1
|
Bespalov A, Lütjens R, Doller D. Dusting off old blueprints: Is it time to reconsider metabotropic glutamate receptor 2 for therapeutic drug development? Pharmacol Biochem Behav 2025; 247:173908. [PMID: 39571688 DOI: 10.1016/j.pbb.2024.173908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/28/2025]
Abstract
The metabotropic glutamate receptor 2 (mGlu2) is a heavily studied therapeutic target in neuropsychiatry for which we anticipate a renewed interest in the near future. We review the rationale and the outcome of clinical trials with mGlu2/3 receptor agonists in schizophrenia, a field of intense research since a seminal publication by Patel and colleagues (2007). We summarize evidence about selective, potent and safe agents with quantifiable CNS penetration that can be used to test hypotheses of mGlu2 receptors involvement in neuropsychiatric diseases. We summarize lessons learned from previous programs that should be considered to maximize the probability of success when targeting orthosteric and allosteric enhancement of mGlu2 receptor function in schizophrenia and beyond. First, we propose expanding our focus beyond presynaptic mGlu2 receptor stimulation in schizophrenia to novel hypotheses and that the choice of a therapeutic indication no longer be dictated by commercial opportunity but following science as a driver. Second, evidence on internal validity of preclinical studies supporting efficacy claims in the mGlu2 field is very limited. This gap will need to be closed when reviewing the rationale to re-initiate efforts in this field. Third, the pomaglumetad program was halted due to insufficient clinical efficacy, partly because of the inability to identify a treatment responder population. In preclinical studies, effects of mGlu2/3 receptor stimulation also seemed to vary significantly between laboratories. Definition of the responsive subject population and development of response-predicting biomarkers is therefore one of the main avenues of further research in the mGlu2 field.
Collapse
|
2
|
Olivares-Berjaga D, Martínez-Pinteño A, Rodríguez N, Mas S, Morén C, Parellada E, Gassó P. Effectiveness of positive allosteric modulators of metabotropic glutamate receptor 2/3 (mGluR2/3) in animal models of schizophrenia. Transl Psychiatry 2025; 15:11. [PMID: 39809758 PMCID: PMC11733226 DOI: 10.1038/s41398-024-03194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system. One of these new therapies involves the positive allosteric modulators (PAMs) of metabotropic glutamate receptors, mainly types 2/3 (mGluR2/3). mGluR2/3 PAMs are selective for the receptor, present high tolerability and can modulate the activity of the receptor for long periods. There is not much research in clinical trials regarding mGluR2/3 PAMs. However, several lines of evidence from animal models have indicated the efficiency of mGluR2/3 PAMs. In this review, focusing on in vivo animal studies, we will specifically discuss the utilization of SZ animal models and the various methods employed to assess animal behaviour before summarising the evidence obtained to date in the field of mGluR2/3 PAMs. By doing so, we aim to deepen our understanding of the underlying mechanisms and the potential efficiency of mGluR2/3 PAMs in treating SZ. Overall, mGluR2/3 PAMs have demonstrated efficiency in attenuating SZ-like behavioural and molecular deficits in animal models and could be useful for the early management of the disorder or to treat specific subsets of patients.
Collapse
Affiliation(s)
- David Olivares-Berjaga
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Constanza Morén
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Department of Fundamental and Clinical Nursing, Faculty of Nursing, University of Barcelona, Barcelona, Spain
| | - Eduard Parellada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain.
| | - Patricia Gassó
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
3
|
Olivares-Berjaga D, Martínez-Pinteño A, Rodríguez N, Madero S, Prohens L, Martínez-Serrano I, Mas S, Morén C, Parellada E, Gassó P. Effects of the PAM of mGluR2, JNJ-46356479, on brain apoptotic protein levels in a mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110955. [PMID: 38296154 DOI: 10.1016/j.pnpbp.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Current treatment for schizophrenia (SZ) ameliorates the positive symptoms, but is inefficient in treating the negative and cognitive symptoms. The SZ glutamatergic dysfunction hypothesis has opened new avenues in the development of novel drugs targeting the glutamate storm, an inducer of progressive neuropathological changes. Positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), reduce the presynaptic release of glutamate, which has previously been demonstrated to attenuate glutamate- and dopamine-induced apoptosis in human neuroblastoma cell cultures. We hypothesised that JNJ treatment would modify the brain levels of apoptotic proteins in a mouse model of ketamine (KET)-induced schizophrenia. We analysed the levels of proapoptotic (caspase-3 and Bax) and antiapoptotic (Bcl-2) proteins by western blot in the prefrontal cortex and hippocampus of JNJ-treated mice. JNJ attenuated apoptosis in the brain by partially restoring the levels of the antiapoptotic Bcl-2 protein, which is significantly reduced in animals exposed to KET. Additionally, a significant inverse correlation was observed between proapoptotic protein levels and behavioural deficits in the mice. Our findings suggest that JNJ may attenuate brain apoptosis in vivo, as previously described in cell cultures, providing a link between neuropathological deficits and SZ symptomatology.
Collapse
Affiliation(s)
| | - Albert Martínez-Pinteño
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Natalia Rodríguez
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Santiago Madero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain.
| | - Llucía Prohens
- Dept. of Basic Clinical Practice, University of Barcelona, Spain.
| | | | - Sergi Mas
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Constanza Morén
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Eduard Parellada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain.
| | - Patricia Gassó
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
4
|
Martínez-Pinteño A, Rodríguez N, Olivares D, Madero S, Gómez M, Prohens L, García-Rizo C, Mas S, Morén C, Parellada E, Gassó P. Early treatment with JNJ-46356479, a mGluR2 modulator, improves behavioral and neuropathological deficits in a postnatal ketamine mouse model of schizophrenia. Biomed Pharmacother 2023; 158:114079. [PMID: 36521250 DOI: 10.1016/j.biopha.2022.114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), may mitigate the glutamate storm during the early stages of schizophrenia (SZ), which could be especially useful in the treatment of cognitive and negative symptoms. We evaluated the efficacy of early treatment with JNJ or clozapine (CLZ) in reversing behavioral and neuropathological deficits induced in a postnatal ketamine (KET) mouse model of SZ. Mice exposed to KET (30 mg/kg) on postnatal days (PND) 7, 9, and 11 received JNJ or CLZ (10 mg/kg) daily in the adolescent period (PND 35-60). Mice exposed to KET did not show the expected preference for a novel object or for social novelty, but they recovered this preference with JNJ treatment. Similarly, KET group did not show the expected dishabituation in the fifth trial, but mice treated with JNJ or CLZ recovered an interest in the novel animal. Neuronal immunoreactivity also differed between treatment groups with mice exposed to KET showing a reduction in parvalbumin positive cells in the prefrontal cortex and decreased c-Fos expression in the hippocampus, which was normalized with the pharmacological treatment. JNJ-46356479 treatment in early stages may help improve the cognitive and negative symptoms, as well as certain neuropathological deficits, and may even obtain a better response than CLZ treatment. This may have relevant clinical translational applications since early treatment with mGluR2 modulators that inhibit glutamate release at the onset of critical phases of SZ may prevent or slow down the clinical deterioration of the disease.
Collapse
Affiliation(s)
| | - N Rodríguez
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - D Olivares
- Dept. of Basic Clinical Practice, University of Barcelona, Spain
| | - S Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain
| | - M Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - L Prohens
- Dept. of Basic Clinical Practice, University of Barcelona, Spain
| | - C García-Rizo
- Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - S Mas
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - C Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - E Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - P Gassó
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
5
|
Neurotoxic/Neuroprotective Effects of Clozapine and the Positive Allosteric Modulator of mGluR2 JNJ-46356479 in Human Neuroblastoma Cell Cultures. Int J Mol Sci 2023; 24:ijms24032054. [PMID: 36768378 PMCID: PMC9916793 DOI: 10.3390/ijms24032054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Current antipsychotics (APs) effectively control positive psychotic symptoms, mainly by blocking dopamine (DA) D2 receptors, but have little effect on negative and cognitive symptoms. Increased glutamate (GLU) release would trigger neurotoxicity, leading to apoptosis and synaptic pruning, which is involved in the pathophysiology of schizophrenia. New pharmacological strategies are being developed such as positive allosteric modulators (PAMs) of the metabotropic GLU receptor 2 (mGluR2) that inhibit the presynaptic release of GLU. We previously reported that treatment of adult mice with JNJ-46356479 (JNJ), a recently developed mGluR2 PAM, partially improved neuropathological deficits and schizophrenia-like behavior in a postnatal ketamine mouse model. In the present study, we evaluated, for the first time, the putative neuroprotective and antiapoptotic activity of JNJ in a human neuroblastoma cell line and compared it with the effect of clozapine (CLZ) as a clinical AP with the highest efficacy and with apparent utility in managing negative symptoms. Specifically, we measured changes in cell viability, caspase 3 activity and apoptosis, as well as in the expression of key genes involved in survival and cell death, produced by CLZ and JNJ alone and in combination with a high DA or GLU concentration as apoptosis inducers. Our results suggest that JNJ is not neurotoxic and attenuates apoptosis, particularly by decreasing the caspase 3 activation induced by DA and GLU, as well as increasing and decreasing the number of viable and apoptotic cells, respectively, only when cultures were exposed to GLU. Its effects seem to be less neurotoxic and more neuroprotective than those observed with CLZ. Moreover, JNJ partially normalized altered expression levels of glycolytic genes, which could act as a protective factor and be related to its putative neuroprotective effect. More studies are needed to define the mechanisms of action of this GLU modulator and its potential to become a novel therapeutic agent for schizophrenia.
Collapse
|
6
|
The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia. Int J Mol Sci 2023; 24:ijms24021022. [PMID: 36674542 PMCID: PMC9866372 DOI: 10.3390/ijms24021022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SZ) is a heterogeneous mental disorder, affecting ~1% of the worldwide population. One of the main pathophysiological theories of SZ is the imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, involving N-methyl-D-aspartate receptors (NMDAr). This may lead to local glutamate storms coupled with excessive dendritic pruning and subsequent cellular stress, including nitrosative stress, during a critical period of neurodevelopment, such as adolescence. Nitrosative stress is mediated by nitric oxide (NO), which is released by NO synthases (NOS) and has emerged as a key signaling molecule implicated in SZ. Regarding glutamatergic models of SZ, the administration of NMDAr antagonists has been found to increase NOS levels in the prefrontal cortex (PFC) and ventral hippocampus (HPC). We hypothesized that suboptimal NOS function in adolescence could be a target for early treatments, including clozapine (CLZ) and the novel metabotropic glutamate receptor modulator JNJ-46356479 (JNJ). We analyzed the protein levels of NOS isoforms in adult PFC and HPC of a postnatal ketamine induced murine model of SZ receiving CLZ or JNJ during adolescence by western blot. Endothelial NOS and neuronal NOS increased under ketamine administration in PFC and decreased in CLZ or JNJ treatments. The same trends were found in the HPC in neuronal NOS. In contrast, inducible NOS was increased under JNJ treatment with respect to ketamine induction in the HPC, and the same trends were found in the PFC. Taken together, our findings suggest a misbalance of the NOS system following NMDAr antagonist administration, which was then modulated under early CLZ and JNJ treatments.
Collapse
|
7
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Witkin JM, Pandey KP, Smith JL. Clinical investigations of compounds targeting metabotropic glutamate receptors. Pharmacol Biochem Behav 2022; 219:173446. [PMID: 35987339 DOI: 10.1016/j.pbb.2022.173446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are potential targets for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | - Kamal P Pandey
- Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
9
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
10
|
Parellada E, Gassó P. Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 2021; 11:271. [PMID: 33958577 PMCID: PMC8102516 DOI: 10.1038/s41398-021-01385-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia disorder remains an unsolved puzzle. However, the integration of recent findings from genetics, molecular biology, neuroimaging, animal models and translational clinical research offers evidence that the synaptic overpruning hypothesis of schizophrenia needs to be reassessed. During a critical period of neurodevelopment and owing to an imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, a regionally-located glutamate storm might occur, triggering excessive dendritic pruning with the activation of local dendritic apoptosis machinery. The apoptotic loss of dendritic spines would be aggravated by microglia activation through a recently described signaling system from complement abnormalities and proteins of the MHC, thus implicating the immune system in schizophrenia. Overpruning of dendritic spines coupled with aberrant synaptic plasticity, an essential function for learning and memory, would lead to brain misconnections and synaptic inefficiency underlying the primary negative symptoms and cognitive deficits of schizophrenia. This driving hypothesis has relevant therapeutic implications, including the importance of pharmacological interventions during the prodromal phase or the transition to psychosis, targeting apoptosis, microglia cells or the glutamate storm. Future research on apoptosis and brain integrity should combine brain imaging, CSF biomarkers, animal models and cell biology.
Collapse
Affiliation(s)
- Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Patricia Gassó
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|