1
|
Devine EA, Imami AS, Eby H, Sahay S, Hamoud AR, Golchin H, Ryan W, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. Mol Psychiatry 2025; 30:1573-1584. [PMID: 39424930 DOI: 10.1038/s41380-024-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of canonical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
2
|
Snelleksz M, Dean B. Higher levels of AKT-interacting protein in the frontal pole from people with schizophrenia are limited to a sub-group who have a marked deficit in cortical muscarinic M1 receptors. Psychiatry Res 2024; 341:116156. [PMID: 39236366 DOI: 10.1016/j.psychres.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 09/07/2024]
Abstract
We are studying the molecular pathology of a sub-group within schizophrenia (∼ 25 %: termed Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS)) who can be separated because they have very low levels of cortical muscarinic M1 receptors (CHRM1). Based on our transcriptomic data from Brodmann's area ((BA) 9, 10 and 33 (controls, schizophrenia and mood disorders) and the cortex of the CHRM1-/- mouse (a molecular model of aberrant CHRM1 signaling), we predicted levels of AKT interacting protein (AKTIP), but not tubulin alpha 1b (TUBA1B) or AKT serine/threonine kinase 1 (AKT1) and pyruvate dehydrogenase kinase 1 (PDK1) (two AKTIP-functionally associated proteins), would be changed in MRDS. Hence, we used Western blotting to measure AKTIP (BA 10: controls, schizophrenia and mood disorders; BA 9: controls and schizophrenia) plus TUBA1B, AKT1 and PDK1 (BA 10: controls and schizophrenia) proteins. The only significant change with diagnosis was higher levels of AKTIP protein in BA 10 (Cohen's d = 0.73; p = 0.02) in schizophrenia compared to controls due to higher levels of AKTIP only in people with MRDS (Cohen's d = 0.80; p = 0.03). As AKTIP is involved in AKT1 signaling, our data suggests that signaling pathway is particularly disturbed in BA 10 in MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Nagaoka A, Hino M, Izumi R, Shishido R, Ishibashi M, Hatano M, Sainouchi M, Kakita A, Tomita H, Kunii Y. Availability of individual proteins for quantitative analysis in postmortem brains preserved in two different brain banks. Neuropsychopharmacol Rep 2024; 44:399-409. [PMID: 38558385 PMCID: PMC11144605 DOI: 10.1002/npr2.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
AIM Postmortem brain research is necessary for elucidating the pathology of schizophrenia; an increasing number of studies require a combination of suitable tissue samples preserved at multiple brain banks. In this study, we examined whether a comparative study of protein expression levels can be conducted using postmortem brain samples preserved in different facilities. METHODS We compared the demographic factors of postmortem brain samples preserved in two institutions and measured and compared the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glial fibrillary acidic protein (GFAP) in the prefrontal cortex and superior temporal gyrus. GAPDH is generally used as a loading control for western blotting, and GFAP is considered as an astrocyte marker in the brain. RESULTS We found significant differences between the two institutions in postmortem interval, age at death, and preservation time. To reduce the effects of these differences on our measurements, the parameters were set as covariates in our analyses of covariance. Subsequently, no differences in GAPDH and GFAP expression were found between institutions. CONCLUSIONS When studies are conducted using brain samples preserved in different brain banks, differences in demographic factors should be carefully considered and taken into account by statistical methods to minimize their impact as much as possible. Since there was no significant difference in the protein expression levels of GAPDH and GFAP in either region between the two institutions that preserved the postmortem brains, we concluded that it is possible to perform protein quantitative analysis assuming that there is no effect of difference between two institutions.
Collapse
Affiliation(s)
- Atsuko Nagaoka
- Department of PsychiatryTohoku University HospitalSendaiJapan
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Risa Shishido
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Miki Ishibashi
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Masataka Hatano
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Hiroaki Tomita
- Department of PsychiatryTohoku University HospitalSendaiJapan
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
- Department of Psychiatry, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yasuto Kunii
- Department of PsychiatryTohoku University HospitalSendaiJapan
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
4
|
Hino M, Kunii Y, Shishido R, Nagaoka A, Matsumoto J, Akatsu H, Hashizume Y, Hayashi H, Kakita A, Tomita H, Yabe H. Marked alteration of phosphoinositide signaling-associated molecules in postmortem prefrontal cortex with bipolar disorder. Neuropsychopharmacol Rep 2024; 44:121-128. [PMID: 38253804 PMCID: PMC10932789 DOI: 10.1002/npr2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
AIM The etiology of bipolar disorder (BD) remains unknown; however, lipid abnormalities in BD have received increasing attention in recent years. In this study, we examined the expression levels of enzyme proteins associated with the metabolic pathway of phosphoinositides (PIs) and their downstream effectors, protein kinase B (Akt1) and glycogen synthase kinase 3β (GSK3β), which have been assumed to be the targets of mood stabilizers such as lithium, in the postmortem brains of patients with BD. METHODS The protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), Akt1, and GSK3β were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays in the prefrontal cortex (PFC). Specifically, PTEN, Akt1, GSK3β, and PIP5K1C were measured in seven BD patients and 48 controls. Additionally, PIK4CA was analyzed in 10 cases and 34 controls. RESULTS PTEN expression levels were markedly decreased in the PFCs of patients with BD, whereas those of Akt and GSK3β were prominently elevated. Moreover, patients medicated with lithium exhibited higher Akt1 expression levels and lower PTEN expression levels in comparison with the untreated group. CONCLUSION Our results suggest that the expression levels of Akt1/GSK3β and its upstream regulator PTEN are considerably altered.
Collapse
Affiliation(s)
- Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Risa Shishido
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Junya Matsumoto
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Hiroyasu Akatsu
- Department of Community‐Based Medical Education/Department of Community‐Based MedicineNagoya City University Graduate School of Medical ScienceNagoyaAichiJapan
- Choju Medical Institute, Fukushimura HospitalToyohashiAichiJapan
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura HospitalToyohashiAichiJapan
| | - Hideki Hayashi
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of MedicineTohoku UniversitySendaiMiyagiJapan
| | - Hirooki Yabe
- Department of Disaster Psychiatry, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Kommaddi RP, Gowaikar R, P A H, Diwakar L, Singh K, Mondal A. Akt activation ameliorates deficits in hippocampal-dependent memory and activity-dependent synaptic protein synthesis in an Alzheimer's disease mouse model. J Biol Chem 2024; 300:105619. [PMID: 38182004 PMCID: PMC10839450 DOI: 10.1016/j.jbc.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Protein kinase-B (Akt) and the mechanistic target of rapamycin (mTOR) signaling pathways are implicated in Alzheimer's disease (AD) pathology. Akt/mTOR signaling pathways, activated by external inputs, enable new protein synthesis at the synapse and synaptic plasticity. The molecular mechanisms impeding new protein synthesis at the synapse in AD pathogenesis remain elusive. Here, we aimed to understand the molecular mechanisms prior to the manifestation of histopathological hallmarks by characterizing Akt1/mTOR signaling cascades and new protein synthesis in the hippocampus of WT and amyloid precursor protein/presenilin-1 (APP/PS1) male mice. Intriguingly, compared to those in WT mice, we found significant decreases in pAkt1, pGSK3β, pmTOR, pS6 ribosomal protein, and p4E-BP1 levels in both post nuclear supernatant and synaptosomes isolated from the hippocampus of one-month-old (presymptomatic) APP/PS1 mice. In synaptoneurosomes prepared from the hippocampus of presymptomatic APP/PS1 mice, activity-dependent protein synthesis at the synapse was impaired and this deficit was sustained in young adults. In hippocampal neurons from C57BL/6 mice, downregulation of Akt1 precluded synaptic activity-dependent protein synthesis at the dendrites but not in the soma. In three-month-old APP/PS1 mice, Akt activator (SC79) administration restored deficits in memory recall and activity-dependent synaptic protein synthesis. C57BL/6 mice administered with an Akt inhibitor (MK2206) resulted in memory recall deficits compared to those treated with vehicle. We conclude that dysregulation of Akt1/mTOR and its downstream signaling molecules in the hippocampus contribute to memory recall deficits and loss of activity-dependent synaptic protein synthesis. In AD mice, however, Akt activation ameliorates deficits in memory recall and activity-dependent synaptic protein synthesis.
Collapse
Affiliation(s)
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, India; Manipal Academy of Higher Education, Manipal, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Kunal Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Shishido R, Kunii Y, Hino M, Izumi R, Nagaoka A, Hayashi H, Kakita A, Tomita H, Yabe H. Evidence for increased DNA damage repair in the postmortem brain of the high stress-response group of schizophrenia. Front Psychiatry 2023; 14:1183696. [PMID: 37674553 PMCID: PMC10478254 DOI: 10.3389/fpsyt.2023.1183696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 09/08/2023] Open
Abstract
Background Schizophrenia (SZ) is a disorder diagnosed by specific symptoms and duration and is highly heterogeneous, clinically and pathologically. Although there are an increasing number of studies on the association between genetic and environmental factors in the development of SZ, the actual distribution of the population with different levels of influence of these factors has not yet been fully elucidated. In this study, we focused on stress as an environmental factor and stratified SZ based on the expression levels of stress-responsive molecules in the postmortem prefrontal cortex. Methods We selected the following stress-responsive molecules: interleukin (IL) -1β, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, glucocorticoid receptor, brain-derived neurotrophic factor, synaptophysin, S100 calcium-binding protein B, superoxide dismutase, postsynaptic density protein 95, synuclein, apolipoprotein A1 (ApoA1), ApoA2, and solute carrier family 6 member 4. We performed RNA sequencing in the prefrontal gray matter of 25 SZ cases and 21 healthy controls and conducted a hierarchical cluster analysis of SZ based on the gene expression levels of stress-responsive molecules, which yielded two clusters. After assessing the validity of the clusters, they were designated as the high stress-response SZ group and the low stress-response SZ group, respectively. Ingenuity Pathway Analysis of differentially expressed genes (DEGs) between clusters was performed, and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was conducted on four cases each in the high and low stress-response SZ groups to validate DNA damage. Results We found higher prevalence of family history of SZ in the low stress-response SZ group (0/3 vs. 5/4, p = 0.04). Pathway analysis of DEGs between clusters showed the highest enrichment for DNA double-strand break repair. TUNEL staining showed a trend toward a lower percentage of TUNEL-positive cells in the high stress-response SZ group. Conclusion Our results suggest that there are subgroups of SZ with different degrees of stress impact. Furthermore, the pathophysiology of these subgroups may be associated with DNA damage repair. These results provide new insights into the interactions and heterogeneity between genetic and environmental factors.
Collapse
Affiliation(s)
- Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Hayashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
7
|
Miyahara K, Hino M, Shishido R, Nagaoka A, Izumi R, Hayashi H, Kakita A, Yabe H, Tomita H, Kunii Y. Identification of schizophrenia symptom-related gene modules by postmortem brain transcriptome analysis. Transl Psychiatry 2023; 13:144. [PMID: 37142572 PMCID: PMC10160042 DOI: 10.1038/s41398-023-02449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Schizophrenia is a multifactorial disorder, the genetic architecture of which remains unclear. Although many studies have examined the etiology of schizophrenia, the gene sets that contribute to its symptoms have not been fully investigated. In this study, we aimed to identify each gene set associated with corresponding symptoms of schizophrenia using the postmortem brains of 26 patients with schizophrenia and 51 controls. We classified genes expressed in the prefrontal cortex (analyzed by RNA-seq) into several modules by weighted gene co-expression network analysis (WGCNA) and examined the correlation between module expression and clinical characteristics. In addition, we calculated the polygenic risk score (PRS) for schizophrenia from Japanese genome-wide association studies, and investigated the association between the identified gene modules and PRS to evaluate whether genetic background affected gene expression. Finally, we conducted pathway analysis and upstream analysis using Ingenuity Pathway Analysis to clarify the functions and upstream regulators of symptom-related gene modules. As a result, three gene modules generated by WGCNA were significantly correlated with clinical characteristics, and one of these showed a significant association with PRS. Genes belonging to the transcriptional module associated with PRS significantly overlapped with signaling pathways of multiple sclerosis, neuroinflammation, and opioid use, suggesting that these pathways may also be profoundly implicated in schizophrenia. Upstream analysis indicated that genes in the detected module were profoundly regulated by lipopolysaccharides and CREB. This study identified schizophrenia symptom-related gene sets and their upstream regulators, revealing aspects of the pathophysiology of schizophrenia and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Hayashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Miyagi, Japan
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
8
|
Gene Expression and Epigenetic Regulation in the Prefrontal Cortex of Schizophrenia. Genes (Basel) 2023; 14:genes14020243. [PMID: 36833173 PMCID: PMC9957055 DOI: 10.3390/genes14020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia pathogenesis remains challenging to define; however, there is strong evidence that the interaction of genetic and environmental factors causes the disorder. This paper focuses on transcriptional abnormalities in the prefrontal cortex (PFC), a key anatomical structure that determines functional outcomes in schizophrenia. This review summarises genetic and epigenetic data from human studies to understand the etiological and clinical heterogeneity of schizophrenia. Gene expression studies using microarray and sequencing technologies reported the aberrant transcription of numerous genes in the PFC in patients with schizophrenia. Altered gene expression in schizophrenia is related to several biological pathways and networks (synaptic function, neurotransmission, signalling, myelination, immune/inflammatory mechanisms, energy production and response to oxidative stress). Studies investigating mechanisms driving these transcriptional abnormalities focused on alternations in transcription factors, gene promoter elements, DNA methylation, posttranslational histone modifications or posttranscriptional regulation of gene expression mediated by non-coding RNAs.
Collapse
|
9
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D, Palma V. It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol 2022; 10:946706. [PMID: 36092733 PMCID: PMC9448889 DOI: 10.3389/fcell.2022.946706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.
Collapse
|
10
|
Saoud H, Aflouk Y, Ben Afia A, Gaha L, Bel Hadj Jrad B. Association of VEGF-A and KDR polymorphisms with the development of schizophrenia. Hum Immunol 2022; 83:528-537. [DOI: 10.1016/j.humimm.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/04/2022]
|
11
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
12
|
Zhang S, Li M, Guo Z. Effect of cannabidiol on schizophrenia based on randomized controlled trials: A meta-analysis. ANNALES MEDICO-PSYCHOLOGIQUES 2021. [DOI: 10.1016/j.amp.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Izumi R, Hino M, Nagaoka A, Shishido R, Kakita A, Hoshino M, Kunii Y, Yabe H. Dysregulation of DPYSL2 expression by mTOR signaling in schizophrenia: Multi-level study of postmortem brain. Neurosci Res 2021; 175:73-81. [PMID: 34543692 DOI: 10.1016/j.neures.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/26/2023]
Abstract
The mechanistic target of rapamycin (mTOR)-signaling and dihydropyrimidinase-like 2 (DPYSL2), which are increasingly gaining attention as potential therapeutic targets for schizophrenia, are connected via Cap-dependent translation of the 5'TOP motif. We quantified the expression of molecules constituting the mTOR-signaling and DPYSL2 in the prefrontal cortex (PFC) and superior temporal gyrus (STG) of postmortem brain tissue samples from 24 patients with schizophrenia and 32 control individuals and conducted association analysis to examine abnormal regulation of DPYSL2 expression by the mTOR-signaling in schizophrenia. The average ribosomal protein S6 (S6) levels in the PFC and STG were lower in patients with schizophrenia (p < 0.01). DPYSL2 expression showed a significant positive correlation with phospho-S6 expression levels, which were effectors of mTOR translational regulation, and the correlation slope between phospho-S6 and DPYSL2 expressions differed between cases and controls. Association analyses of these mTOR-signaling and DPYSL2 alterations with genetic polymorphisms and the clinical profile suggested that certain genetic variants of DPYSL2 require high mTOR-signaling activity. Thus, the findings confirmed decreased S6 expression levels in schizophrenia and supported the relationship between the mTOR-signaling and DPYSL2 via 5'TOP Cap-dependent translation, thus providing insights connecting the two major schizophrenia treatment strategies associated with the mTOR-signaling and DPYSL2.
Collapse
Affiliation(s)
- Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Psychology, Takeda General Hospital, Aizuwakamatu, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
14
|
Kunii Y, Matsumoto J, Izumi R, Nagaoka A, Hino M, Shishido R, Sainouchi M, Akatsu H, Hashizume Y, Kakita A, Yabe H. Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. Int J Mol Sci 2021; 22:8280. [PMID: 34361045 PMCID: PMC8348881 DOI: 10.3390/ijms22158280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositides (PIs) play important roles in the structure and function of the brain. Associations between PIs and the pathophysiology of schizophrenia have been studied. However, the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase kinase 3β (GSK3β) were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23 schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C, PTEN, and GSK3β expression was not different. No single-nucleotide polymorphism significantly affected protein expression. We identified molecules involved in the pathology of schizophrenia via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.
Collapse
Affiliation(s)
- Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.S.); (A.K.)
| | - Hiroyasu Akatsu
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Science, Aichi 467-8601, Japan;
- Department of Community-Based Medicine, Nagoya City University Graduate School of Medical Science, Aichi 467-8601, Japan
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan;
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan;
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.S.); (A.K.)
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| |
Collapse
|
15
|
Izumi R, Hino M, Wada A, Nagaoka A, Kawamura T, Mori T, Sainouchi M, Kakita A, Kasai K, Kunii Y, Yabe H. Detailed Postmortem Profiling of Inflammatory Mediators Expression Revealed Post-inflammatory Alternation in the Superior Temporal Gyrus of Schizophrenia. Front Psychiatry 2021; 12:653821. [PMID: 33815179 PMCID: PMC8012534 DOI: 10.3389/fpsyt.2021.653821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have lent support to the possibility that inflammation is associated with the pathology of schizophrenia. In the study of measurement of inflammatory mediators, which are markers of inflammation, elevated inflammatory cytokine levels in the brain and blood have been reported in patients with schizophrenia. Several postmortem brain studies have also reported changes in the expression of inflammatory cytokines. However, it is not clear how these elevated inflammatory cytokines interact with other inflammatory mediators, and their association with the pathology of schizophrenia. We comprehensively investigated the expression of 30 inflammatory mediators in the superior temporal gyrus (STG) of 24 patients with schizophrenia and 26 controls using a multiplex method. Overall, inflammatory mediator expression in the STG was mostly unchanged. However, the expression of interleukin (IL)1-α and interferon-gamma-inducible protein (IP)-10 was decreased [IL-1α, median (IQR), 0.51 (0.37-0.70) vs. 0.87 (0.47-1.23), p = 0.01; IP-10, 13.99 (8.00-36.64) vs. 30.29 (10.23-134.73), p = 0.05], whereas that of IFN-α was increased [2.34 (1.84-4.48) vs. 1.94 (1.39-2.36), p = 0.04] in schizophrenia, although these alterations did not remain significant after multiple testing. Clustering based on inflammatory mediator expression pattern and analysis of upstream transcription factors using pathway analysis revealed that the suppression of IL-1α and IP-10 protein expression may be induced by regulation of a common upstream pathway. Neuroinflammation is important in understanding the biology of schizophrenia. While neuroimaging has been previously used, direct observation to determine the expression of inflammatory mediators is necessary. In this study, we identified protein changes, previously unreported, using comprehensive protein analysis in STG. These results provide insight into post-inflammatory alternation in chronic schizophrenia.
Collapse
Affiliation(s)
- Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Psychology, Takeda General Hospital, Aizuwakamatu, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akira Wada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kawamura
- Department of Human Life Sciences, School of Nursing, Fukushima Medical University, Fukushima, Japan
| | - Tsutomu Mori
- Department of Human Life Sciences, School of Nursing, Fukushima Medical University, Fukushima, Japan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
16
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Nagaoka A, Kunii Y, Hino M, Izumi R, Nagashima C, Takeshima A, Sainouchi M, Nawa H, Kakita A, Yabe H. ALDH4A1 expression levels are elevated in postmortem brains of patients with schizophrenia and are associated with genetic variants in enzymes related to proline metabolism. J Psychiatr Res 2020; 123:119-127. [PMID: 32065947 DOI: 10.1016/j.jpsychires.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The molecular mechanisms underlying schizophrenia remain largely unclear, and we recently identified multiple proteins significantly altered in the postmortem prefrontal cortex (PFC) of schizophrenia patients amongst which aldehyde dehydrogenase 4 family member A1 (ALDH4A1) was especially elevated. In this study, we aimed to investigate the expression of ALDH4A1 in the PFC and superior temporal gyrus (STG) and to elucidate functional correlations between schizophrenia risk alleles and molecular expression profiles in the postmortem brains of patients with schizophrenia. METHODS The levels of ALDH4A1 protein expression in the PFC and STG in postmortem brains from 24 patients with schizophrenia, 8 patients with bipolar disorder, and 32 controls were assessed using enzyme-linked immunosorbent assay. Moreover, we explored the associations between ALDH4A1 expression and genetic variants in enzymes associated with proline metabolism, including ALDH4A1 (schizophrenia [n = 22], bipolar disorder [n = 6], controls [n = 11]). RESULTS ALDH4A1 levels were significantly elevated in both the PFC and STG in patients with schizophrenia and tended to elevate in patients with bipolar disorder. Furthermore, ALDH4A1 expression levels in the PFC were significantly associated with the following three single-nucleotide polymorphisms: rs10882639, rs33823, rs153508. We also found partial coexpression of ALDH4A1 in mitochondria in a subset of putative astrocytes of postmortem brain. LIMITATIONS Our study population was relatively small, particularly for a genetic study. CONCLUSION These findings indicate that altered expression of ALDH4A1 may reflect the potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, and may aid in the development of novel drug therapies.
Collapse
Affiliation(s)
- Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan; Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, 969-3492, Fukushima, Japan.
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Chisato Nagashima
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Akari Takeshima
- Department of Pathology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| |
Collapse
|
18
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 PMCID: PMC7105616 DOI: 10.3389/fphar.2020.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
19
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 DOI: 10.3389/fphar.2020.00344/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 05/20/2023] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
20
|
Differential protein expression of DARPP-32 versus Calcineurin in the prefrontal cortex and nucleus accumbens in schizophrenia and bipolar disorder. Sci Rep 2019; 9:14877. [PMID: 31619735 PMCID: PMC6796065 DOI: 10.1038/s41598-019-51456-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
Abstract
Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) integrates dopaminergic signaling into that of several other neurotransmitters. Calcineurin (CaN), located downstream of dopaminergic pathways, inactivates DARPP-32 by dephosphorylation. Despite several studies have examined their expression levels of gene and protein in postmortem patients’ brains, they rendered inconsistent results. In this study, protein expression levels of DARPP-32 and CaN were measured by enzyme-linked immunosorbent assay (ELISA) in the prefrontal cortex (PFC), and nucleus accumbens (NAc) of 49 postmortem samples from subjects with schizophrenia, bipolar disorder, and normal controls. We also examined the association between this expression and genetic variants of 8 dopaminergic system-associated molecules for 55 SNPs in the same postmortem samples. In the PFC of patients with schizophrenia, levels of DARPP-32 were significantly decreased, while those of CaN tended to increase. In the NAc, both of DARPP-32 and CaN showed no significant alternations in patients with schizophrenia or bipolar disorder. Further analysis of the correlation of DARPP-32 and CaN expressions, we found that positive correlations in controls and schizophrenia in PFC, and schizophrenia in NAc. In PFC, the expression ratio of DARPP-32/CaN were significantly lower in schizophrenia than controls. We also found that several of the aforementioned SNPs may predict protein expression, one of which was confirmed in a second independent sample set. This differential expression of DARPP-32 and CaN may reflect potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, or differences between these two major psychiatric diseases.
Collapse
|
21
|
Murueta-Goyena A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched Environment Reverts Somatostatin Interneuron Loss in MK-801 Model of Schizophrenia. Mol Neurobiol 2019; 57:125-134. [PMID: 31506899 DOI: 10.1007/s12035-019-01762-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023]
Abstract
Dysregulation of the inhibitory drive has been proposed to be a central mechanism to explain symptoms and pathophysiological hallmarks in schizophrenia. A number of recent neuroanatomical studies suggest that certain types of inhibitory cells are deficient in schizophrenia, including somatostatin-immunoreactive interneurons (SST+). The present study sought to use stereological methods to investigate whether the number of SST+ interneurons decreased after repeated injections of NMDA receptor antagonist MK-801 (0.5 mg/kg) and to determine the effect of limited exposure to an enriched environment (EE) in adult life on this sub-population of inhibitory cells. Considering that somatostatin expression is highly dependent on neurotrophic support, we explored the changes in the relative expression of proteins related to brain-derived neurotrophic factor-tyrosine kinase B (BDNF-TrkB) signaling between the experimental groups. We observed that early-life MK-801 treatment significantly decreased the number of SST+ interneurons in the medial prefrontal cortex (mPFC) and the hippocampus (HPC) of adult Long Evans rats. Contrarily, short-term exposure to EE increased the number of SST+ interneurons in MK-801-injected animals, except in the CA1 region of the hippocampus, whereas this increase was not observed in vehicle-injected rats. We also found upregulated BDNF-TrkB signaling after EE that triggered an increase in the pERK/ERK ratio in mPFC and HPC, and the pAkt/Akt ratio in HPC. Thus, the present results support the notion that SST+ interneurons are markedly affected after early-life NMDAR blockade and that EE promotes SST+ interneuron expression, which is partly mediated through the BDNF-TrkB signaling pathway. These results may have important implications for schizophrenia, as SST+ interneuron loss is also observed in the MK-801 pre-clinical model, and its expression can be rescued by non-pharmacological approaches.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain. .,Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain.
| | - Naiara Ortuzar
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | - José Vicente Lafuente
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain.,Nanoneurosurgery Group, BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
22
|
Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, Iwayama Y, Fujita Y, Tan Y, Hisano Y, Shimamoto-Mitsuyama C, Nozaki Y, Esaki K, Nagaoka A, Matsumoto J, Hino M, Mataga N, Hayashi-Takagi A, Hashimoto K, Kunii Y, Kakita A, Yabe H, Yoshikawa T. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 2019; 45:432-446. [PMID: 31255657 PMCID: PMC6642071 DOI: 10.1016/j.ebiom.2019.05.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Betaine is known to act against various biological stresses and its levels were reported to be decreased in schizophrenia patients. We aimed to test the role of betaine in schizophrenia pathophysiology, and to evaluate its potential as a novel psychotherapeutic. Methods Using Chdh (a gene for betaine synthesis)-deficient mice and betaine-supplemented inbred mice, we assessed the role of betaine in psychiatric pathophysiology, and its potential as a novel psychotherapeutic, by leveraging metabolomics, behavioral-, transcriptomics and DNA methylation analyses. Findings The Chdh-deficient mice revealed remnants of psychiatric behaviors along with schizophrenia-related molecular perturbations in the brain. Betaine supplementation elicited genetic background-dependent improvement in cognitive performance, and suppressed methamphetamine (MAP)-induced behavioral sensitization. Furthermore, betaine rectified the altered antioxidative and proinflammatory responses induced by MAP and in vitro phencyclidine (PCP) treatments. Betaine also showed a prophylactic effect on behavioral abnormality induced by PCP. Notably, betaine levels were decreased in the postmortem brains from schizophrenia, and a coexisting elevated carbonyl stress, a form of oxidative stress, demarcated a subset of schizophrenia with “betaine deficit-oxidative stress pathology”. We revealed the decrease of betaine levels in glyoxylase 1 (GLO1)-deficient hiPSCs, which shows elevated carbonyl stress, and the efficacy of betaine in alleviating it, thus supporting a causal link between betaine and oxidative stress conditions. Furthermore, a CHDH variant, rs35518479, was identified as a cis-expression quantitative trait locus (QTL) for CHDH expression in postmortem brains from schizophrenia, allowing genotype-based stratification of schizophrenia patients for betaine efficacy. Interpretation The present study revealed the role of betaine in psychiatric pathophysiology and underscores the potential benefit of betaine in a subset of schizophrenia. Fund This study was supported by the Strategic Research Program for Brain Sciences from AMED (Japan Agency for Medical Research and Development) under Grant Numbers JP18dm0107083 and JP19dm0107083 (TY), JP18dm0107129 (MM), JP18dm0107086 (YK), JP18dm0107107 (HY), JP18dm0107104 (AK) and JP19dm0107119 (KH), by the Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT under Grant Numbers JP18H05435 (TY), JP18H05433 (AH.-T), JP18H05428 (AH.-T and TY), and JP16H06277 (HY), and by JSPS KAKENHI under Grant Number JP17H01574 (TY). In addition, this study was supported by the Collaborative Research Project of Brain Research Institute, Niigata University under Grant Numbers 2018–2809 (YK) and RIKEN Epigenetics Presidential Fund (100214–201801063606-340120) (TY).
Collapse
Affiliation(s)
- Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan; Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yayoi Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Kayoko Esaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Psychiatry, Aizu Medical Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
23
|
Lizano P, Lutz O, Ling G, Padmanabhan J, Tandon N, Sweeney J, Tamminga C, Pearlson G, Ruaño G, Kocherla M, Windemuth A, Clementz B, Gershon E, Keshavan M. VEGFA GENE variation influences hallucinations and frontotemporal morphology in psychotic disorders: a B-SNIP study. Transl Psychiatry 2018; 8:215. [PMID: 30310054 PMCID: PMC6181939 DOI: 10.1038/s41398-018-0271-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA) dysfunction may contribute to a number of pathological processes that characterize psychotic disorders. However, the influence of VEGFA gene variants on clinical and neuroimaging phenotypes in psychotic disorders has yet to be shown. In the present study, we examined whether different VEGFA gene variants influence psychosis risk, symptom severity, cognition, and brain volume. The study group included 480 probands (Bipolar I disorder with psychosis, n = 205; Schizoaffective disorder, n = 112; Schizophrenia, n = 163) and 126 healthy controls that were recruited across six sites in the B-SNIP consortium. VEGFA variants identified for analysis (rs699947, rs833070, and rs2146323) were quantified via SNP chip array. We assessed symptoms and cognition using standardized clinical and neuropsychological batteries. The dorsolateral prefrontal cortex (DLPFC), medial temporal lobe, and hippocampal volumes were quantified using FreeSurfer. In our sample, VEGFA rs2146323 A- carriers showed reduced odds of being a proband (p = 0.037, OR = 0.65, 95% CI = 0.43-0.98) compared to noncarriers, but not for rs699947 or rs833070. In probands, rs2146323 A- carriers demonstrated fewer hallucinations (p = 0.035, Cohen's d = 0.194), as well as significantly greater DLPFC (p < 0.05, Cohen's d = -0.21) and parahippocampal volumes (p < 0.01, Cohen's d = -0.27). No clinical or neuroimaging associations were identified for rs699947 or rs833070. In general, we found that the three SNPs exhibited several significant negative relationships between psychosis symptoms and brain structure. In the probands and control groups, positive relationships were identified between several cognitive and brain volume measures. The findings suggest VEGFA effects in the DLPFC and hippocampus found in animals may also extend to humans. VEGFA variations may have important implications in identifying dimensional moderators of function that could be targeted through VEGFA-mediated interventions.
Collapse
Affiliation(s)
- Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Olivia Lutz
- 0000 0000 9011 8547grid.239395.7Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - George Ling
- 0000 0000 9011 8547grid.239395.7Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Jaya Padmanabhan
- 0000 0000 9011 8547grid.239395.7Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Neeraj Tandon
- 0000 0000 9011 8547grid.239395.7Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - John Sweeney
- 0000 0000 9881 9161grid.413561.4Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH USA
| | - Carol Tamminga
- 0000 0000 9482 7121grid.267313.2University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Godfrey Pearlson
- 0000000419368710grid.47100.32Hartford Hospital, Yale School of Medicine, Hartford, CT USA
| | | | | | | | - Brett Clementz
- 0000 0004 1936 738Xgrid.213876.9Department of Psychology, University of Georgia, Athens, GA USA
| | - Elliot Gershon
- 0000 0004 1936 7822grid.170205.1Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL USA
| | - Matcheri Keshavan
- 0000 0000 9011 8547grid.239395.7Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| |
Collapse
|
24
|
Ye F, Zhan Q, Xiao W, Tang X, Li J, Dong H, Sha W, Zhang X. Altered serum levels of vascular endothelial growth factor in first-episode drug-naïve and chronic medicated schizophrenia. Psychiatry Res 2018; 264:361-365. [PMID: 29677618 DOI: 10.1016/j.psychres.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
There is much evidence of a relationship between alterations in the brain's regional cellular energy metabolism and blood flow in schizophrenic. Vascular endothelial growth factor (VEGF) plays a role in the pathogenesis of neuropsychiatric illnesses. So, we compared serum VEGF levels in drug-naïve first-episode psychotic (FEP) and chronically medicated schizophrenic to examine if a correlation existed between VEGF and psychopathological symptoms. The serum VEGF levels were assessed in 46 FEP patients, 47 chronic medicated patients and 50 healthy controls. Symptoms of schizophrenia were evaluated with the Positive and Negative Syndrome Scale (PANSS) and sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure serum VEGF levels. VEGF levels were significantly lower in FEP patients compared to both chronically medicated schizophrenic patients and healthy controls, while VEGF levels in chronically medicated patients were markedly higher than in healthy controls. Furthermore, a significant correlation was detected between the levels and the PANSS negative subscale among patient groups. However, no significant correlation was observed between VEGF and clinical variables in patients. This study suggested that imbalanced neurotrophic factors may be associated with the onset of schizophrenia, but subsequent increased VEGF may be related to medication or other factors in disease progression.
Collapse
Affiliation(s)
- Fei Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Qiongqiong Zhan
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Jin Li
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Hui Dong
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Weiwei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Yangzhou University, Yangzhou 225003, PR China.
| |
Collapse
|
25
|
Xiao W, Zhan Q, Ye F, Tang X, Li J, Dong H, Sha W, Zhang X. Baseline serum vascular endothelial growth factor levels predict treatment response to antipsychotic medication in patients with schizophrenia. Eur Neuropsychopharmacol 2018; 28:603-609. [PMID: 29602597 DOI: 10.1016/j.euroneuro.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is implicated in angiogenesis, blood flow, and neuroplasticity, which have previously been shown to contribute to schizophrenia and the mechanisms of action of antipsychotic medication. The aim of the present study was to investigate whether baseline serum VEGF levels predict treatment responses to antipsychotic medication. Drug-free adults with schizophrenia were administered monotherapy with atypical antipsychotic drugs for 6 weeks. Participants' psychiatric symptoms were assessed using the positive and negative symptom scale (PANSS) before and after treatment. Blood samples for VEGF measurements were collected from 201 participants comprising 83 healthy controls and 118 patients (i.e. only on admission). Baseline VEGF levels in adults with schizophrenia were significantly lower than those in the control group (t = 3.656, df = 199, P < 0.001). In particular, pretreatment VEGF levels were significantly higher in patients responding to drug treatment at follow-up (≥ 50% reduction in initial PANSS total) (t = 4.743, df = 116, P < 0.001). The predictive power of serum VEGF levels was investigated using receiver operating characteristic curves. The area under the curve was 0.774 (95% confidence interval 0.688-0.846); for fixed specificity of 78.8%, the corresponding sensitivity was 63.5%. Results from this preliminary experiment suggest high baseline serum concentrations of VEGF may predict a better response to antipsychotic medications in adults with schizophrenia. Further studies using larger sample sizes are needed to verify the findings.
Collapse
Affiliation(s)
- Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Qiongqiong Zhan
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Fei Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Jin Li
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Hui Dong
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Weiwei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China.
| |
Collapse
|
26
|
Casas BS, Vitória G, do Costa MN, Madeiro da Costa R, Trindade P, Maciel R, Navarrete N, Rehen SK, Palma V. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry 2018; 8:48. [PMID: 29467462 PMCID: PMC5821759 DOI: 10.1038/s41398-018-0095-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.
Collapse
Affiliation(s)
- Bárbara S Casas
- Laboratory of Stem Cells and Development, Universidad de Chile, Santiago, Chile
| | - Gabriela Vitória
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Marcelo N do Costa
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pablo Trindade
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Renata Maciel
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Nelson Navarrete
- Universidad de Chile Clinical Hospital, Región Metropolitana, Chile
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Verónica Palma
- Laboratory of Stem Cells and Development, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
27
|
Levenga J, Wong H, Milstead RA, Keller BN, LaPlante LE, Hoeffer CA. AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity. eLife 2017; 6:30640. [PMID: 29173281 PMCID: PMC5722612 DOI: 10.7554/elife.30640] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
AKT is a kinase regulating numerous cellular processes in the brain, and mutations in AKT are known to affect brain function. AKT is indirectly implicated in synaptic plasticity, but its direct role has not been studied. Moreover, three highly related AKT isoforms are expressed in the brain, but their individual roles are poorly understood. We find in Mus musculus, each AKT isoform has a unique expression pattern in the hippocampus, with AKT1 and AKT3 primarily in neurons but displaying local differences, while AKT2 is in astrocytes. We also find isoform-specific roles for AKT in multiple paradigms of hippocampal synaptic plasticity in area CA1. AKT1, but not AKT2 or AKT3, is required for L-LTP through regulating activity-induced protein synthesis. Interestingly, AKT activity inhibits mGluR-LTD, with overlapping functions for AKT1 and AKT3. In summary, our studies identify distinct expression patterns and roles in synaptic plasticity for AKT isoforms in the hippocampus.
Collapse
Affiliation(s)
- Josien Levenga
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States.,Linda Crnic Institute, Aurora, United States
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States
| | - Ryan A Milstead
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, United States
| | - Bailey N Keller
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States
| | - Lauren E LaPlante
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States.,Linda Crnic Institute, Aurora, United States.,Department of Integrative Physiology, University of Colorado-Boulder, Boulder, United States
| |
Collapse
|
28
|
Lizano PL, Yao JK, Tandon N, Mothi SS, Montrose DM, Keshavan MS. Association of sFlt-1 and worsening psychopathology in relatives at high risk for psychosis: A longitudinal study. Schizophr Res 2017; 183:75-81. [PMID: 27863935 PMCID: PMC5432401 DOI: 10.1016/j.schres.2016.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Angiogenic dysfunction and abnormalities in psychopathology and brain structure have been reported in schizophrenia, but their relationships are mostly unknown. We recently demonstrated that sFlt-1, anti-angiogenic factor, was significantly elevated in patients at familial high-risk for psychosis (FHR). We hypothesized that elevated sFlt-1 correlates with baseline and longitudinal changes in psychopathology, cognition, and brain structure. METHODS Plasma sFlt-1 in FHR (n=35) and HC (n=39) was obtained at baseline. Schizotypal, cognitive, soft neurologic signs, and structural brain imaging (1.5T T1-weighted MRI, FreeSurfer software) measures were obtained in both groups. Longitudinal clinical and brain structural measures were obtained in a subgroup of FHR patients. Baseline data analysis used correlations between sFlt-1 and clinical/imaging measures and adjusted for multiple corrections. Linear mixed-effects models described differences in trajectories between high sFlt-1 and low sFlt-1. RESULTS Baseline sFlt-1 was significantly correlated with soft neurologic signs (r=0.27, p=0.02) and right entorhinal volume (r=0.50, p=0.02), but not other baseline clinical/brain structural measures. Longitudinal examination of the FHR group (sFlt-1 high, n=14; sFlt-1 low, n=14) demonstrated that high sFlt-1 was significantly associated with worsening schizotypal symptoms (t=2.4, p=0.018). Reduced right hippocampal/parahippocampal volume/thickness trajectories were observed in high versus low sFlt-1 groups. CONCLUSIONS The findings from this FHR study demonstrate that peripheral markers of angiogenic dysfunction can predict longitudinal clinical and brain structural changes. Also, these findings further support the hypothesis of altered microvascular circulation in schizophrenia and those at risk.
Collapse
Affiliation(s)
- Paulo L Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Jeffrey K Yao
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; VA Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States.
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Baylor College of Medicine, Houston, TX, United States
| | - Suraj Sarvode Mothi
- Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States
| | - Debra M Montrose
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
29
|
Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Front Psychiatry 2017; 8:83. [PMID: 28588507 PMCID: PMC5440518 DOI: 10.3389/fpsyt.2017.00083] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/28/2017] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a psychotic disorder characterized by delusions, hallucinations, negative symptoms, as well as behavioral and cognitive dysfunction. It is a pathoetiologically heterogeneous disorder involving complex interrelated mechanisms that include oxidative stress and neuroinflammation. Neurovascular endothelial dysfunction and blood-brain barrier (BBB) hyperpermeability are established mechanisms in neurological disorders with comorbid psychiatric symptoms such as epilepsy, traumatic brain injury, and Alzheimer's disease. Schizophrenia is frequently comorbid with medical conditions associated with peripheral vascular endothelial dysfunction, such as metabolic syndrome, cardiovascular disease, and diabetes mellitus. However, the existence and etiological relevance of neurovascular endothelial dysfunction and BBB hyperpermeability in schizophrenia are still not well recognized. Here, we review the growing clinical and experimental evidence, indicating that neurovascular endotheliopathy and BBB hyperpermeability occur in schizophrenia patients. We present a theoretical integration of human and animal data linking oxidative stress and neuroinflammation to neurovascular endotheliopathy and BBB breakdown in schizophrenia. These abnormalities may contribute to the cognitive and behavioral symptoms of schizophrenia via several mechanisms involving reduced cerebral perfusion and impaired homeostatic processes of cerebral microenvironment. Furthermore, BBB disruption can facilitate interactions between brain innate and peripheral adaptive immunity, thereby perpetuating harmful neuroimmune signals and toxic neuroinflammatory responses, which can also contribute to the symptoms of schizophrenia. Taken together, these findings support the "mild encephalitis" hypothesis of schizophrenia. If neurovascular abnormalities prove to be etiologically relevant to the neurobiology of schizophrenia, then targeting these abnormalities may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Souhel Najjar
- Department of Neurology, Hofstra Northwell School of Medicine, New York, NY, USA.,Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Silky Pahlajani
- Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Virginia De Sanctis
- Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Joel N H Stern
- Department of Neurology, Hofstra Northwell School of Medicine, New York, NY, USA.,Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Amanda Najjar
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Derek Chong
- Department of Neurology, Hofstra Northwell School of Medicine, New York, NY, USA
| |
Collapse
|