1
|
Dyall SC, Malau IA, Su KP. Omega-3 polyunsaturated fatty acids in depression: insights from recent clinical trials. Curr Opin Clin Nutr Metab Care 2025; 28:66-74. [PMID: 39912390 DOI: 10.1097/mco.0000000000001077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
PURPOSE OF REVIEW This review examines evidence from recent clinical trials on the therapeutic potential of omega-3 polyunsaturated fatty acids (PUFAs) in major depressive disorder (MDD). We focus on the effects in MDD with comorbidities, younger populations, and high-inflammation presentations. RECENT FINDINGS PubMed, Cochrane, and Embase databases were systematically searched for studies published between May 2022 and May 2024. The search was conducted on randomized controlled trials using omega-3 PUFAs with participants with a clinical diagnosis of depression.Higher doses of eicosapentaenoic acid (EPA) (>1 g/day) improved measures of depression, particularly in MDD with elevated inflammation markers, comorbid cardiovascular diseases, late-life onset, and children and adolescent populations. Improvements in depressive symptoms were associated with increases in omega-3 PUFA-derived anti-inflammatory and proresolving lipid mediators. As adjuvant treatments, omega-3 PUFAs have potential benefits in mood, cognitive and metabolic functions, kynurenine and serotonin pathways, and alterations in corticolimbic functional connectivity. SUMMARY While evidence suggests promise, particularly for high-dose EPA and in inflammatory MDD subtypes, more research is needed to establish optimal dosing regimens, treatment duration, and patient subgroups most likely to benefit. Future studies should focus on sex differences, long-term effects, and potential synergies with other treatments.
Collapse
Affiliation(s)
- Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Ikbal A Malau
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung
- An-Nan Hospital, College of Medicine, China Medical University, Tainan, Taiwan
| |
Collapse
|
2
|
Tobin D, Vuckovic A, Sarris J. Targeting Divergent Pathways in the Nutritional Management of Depression. Nutrients 2024; 16:2806. [PMID: 39203943 PMCID: PMC11357244 DOI: 10.3390/nu16162806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The nutritional management of depression has long been discussed, due to the perceived benefit of a nutritional product having less side effects than pharmaceutical agents. Candidate nutrients for managing depression include vitamin D, B vitamins, tryptophan, branch chain amino acids, probiotics, omega-3 fatty acids, folate/methylfolate (also known as vitamin B9), and s-adenosylmethionine. This paper provides a narrative review of three nutrients which have significant scientific support for the management of depression. A deficiency in each nutrient is associated with depression, and interventional studies indicate that the correction of the nutritional deficiency may provide clinical benefit. We present epidemiological evidence, a mechanistic explanation and a review of interventional studies for these nutrients. Finally, relevant nutritional guidelines are presented with their conclusion for the role of each nutrient in the management of depression.
Collapse
Affiliation(s)
| | | | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne University, Melbourne, VIC 3052, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| |
Collapse
|
3
|
Serefko A, Jach ME, Pietraszuk M, Świąder M, Świąder K, Szopa A. Omega-3 Polyunsaturated Fatty Acids in Depression. Int J Mol Sci 2024; 25:8675. [PMID: 39201362 PMCID: PMC11354246 DOI: 10.3390/ijms25168675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids have received considerable attention in the field of mental health, in particular regarding the treatment of depression. This review presents an overview of current research on the role of omega-3 fatty acids in the prevention and treatment of depressive disorders. The existing body of evidence demonstrates that omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant effects that can be attributed to their modulation of neuroinflammation, neurotransmitter function, and neuroplasticity. Nevertheless, clinical trials of omega-3 supplementation have yielded inconsistent results. Some studies have demonstrated significant reductions in depressive symptoms following omega-3 treatment, whereas others have shown minimal to no beneficial impact. A range of factors, encompassing dosage, the ratio of EPA to DHA, and baseline nutritional status, have been identified as having a potential impact on the noted results. Furthermore, it has been suggested that omega-3 fatty acids may act as an adjunctive treatment for those undergoing antidepressant treatment. Notwithstanding these encouraging findings, discrepancies in study designs and variability in individual responses underscore the necessity of further research in order to establish uniform, standardized guidelines for the use of omega-3 fatty acids in the management of depressive disorders.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| | - Marlena Pietraszuk
- Student Scientific Club, Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| | - Małgorzata Świąder
- Student Scientific Club, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
- Student Scientific Club, Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8b Jaczewskiego, 20-090 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 7, 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Wang M, Yan X, Li Y, Li Q, Xu Y, Huang J, Gan J, Yang W. Association between plasma polyunsaturated fatty acids and depressive among US adults. Front Nutr 2024; 11:1342304. [PMID: 38544754 PMCID: PMC10965719 DOI: 10.3389/fnut.2024.1342304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Depression is associated with greater functional impairment and high societal costs than many other mental disorders. Research on the association between plasma polyunsaturated fatty acids (PUFAs) levels and depression have yielded inconsistent results. OBJECTIVE To evaluate whether plasma n-3 and n-6 PUFAs levels are associated with depression in American adults. METHODS A cross-sectional study included 2053 adults (aged ≥20 y) in the National Health and Nutrition Examination Survey (NHANES), 2011-2012. The level of plasma n-3 and n-6 PUFAs were obtained for analysis. Self-reported Patient Health Questionnaire-9 (PHQ-9) was used to identify the depression status. Binary logistic regression analysis was performed to evaluate the association between quartiles of plasma n-3 and n-6 PUFAs and depression after adjustments for confounders. RESULTS The study of 2053 respondents over 20 years of age with a weighted depression prevalence of 7.29% comprised 1,043 men (weighted proportion, 49.13%) and 1,010 women (weighted, 50.87%), with a weighted mean (SE) age of 47.58 (0.67) years. Significantly increased risks of depression over non-depression were observed in the third quartiles (OR = 1.65, 95% CI = 1.05-2.62) for arachidonic acid (AA; 20:4n-6); the third quartiles (OR = 2.20, 95% CI = 1.20-4.05) for docosatetraenoic acid (DTA; 22:4n-6); the third (OR = 2.33, 95% CI = 1.34-4.07), and highest quartiles (OR = 1.83, 95% CI = 1.03-3.26) for docosapentaenoic acid (DPAn-6; 22:5n-6); and the third (OR = 2.18, 95% CI = 1.18-4.03) and highest quartiles (OR = 2.47, 95% CI = 1.31-4.68) for docosapentaenoic acid (DPAn-3; 22:5n-3); the second (OR = 2.13, 95% CI = 1.24-3.66), third (OR = 2.40, 95% CI = 1.28-4.50), and highest quartiles (OR = 2.24, 95% CI = 1.08-4.69) for AA/docosahexaenoic acid (DHA; 22:6n-3) ratio compared with the lowest quartile after adjusting for confounding factors. CONCLUSION Higher plasma levels of AA, DTA, DPAn-6, DPAn-3 PUFAs, and AA/DHA ratio may be potential risk factors for depression in US adults.
Collapse
Affiliation(s)
- Man Wang
- Department of Nutrition and Food Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Yan
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yanmei Li
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Qian Li
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingxia Xu
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jitian Huang
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Juan Gan
- Guangzhou Baiyun District Maternal and Childcare Hospital, Guangzhou, Guangdong Province, China
| | - Wenhan Yang
- Department of Nutrition and Food Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
- Department of Child and Adolescent Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Nakajima S, Demers G, Machuca-Parra AI, Pour ZD, Bairamian D, Bouyakdan K, Fisette A, Kabahizi A, Robb J, Rodaros D, Laurent C, Ferreira G, Arbour N, Alquier T, Fulton S. Central activation of the fatty acid sensor GPR120 suppresses microglia reactivity and alleviates sickness- and anxiety-like behaviors. J Neuroinflammation 2023; 20:302. [PMID: 38111048 PMCID: PMC10729532 DOI: 10.1186/s12974-023-02978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1β and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1β. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Geneviève Demers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Zahra Dashtehei Pour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Diane Bairamian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Anita Kabahizi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Josephine Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Unit, UMR 1286, INRA-Université de Bordeaux, Bordeaux, France
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada.
| |
Collapse
|
6
|
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023; 15:2993. [PMID: 37447319 DOI: 10.3390/nu15132993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Diana Cardona
- Health Research Center, University of Almeria, 04120 Almeria, Spain
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
| | - Miguel Angel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain
- Institute of Nutrition and Food Technology, University of Chile, Santiago 830490, Chile
| | - Jose Manuel Lerma-Cabrera
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
7
|
Liu T, Wang L, Guo J, Zhao T, Tang H, Dong F, Wang C, Chen J, Tang M. Erythrocyte Membrane Fatty Acid Composition as a Potential Biomarker for Depression. Int J Neuropsychopharmacol 2023; 26:385-395. [PMID: 37217258 PMCID: PMC10289140 DOI: 10.1093/ijnp/pyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Major depressive disorders is a chronic and severe psychiatric disorder with poor prognosis and quality of life. Abnormal erythrocyte fatty acid (FA) composition in depressed patients were found in our previous study, but the relationship between erythrocyte membrane FA levels and different severity of depressive and anxiety symptoms remains to be explored. METHODS This cross-sectional study included 139 patients with first-diagnosed, drug-naïve depression and 55 healthy controls whose erythrocyte FA composition was analyzed. Patients with depression were divided into severe depression and mild to moderate depression or depression with severe anxiety and mild to moderate anxiety. Then the differences of FA levels among different groups were analyzed. Finally, the receiver operating characteristic curve analysis was applied to identify potential biomarkers in distinguishing the severity of depressive symptoms. RESULTS Levels of erythrocyte membrane FAs were elevated among patients with severe depression compared with healthy controls or patients with mild to moderate depression of almost all kinds. While C18:1n9t (elaidic acid), C20:3n6 (eicosatrienoic acid), C20:4n6 (arachidonic acid), C22:5n3 (docosapentaenoic acid), total fatty acids (FAs), and total monounsaturated FAs were elevated in patients with severe anxiety compared with patients with mild to moderate anxiety. Furthermore, the level of arachidonic acid, C22:4n6 (docosatetraenoic acid), elaidic acid, and the combination of all 3 were associated with the severity of depressive symptoms. CONCLUSIONS The results suggested that erythrocyte membrane FA levels have the potential to be the biological indicator of clinical characteristics for depression, such as depressive symptoms and anxiety. In the future, more research is needed to explore the causal association between FA metabolism and depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fang Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wu SK, Chen WJ, Chang JPC, Guu TW, Hsin MC, Huang CK, Mischoulon D, Capuron L, Su KP. Personalized Medicine of Omega-3 Fatty Acids in Depression Treatment in Obese and Metabolically Dysregulated Patients. J Pers Med 2023; 13:1003. [PMID: 37373992 DOI: 10.3390/jpm13061003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The co-occurrence of depression and obesity has become a significant public health concern worldwide. Recent studies have shown that metabolic dysfunction, which is commonly observed in obese individuals and is characterized by inflammation, insulin resistance, leptin resistance, and hypertension, is a critical risk factor for depression. This dysfunction may induce structural and functional changes in the brain, ultimately contributing to depression's development. Given that obesity and depression mutually increase each other's risk of development by 50-60%, there is a need for effective interventions that address both conditions. The comorbidity of depression with obesity and metabolic dysregulation is thought to be related to chronic low-grade inflammation, characterized by increased circulating levels of pro-inflammatory cytokines and C-reactive protein (CRP). As pharmacotherapy fails in at least 30-40% of cases to adequately treat major depressive disorder, a nutritional approach is emerging as a promising alternative. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are a promising dietary intervention that can reduce inflammatory biomarkers, particularly in patients with high levels of inflammation, including pregnant women with gestational diabetes, patients with type 2 diabetes mellitus, and overweight individuals with major depressive disorder. Further efforts directed at implementing these strategies in clinical practice could contribute to improved outcomes in patients with depression, comorbid obesity, and/or metabolic dysregulation.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 110-2321-B-006-004, 110-2811-B-039-507, 110-2320-B-039-048-MY2,110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2321-B-006-008, and NSTC 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, 111-28, 111-47, 111-48, and 111-52 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, 110-N-17, 1110-SR-73 China Medical University, Taichung, Taiwan
- DMR-106-101, 106-227, 109-102, 109-244, 110-124, 111-245, 112-097, 112-086, 112-109, 112-232 and DMR-HHC-109-11, HHC-109-12, HHC-110-10, and HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Suet-Kei Wu
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Jen Chen
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Ta-Wei Guu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- Division of Psychiatry, Department of Internal Medicine, China Medical University Beigang Hospital, Yunlin 651, Taiwan
| | - Ming-Che Hsin
- Body Science & Metabolic Disorders International Medical Centre (BMIMC), China Medical University & Hospital, Taichung 404, Taiwan
| | - Chih-Kun Huang
- Body Science & Metabolic Disorders International Medical Centre (BMIMC), China Medical University & Hospital, Taichung 404, Taiwan
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucile Capuron
- NutriNeuro, University of Bordeaux, INRAE, Bordeaux INP, UMR 1286, F-33076 Bordeaux, France
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
9
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
10
|
A Preliminary Comparison of Plasma Tryptophan Metabolites and Medium- and Long-Chain Fatty Acids in Adult Patients with Major Depressive Disorder and Schizophrenia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020413. [PMID: 36837614 PMCID: PMC9968143 DOI: 10.3390/medicina59020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Background and Objectives: Disturbance of tryptophan (Trp) and fatty acid (FA) metabolism plays a role in the pathogenesis of psychiatric disorders. However, quantitative analysis and comparison of plasma Trp metabolites and medium- and long-chain fatty acids (MCFAs and LCFAs) in adult patients with major depressive disorder (MDD) and schizophrenia (SCH) are limited. Materials and Methods: Clinical symptoms were assessed and the level of Trp metabolites and MCFAs and LCFAs for plasma samples from patients with MDD (n = 24) or SCH (n = 22) and healthy controls (HC, n = 23) were obtained and analyzed. Results: We observed changes in Trp metabolites and MCFAs and LCFAs with MDD and SCH and found that Trp and its metabolites, such as N-formyl-kynurenine (NKY), 5-hydroxyindole-3-acetic acid (5-HIAA), and indole, as well as omega-3 polyunsaturated fatty acids (N3) and the ratio of N3 to omega-6 polyunsaturated fatty acids (N3: N6), decreased in both MDD and SCH patients. Meanwhile, levels of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in SCH patients, and there was a significant difference in the composition of MCFAs and LCFAs between MDD and SCH patients. Moreover, the top 10 differential molecules could distinguish the two groups of diseases from HC and each other with high reliability. Conclusions: This study provides a further understanding of dysfunctional Trp and FA metabolism in adult patients with SCH or MDD and might develop combinatorial classifiers to distinguish between these disorders.
Collapse
|
11
|
Zhou L, Xiong JY, Chai YQ, Huang L, Tang ZY, Zhang XF, Liu B, Zhang JT. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front Psychiatry 2022; 13:933704. [PMID: 36117650 PMCID: PMC9473681 DOI: 10.3389/fpsyt.2022.933704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) can play important roles in maintaining mental health and resistance to stress, and omega-3 PUFAs supplementation can display beneficial effects on both the prevention and treatment of depressive disorders. Although the underlying mechanisms are still unclear, accumulated evidence indicates that omega-3 PUFAs can exhibit pleiotropic effects on the neural structure and function. Thus, they play fundamental roles in brain activities involved in the mood regulation. Since depressive symptoms have been assumed to be of central origin, this review aims to summarize the recently published studies to identify the potential neurobiological mechanisms underlying the anti-depressant effects of omega-3 PUFAs. These include that of (1) anti-neuroinflammatory; (2) hypothalamus-pituitary-adrenal (HPA) axis; (3) anti-oxidative stress; (4) anti-neurodegeneration; (5) neuroplasticity and synaptic plasticity; and (6) modulation of neurotransmitter systems. Despite many lines of evidence have hinted that these mechanisms may co-exist and work in concert to produce anti-depressive effects, the potentially multiple sites of action of omega-3 PUFAs need to be fully established. We also discussed the limitations of current studies and suggest future directions for preclinical and translational research in this field.
Collapse
Affiliation(s)
- Lie Zhou
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Jia-Yao Xiong
- Yangtze University Health Science Center, Jingzhou, China
| | - Yu-Qian Chai
- Yangtze University Health Science Center, Jingzhou, China
| | - Lu Huang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Zi-Yang Tang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Xin-Feng Zhang
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Bo Liu
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Jun-Tao Zhang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Yang R, Wang L, Jin K, Cao S, Wu C, Guo J, Chen J, Tang H, Tang M. Omega-3 Polyunsaturated Fatty Acids Supplementation Alleviate Anxiety Rather Than Depressive Symptoms Among First-Diagnosed, Drug-Naïve Major Depressive Disorder Patients: A Randomized Clinical Trial. Front Nutr 2022; 9:876152. [PMID: 35903448 PMCID: PMC9315396 DOI: 10.3389/fnut.2022.876152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFAs) augmentation of antidepressants has shown great potential in the prevention and treatment of major depressive disorders (MDD). Objective To investigate the effect of n-3 PUFAs plus venlafaxine in patients with first-diagnosed, drug-naïve depression. Method A total of 72 outpatients with first-diagnosed depression were recruited. The daily dose of 2.4 g/day n-3 PUFAs or placebo plus venlafaxine was used for over 12 weeks. The outcomes were assessed by the Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), Beck depression inventory (BDI), and Self-rating anxiety scale (SAS). Results Both groups exhibited improvement on clinical characteristics at week 4 and week 12 compared with baseline. The rate of responders for anxiety in n-3 PUFAs group (44.44%) was significantly higher than that in placebo group (21.21%) at week 4 (χ2 = 4.182, p = 0.041), while week 12 did not show a difference (χ2 = 0.900, p = 0.343). The rate of responders for depression at both week 4 (χ2 = 0.261, p = 0.609) and week 12 (χ2 = 1.443, p = 0.230) showed no significant difference between two groups. Further analysis found that Childhood Trauma Questionnaire (CTQ) had positive correlation with HAMA (r = 0.301, p = 0.012), SAS (r = 0.246, p = 0.015), HAMD (r = 0.252, p = 0.038) and BDI (r = 0.233, p = 0.022) with Pearson correlation analysis. Social Support Rating Scale (SSRS) had negative correlation with SAS (r = -0.244, p = 0.015) and BDI (r = -0.365, p = 0.000). Conclusion This trial found that n-3 PUFAs supplementation in favor of venlafaxine alleviated the anxiety symptoms rather than depressive symptoms at the early stage of treatment (4 weeks) for first-diagnosed, drug-naïve depressed patients. However, the advantage disappeared in long-term treatment. Furthermore, childhood abuse and social support are closely related to the clinical and biological characteristics of depression. Both childhood trauma and lack of social support might be predictors of poor prognosis in depression. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03295708].
Collapse
Affiliation(s)
- Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Song Cao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
de Kluiver H, Jansen R, Milaneschi Y, Bot M, Giltay EJ, Schoevers R, Penninx BW. Metabolomic profiles discriminating anxiety from depression. Acta Psychiatr Scand 2021; 144:178-193. [PMID: 33914921 PMCID: PMC8361773 DOI: 10.1111/acps.13310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Depression has been associated with metabolomic alterations. Depressive and anxiety disorders are often comorbid diagnoses and are suggested to share etiology. We investigated whether differential metabolomic alterations are present between anxiety and depressive disorders and which clinical characteristics of these disorders are related to metabolomic alterations. METHODS Data were from the Netherlands Study of Depression and Anxiety (NESDA), including individuals with current comorbid anxiety and depressive disorders (N = 531), only a current depression (N = 304), only a current anxiety disorder (N = 548), remitted depressive and/or anxiety disorders (N = 897), and healthy controls (N = 634). Forty metabolites from a proton nuclear magnetic resonance lipid-based metabolomics panel were analyzed. First, we examined differences in metabolites between disorder groups and healthy controls. Next, we assessed whether depression or anxiety clinical characteristics (severity and symptom duration) were associated with metabolites. RESULTS As compared to healthy controls, seven metabolomic alterations were found in the group with only depression, reflecting an inflammatory (glycoprotein acetyls; Cohen's d = 0.12, p = 0.002) and atherogenic-lipoprotein-related (e.g., apolipoprotein B: Cohen's d = 0.08, p = 0.03, and VLDL cholesterol: Cohen's d = 0.08, p = 0.04) profile. The comorbid group showed an attenuated but similar pattern of deviations. No metabolomic alterations were found in the group with only anxiety disorders. The majority of metabolites associated with depression diagnosis were also associated with depression severity; no associations were found with anxiety severity or disease duration. CONCLUSION While substantial clinical overlap exists between depressive and anxiety disorders, this study suggests that altered inflammatory and atherogenic-lipoprotein-related metabolomic profiles are uniquely associated with depression rather than anxiety disorders.
Collapse
Affiliation(s)
- Hilde de Kluiver
- Department of PsychiatryAmsterdam UMCVrije Universiteit AmsterdamDepartment of Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Rick Jansen
- Department of PsychiatryAmsterdam UMCVrije Universiteit AmsterdamDepartment of Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Yuri Milaneschi
- Department of PsychiatryAmsterdam UMCVrije Universiteit AmsterdamDepartment of Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Mariska Bot
- Department of PsychiatryAmsterdam UMCVrije Universiteit AmsterdamDepartment of Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Erik J. Giltay
- Department of PsychiatryLeiden University Medical CenterLeidenthe Netherlands
| | - Robert Schoevers
- Department of PsychiatryUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands,Research School of Behavioral and Cognitive NeurosciencesUniversity of GroningenGroningenthe Netherlands
| | - Brenda W.J.H. Penninx
- Department of PsychiatryAmsterdam UMCVrije Universiteit AmsterdamDepartment of Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamthe Netherlands
| |
Collapse
|
14
|
Sikka P, Behl T, Sharma S, Sehgal A, Bhatia S, Al-Harrasi A, Singh S, Sharma N, Aleya L. Exploring the therapeutic potential of omega-3 fatty acids in depression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43021-43034. [PMID: 34121162 DOI: 10.1007/s11356-021-14884-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Omega-3 fatty acids have been acknowledged for their number of holdings on an individual's health. Not only in physical valuation but also in managing psychiatric disorders, omega-3 fatty acids have been found to be a powerful formula. It is proclaimed that depressive patients suffer anomaly with the levels of omega-3 polyunsaturated fatty acids in the body, coupled with insignificant EPA and DHA. Enhancement in brain functioning, neuronal functions, and paying attention in interacting with the brain cells are some of the additional tasks, being performed by the supplementation of omega-3 fatty acids. The leading and primary source via dietary supplementation involves the involvement of fish and fish products. These are hypothesized to be the best and dominant source for omega-3 fatty acids. Consumption of omega-3 fatty acid is well safe, that physician highly favors intake of these supplements, remarkably in the case of pregnant women. However, treating this serious life-threatening mental disorder leads to many adverse effects when treated with antidepressants. The dose range includes 1g/d to 10g/d, which is to be incorporated by the patient. It is also tested that the combination of EPA and DHA is found to be more efficacious for a person in treating and preventing depressive symptoms. Some studies verify the supplementation of omega-3 fatty acids in diet was coequally productive and successful with minimal side effects when analyzed with antidepressants. Despite these facts, much research is still needed and presently in process for long-term safety and studying the role of omega-3 fatty acids in human health.
Collapse
Affiliation(s)
- Priyanshi Sikka
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|