without statistical significance of diagnosis. This was also observed in the patients treated with antipsychotic polypharmacy, but the serum pentosidine levels of patients treated with first- or second-generation antipsychotic monotherapy showed no relationship with these two variables. CONCLUSION High levels of serum pentosidine were associated with high daily doses of antipsychotic drugs and a longer estimated duration of medication in patients treated with antipsychotic polypharmacy.
Collapse
Affiliation(s)
- Takahiro Sannohe
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan.
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute,Kanazawa Medical University, Ishikawa, Japan
| | - Eriko Tani
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Yasue Miki
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Mayu Takeda
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Narimasa Katsuta
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Yuto Takebayashi
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Toru Nakamura
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Shohei Nishimon
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Ayako Kimoto
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Ryoko Higashiyama
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Tomohito Gohda
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University, Faculty of Medicine, Tokyo, Japan
| | - Heii Arai
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Kaur H, Kamalov M, Brimble MA. Chemical Synthesis of Peptides Containing Site-Specific Advanced Glycation Endproducts. Acc Chem Res 2016; 49:2199-2208. [PMID: 27672697 DOI: 10.1021/acs.accounts.6b00366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In nature, proteins, lipids, and nucleic acids can nonenzymatically react with sugars and sugar degradation products to give rise to a diverse range of modifications, known as advanced glycation endproducts (AGEs). These AGEs typically occur at lysine and arginine residues of long-lived proteins, such as collagen, and can modify the structure and function of the native protein. AGEs accumulate during the normal aging process, and AGE formation is dramatically accelerated with diabetes. AGEs have also been implicated in a wide range of debilitating conditions including cardiovascular, renal failure, and neurodegenerative diseases. Thus, there is an ongoing interest in studying the role of AGEs in different aspects of these disorders. Typically, glycated proteins are prepared using nonspecific in vitro incubation techniques. However, this method results in a complex mixture of products which is then employed without further purification. In order to determine the effect of individual AGEs in a peptide sequence, in this Account, we highlight our synthetic methods for site-specifically introducing five frequently occurring AGEs, namely, Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), pyrraline, glyoxal-lysine dimer (GOLD), and methylglyoxal-lysine dimer (MOLD) into collagen peptides. Both a collagen model peptide (CMP) and the telopeptide region of human type I α1 collagen (CTP) were chosen due to being prone to glycation and cross-linking in vivo. For the preparation of the AGE-modified collagen peptides, we investigated both the initial preparation of AGE building blocks in solution followed by incorporation into Fmoc-SPPS, as well as an on-resin method whereby AGEs were selectively introduced by modification of the side-chain of an unprotected resin-bound lysine. Both of our synthetic methods enabled the site-specifically modified AGE-containing collagen peptides to be obtained in high purity and yield. In addition, the on-resin method had the added advantage of requiring fewer synthetic steps. We then evaluated the impact of the specific AGEs on the properties of the native protein and found that the AGE modifications protected against proteolytic digestion, enhanced copper binding at physiological pH, and, for the cross-linking AGEs, disrupted the triple helical structure of CMPs. Overall these synthetic methods offered a new strategy for preparing peptides site-specifically modified by AGEs, which can be applied to other peptidic systems, thereby enabling further insights into the biochemical consequences of AGEs.
Collapse
Affiliation(s)
- Harveen Kaur
- School
of Chemical Sciences, The University of Auckland, 23 Symonds
Street, Auckland, 1142, New Zealand
| | - Meder Kamalov
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Margaret A. Brimble
- School
of Chemical Sciences, The University of Auckland, 23 Symonds
Street, Auckland, 1142, New Zealand
| |
Collapse
|
37
|
West BJ, Deng S, Uwaya A, Isami F, Abe Y, Yamagishi SI, Jensen CJ. Iridoids are natural glycation inhibitors. Glycoconj J 2016; 33:671-81. [PMID: 27306206 DOI: 10.1007/s10719-016-9695-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
Abstract
Glycation of amino acid residues in proteins leads to the eventual formation of advanced glycation end products (AGEs). AGE formation significantly influences human health and the aging process. AGE accumulation rates may be slowed by modifications to lifestyle or by pharmacological strategies. But the use of therapeutic drugs is not an appropriate means of controlling AGEs within the general population. However, phytochemical constituents in plant-based foods exhibit anti-glycation activities and may be more appropriate for general consumption. Among these phytochemicals are iridoids. The anti-AGE potential of iridoids has been demonstrated in vitro and in vivo, while also revealing possible mechanisms of action. Inclusion of iridoid food sources in the diet may be a useful component of strategies intended to mitigate AGE accumulation within the body.
Collapse
Affiliation(s)
- Brett J West
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA.
| | - Shixin Deng
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| | - Akemi Uwaya
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| | - Fumiyuki Isami
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| | - Yumi Abe
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Doshisha University, Kyoto, Japan
| | | | - C Jarakae Jensen
- Research and Development, Morinda, Inc., 737 East 1180 South, American Fork, UT, 84003, USA
| |
Collapse
|
38
|
Jurnak F. The Pivotal Role of Aldehyde Toxicity in Autism Spectrum Disorder: The Therapeutic Potential of Micronutrient Supplementation. Nutr Metab Insights 2016; 8:57-77. [PMID: 27330305 PMCID: PMC4910734 DOI: 10.4137/nmi.s29531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social and communication impairments as well as by restricted, repetitive patterns of behavior and interests. Genomic studies have not revealed dominant genetic errors common to all forms of ASD. So ASD is assumed to be a complex disorder due to mutations in hundreds of common variants. Other theories argue that spontaneous DNA mutations and/or environmental factors contribute to as much as 50% of ASD. In reviewing potential genetic linkages between autism and alcoholism, it became apparent that all theories of ASD are consistent with aldehyde toxicity, in which endogenous and exogenous aldehydes accumulate as a consequence of mutations in key enzymes. Aldehyde toxicity is characterized by cell-localized, micronutrient deficiencies in sulfur-containing antioxidants, thiamine (B1), pyridoxine (B6), folate, Zn2+, possibly Mg2+, and retinoic acid, causing oxidative stress and a cascade of metabolic disturbances. Aldehydes also react with selective cytosolic and membrane proteins in the cell of origin; then some types migrate to damage neighboring cells. Reactive aldehydes also form adducts with DNA, selectively mutating bases and inducing strand breakage. This article reviews the relevant genomic, biochemical, and nutritional literature, which supports the central hypothesis that most ASD symptoms are consistent with symptoms of aldehyde toxicity. The hypothesis represents a paradigm shift in thinking and has profound implications for clinical detection, treatment, and even prevention of ASD. Insight is offered as to which neurologically afflicted children might successfully be treated with micronutrients and which children are unlikely to be helped. The aldehyde toxicity hypothesis likely applies to other neurological disorders.
Collapse
Affiliation(s)
- Frances Jurnak
- Emerita Professor, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
39
|
Oniki K, Kamihashi R, Tomita T, Ishioka M, Yoshimori Y, Osaki N, Tsuchimine S, Sugawara N, Kajiwara A, Morita K, Miyata K, Otake K, Nakagawa K, Ogata Y, Saruwatari J, Yasui-Furukori N. Glutathione S-transferase K1 genotype and overweight status in schizophrenia patients: A pilot study. Psychiatry Res 2016; 239:190-5. [PMID: 27010189 DOI: 10.1016/j.psychres.2016.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/04/2016] [Accepted: 03/13/2016] [Indexed: 12/14/2022]
Abstract
Elevated oxidative stress in mitochondria and mitochondrial dysfunction are associated with weight gain in schizophrenia (SCZ) patients. Glutathione S-transferase kappa 1 (GSTK1) protects cells against exogenous and endogenous oxidative stress in the mitochondria. This exploratory study investigated the possible effects of a common GSTK1 polymorphism (rs1917760, G-1308T) on the risk for overweight status among 329 SCZ patients and 305 age- and gender-matched controls and on the GSTK1 mRNA level in peripheral blood mononuclear cells among 14 SCZ patients. The GSTK1 T/T genotype was associated with having a higher BMI value among SCZ male patients, whereas this genotype tended to be associated with a lower BMI value among female patients. Conversely, these associations were not observed among the controls. The GSTK1 T/T genotype was associated with decreased GSTK1 mRNA level among SCZ patients. The GSTK1 T/T genotype may be a novel risk factor for the prediction of overweight status in SCZ male patients, although the results of this pilot study should be verified by a larger study.
Collapse
Affiliation(s)
- Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoko Kamihashi
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tetsu Tomita
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Masamichi Ishioka
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Yuki Yoshimori
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsumi Osaki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shoko Tsuchimine
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Norio Sugawara
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Ayami Kajiwara
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazunori Morita
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Otake
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, Japan
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Ogata
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Norio Yasui-Furukori
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|