1
|
Perera MPN, Gotsis ES, Bailey NW, Fitzgibbon BM, Fitzgerald PB. Exploring functional connectivity in large-scale brain networks in obsessive-compulsive disorder: a systematic review of EEG and fMRI studies. Cereb Cortex 2024; 34:bhae327. [PMID: 39152672 PMCID: PMC11329673 DOI: 10.1093/cercor/bhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Efstathia S Gotsis
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Neil W Bailey
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Bernadette M Fitzgibbon
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Paul B Fitzgerald
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| |
Collapse
|
2
|
Conte G, Costanza C, Novelli M, Scarselli V, Arigliani E, Valente F, Baglioni V, Terrinoni A, Chiarotti F, Cardona F. Comorbidities and Disease Duration in Tourette Syndrome: Impact on Cognition and Quality of Life of Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:226. [PMID: 38397337 PMCID: PMC10887127 DOI: 10.3390/children11020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Cognitive functions represent foundational factors for mental health and quality of life (QoL). In Tourette syndrome (TS), psychiatric comorbidities are common and have been inconsistently reported to affect the cognition and QoL of patients, while the role of tic disorder duration has not been yet explored. METHODS To examine how comorbidities and TS duration may influence cognition and QoL, N = 80 children with TS (6-16 years) were evaluated using the Wechsler Intelligence Scale for Children (WISC-IV). Standardized questionnaires were used to assess the presence and severity of TS main comorbidities and QoL. Data were interpreted using linear correlations, regression, and mediation analysis. RESULTS Depression and attention-deficit/hyperactivity disorder (ADHD) symptoms accounted for poorer cognitive performance. Anxiety oppositely predicted better cognitive performance, while no significant role for obsessive compulsive disorder (OCD) was observed. Disease duration was associated with lower total IQ, verbal reasoning, and working memory abilities. Depression, anxiety, and TS duration also deeply influenced QoL measures. CONCLUSIONS TS common comorbidities have a differential impact on the cognitive abilities of children and adolescents, which translates into a complex influence on their perceived QoL. A longer clinical history of tics was related to worse cognitive outcomes, which prompts further consideration of disease duration in both clinical and research settings involving children and adolescents.
Collapse
Affiliation(s)
- Giulia Conte
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Carola Costanza
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy;
| | - Maria Novelli
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Veronica Scarselli
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Elena Arigliani
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Francesca Valente
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Valentina Baglioni
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Arianna Terrinoni
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Francesco Cardona
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| |
Collapse
|
3
|
Luo L, Liao Y, Jia F, Ning G, Liu J, Li X, Chen X, Ma X, He X, Fu C, Cai X, Qu H. Altered dynamic functional and effective connectivity in drug-naive children with Tourette syndrome. Transl Psychiatry 2024; 14:48. [PMID: 38253543 PMCID: PMC10803732 DOI: 10.1038/s41398-024-02779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tourette syndrome (TS) is a developmental neuropsychiatric disorder characterized by repetitive, stereotyped, involuntary tics, the neurological basis of which remains unclear. Although traditional resting-state MRI (rfMRI) studies have identified abnormal static functional connectivity (FC) in patients with TS, dynamic FC (dFC) remains relatively unexplored. The rfMRI data of 54 children with TS and 46 typically developing children (TDC) were analyzed using group independent component analysis to obtain independent components (ICs), and a sliding-window approach to generate dFC matrices. All dFC matrices were clustered into two reoccurring states, the state transition metrics were obtained. We conducted Granger causality and nodal topological analyses to further investigate the brain regions that may play the most important roles in driving whole-brain switching between different states. We found that children with TS spent more time in state 2 (PFDR < 0.001), a state characterized by strong connectivity between ICs, and switched more quickly between states (PFDR = 0.025) than TDC. The default mode network (DMN) may play an important role in abnormal state transitions because the FC that changed the most between the two states was between the DMN and other networks. Additionally, the DMN had increased degree centrality, efficiency and altered causal influence on other networks. Certain alterations related to executive function (r = -0.309, P < 0.05) and tic symptom ratings (r = 0.282; 0.413, P < 0.05) may represent important aspects of the pathophysiology of TS. These findings facilitate our understanding of the neural basis for the clinical presentation of TS.
Collapse
Affiliation(s)
- Lekai Luo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Jing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xijian Chen
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xinmao Ma
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xuejia He
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China
| | - Xiaotang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China.
- Department of Rehabilitation, West China Second University Hospital, Chengdu, 610021, Sichuan, PR China.
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, 610021, Sichuan, PR China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610021, Sichuan, PR China.
| |
Collapse
|
4
|
Xu Y, Han S, Wei Y, Zheng R, Cheng J, Zhang Y. Abnormal resting-state effective connectivity in large-scale networks among obsessive-compulsive disorder. Psychol Med 2024; 54:350-358. [PMID: 37310178 DOI: 10.1017/s0033291723001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a chronic mental illness characterized by abnormal functional connectivity among distributed brain regions. Previous studies have primarily focused on undirected functional connectivity and rarely reported from network perspective. METHODS To better understand between or within-network connectivities of OCD, effective connectivity (EC) of a large-scale network is assessed by spectral dynamic causal modeling with eight key regions of interests from default mode (DMN), salience (SN), frontoparietal (FPN) and cerebellum networks, based on large sample size including 100 OCD patients and 120 healthy controls (HCs). Parametric empirical Bayes (PEB) framework was used to identify the difference between the two groups. We further analyzed the relationship between connections and Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS OCD and HCs shared some similarities of inter- and intra-network patterns in the resting state. Relative to HCs, patients showed increased ECs from left anterior insula (LAI) to medial prefrontal cortex, right anterior insula (RAI) to left dorsolateral prefrontal cortex (L-DLPFC), right dorsolateral prefrontal cortex (R-DLPFC) to cerebellum anterior lobe (CA), CA to posterior cingulate cortex (PCC) and to anterior cingulate cortex (ACC). Moreover, weaker from LAI to L-DLPFC, RAI to ACC, and the self-connection of R-DLPFC. Connections from ACC to CA and from L-DLPFC to PCC were positively correlated with compulsion and obsession scores (r = 0.209, p = 0.037; r = 0.199, p = 0.047, uncorrected). CONCLUSIONS Our study revealed dysregulation among DMN, SN, FPN, and cerebellum in OCD, emphasizing the role of these four networks in achieving top-down control for goal-directed behavior. There existed a top-down disruption among these networks, constituting the pathophysiological and clinical basis.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Li X, Cong J, Liu K, Wang P, Sun M, Wei B. Aberrant intrinsic functional brain topology in methamphetamine-dependent individuals after six-months of abstinence. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19565-19583. [PMID: 38052615 DOI: 10.3934/mbe.2023867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Our aim was to explore the aberrant intrinsic functional topology in methamphetamine-dependent individuals after six months of abstinence using resting-state functional magnetic imaging (rs-fMRI). Eleven methamphetamines (MA) abstainers who have abstained for six months and eleven healthy controls (HC) were recruited for rs-fMRI examination. The graph theory and functional connectivity (FC) analysis were employed to investigate the aberrant intrinsic functional brain topology between the two groups at multiple levels. Compared with the HC group, the characteristic shortest path length ($ {L}_{p} $) showed a significant decrease at the global level, while the global efficiency ($ {E}_{glob} $) and local efficiency ($ {E}_{loc} $) showed an increase considerably. After FDR correction, we found significant group differences in nodal degree and nodal efficiency at the regional level in the ventral attentional network (VAN), dorsal attentional network (DAN), somatosensory network (SMN), visual network (VN) and default mode network (DMN). In addition, the NBS method presented the aberrations in edge-based FC, including frontoparietal network (FPN), subcortical network (SCN), VAN, DAN, SMN, VN and DMN. Moreover, the FC of large-scale functional brain networks revealed a decrease within the VN and SCN and between the networks. These findings suggest that some functions, e.g., visual processing skills, object recognition and memory, may not fully recover after six months of withdrawal. This leads to the possibility of relapse behavior when confronted with MA-related cues, which may contribute to explaining the relapse mechanism. We also provide an imaging basis for revealing the neural mechanism of MA-dependency after six months of abstinence.
Collapse
Affiliation(s)
- Xiang Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Kunmeng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Pingping Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Min Sun
- Shandong Detoxification Monitoring and Treatment Institute, Zibo 255311, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| |
Collapse
|
6
|
Lamanna J, Ferro M, Spadini S, Racchetti G, Malgaroli A. The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behav Sci (Basel) 2023; 13:668. [PMID: 37622808 PMCID: PMC10451670 DOI: 10.3390/bs13080668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Tourette Syndrome (TS) is a high-incidence multifactorial neuropsychiatric disorder characterized by motor and vocal tics co-occurring with several diverse comorbidities, including obsessive-compulsive disorder and attention-deficit hyperactivity disorder. The origin of TS is multifactorial, with strong genetic, perinatal, and immunological influences. Although almost all neurotransmettitorial systems have been implicated in TS pathophysiology, a comprehensive neurophysiological model explaining the dynamics of expression and inhibition of tics is still lacking. The genesis and maintenance of motor and non-motor aspects of TS are thought to arise from functional and/or structural modifications of the basal ganglia and related circuitry. This complex wiring involves several cortical and subcortical structures whose concerted activity controls the selection of the most appropriate reflexive and habitual motor, cognitive and emotional actions. Importantly, striatal circuits exhibit bidirectional forms of synaptic plasticity that differ in many respects from hippocampal and neocortical plasticity, including sensitivity to metaplastic molecules such as dopamine. Here, we review the available evidence about structural and functional anomalies in neural circuits which have been found in TS patients. Finally, considering what is known in the field of striatal plasticity, we discuss the role of exuberant plasticity in TS, including the prospect of future pharmacological and neuromodulation avenues.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Psychology, Sigmund Freud University, 20143 Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132 Milan, Italy
| | - Gabriella Racchetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, 20132 Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
7
|
Morand-Beaulieu S, Wu J, Mayes LC, Grantz H, Leckman JF, Crowley MJ, Sukhodolsky DG. Increased Alpha-Band Connectivity During Tic Suppression in Children With Tourette Syndrome Revealed by Source Electroencephalography Analyses. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:241-250. [PMID: 33991741 PMCID: PMC8589865 DOI: 10.1016/j.bpsc.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tourette syndrome (TS) is a neurodevelopmental disorder involving chronic motor and phonic tics. Most individuals with TS can suppress their tics for at least a short period of time. Yet, the brain correlates of tic suppression are still poorly understood. METHODS In the current study, high-density electroencephalography was recorded during a resting-state and a tic suppression session in 72 children with TS. Functional connectivity between cortical regions was assessed in the alpha band (8-13 Hz) using an electroencephalography source connectivity method. Graph theory and network-based statistics were used to assess the global network topology and to identify brain regions showing increased connectivity during tic suppression. RESULTS Graph theoretical analyses revealed distinctive global network topology during tic suppression, relative to rest. Using network-based statistics, we found a subnetwork of increased connectivity during tic suppression (p < .001). That subnetwork encompassed many cortical areas, including the right superior frontal gyrus and the left precuneus, which are involved in the default mode network. We also found a condition-by-age interaction, suggesting age-mediated increases in connectivity during tic suppression. CONCLUSIONS These results suggest that children with TS suppress their tics through a brain circuit involving distributed cortical regions, many of which are part of the default mode network. Brain connectivity during tic suppression also increases as youths with TS mature. These results highlight a mechanism by which children with TS may control their tics, which could be relevant for future treatment studies.
Collapse
Affiliation(s)
| | - Jia Wu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Linda C Mayes
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Heidi Grantz
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Crowley
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Denis G Sukhodolsky
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
8
|
Abnormal dynamics of brain functional networks in children with Tourette syndrome. J Psychiatr Res 2023; 159:249-257. [PMID: 36764224 DOI: 10.1016/j.jpsychires.2023.01.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder characterized by the presence of multiple motor and vocal tics. Research using resting-state functional magnetic resonance imaging (rfMRI) have found aberrant static functional connectivity (FC) and its topological properties in the brain networks of TS. Our study is the first to investigate the dynamic functional connectivity (dFC) in the whole brain network of TS patients, focusing on the temporal properties of dFC states and the temporal variability of topological organization. The rfMRI data of 36 male children with TS and 27 matched healthy controls were collected and further analyzed by group spatial independent component analysis, sliding windows approach based dFC analysis, k-means clustering analysis, and graph theory analysis. The clustering analysis identified three dFC states. Of these states, state 2, characterized by increased inter-network connections in subcortical network (SCN), sensorimotor network (SMN), and default mode network (DMN), and decreased inter-network connections between salience network (SAN) and executive control network (ECN), was found to have higher fractional window and dwell time in TS, which was also positively correlated with tic severity. TS patients also exhibited higher temporal variability of whole-brain-network global efficiency and local efficiency, and higher temporal variability of nodal efficiency and local efficiency in SCN, DMN, ECN, SAN, and SMN. Additionally, temporal variability of the efficiency and local efficiency in insula was positively correlated with tic severity. Our findings revealed abnormal temporal property of dFC states and temporal variability of topological organization in TS, providing new insights into clinical diagnoses and neuropathology of TS.
Collapse
|
9
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
10
|
Tan V, Dockstader C, Moxon-Emre I, Mendlowitz S, Schacter R, Colasanto M, Voineskos AN, Akingbade A, Nishat E, Mabbott DJ, Arnold PD, Ameis SH. Preliminary Observations of Resting-State Magnetoencephalography in Nonmedicated Children with Obsessive-Compulsive Disorder. J Child Adolesc Psychopharmacol 2022; 32:522-532. [PMID: 36548364 PMCID: PMC9917323 DOI: 10.1089/cap.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Cortico-striato-thalamo-cortical (CSTC) network alterations are hypothesized to contribute to symptoms of obsessive-compulsive disorder (OCD). To date, very few studies have examined whether CSTC network alterations are present in children with OCD, who are medication naive. Medication-naive pediatric imaging samples may be optimal to study neural correlates of illness and identify brain-based markers, given the proximity to illness onset. Methods: Magnetoencephalography (MEG) data were analyzed at rest, in 18 medication-naive children with OCD (M = 12.1 years ±2.0 standard deviation [SD]; 10 M/8 F) and 13 typically developing children (M = 12.3 years ±2.2 SD; 6 M/7 F). Whole-brain MEG-derived resting-state functional connectivity (rs-fc), for alpha- and gamma-band frequencies were compared between OCD and typically developing (control) groups. Results: Increased MEG-derived rs-fc across alpha- and gamma-band frequencies was found in the OCD group compared to the control group. Increased MEG-derived rs-fc at alpha-band frequencies was evident across a number of regions within the CSTC circuitry and beyond, including the cerebellum and limbic regions. Increased MEG-derived rs-fc at gamma-band frequencies was restricted to the frontal and temporal cortices. Conclusions: This MEG study provides preliminary evidence of altered alpha and gamma networks, at rest, in medication-naive children with OCD. These results support prior findings pointing to the relevance of CSTC circuitry in pediatric OCD and further support accumulating evidence of altered connectivity between regions that extend beyond this network, including the cerebellum and limbic regions. Given the substantial portion of children and youth whose OCD symptoms do not respond to conventional treatments, our findings have implications for future treatment innovation research aiming to target and track whether brain patterns associated with having OCD may change with treatment and/or predict treatment response.
Collapse
Affiliation(s)
- Vinh Tan
- Human Biology Program, Faculty of Arts and Science, University of Toronto, Toronto, Canada
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Colleen Dockstader
- Human Biology Program, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sandra Mendlowitz
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Reva Schacter
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada
| | - Marlena Colasanto
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, Canada
| | - Aristotle N. Voineskos
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Aquila Akingbade
- Human Biology Program, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Eman Nishat
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, Temetry Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donald J. Mabbott
- Department of Physiology, Temetry Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Paul D. Arnold
- Department of Psychiatry, Cumming School of Medicine, The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Stephanie H. Ameis
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
11
|
Bharti K, Conte G, Tommasin S, Giannì C, Suppa A, Mirabella G, Cardona F, Pantano P. White matter alterations in drug-naïve children with Tourette syndrome and obsessive-compulsive disorder. Front Neurol 2022; 13:960979. [PMID: 36262836 PMCID: PMC9575657 DOI: 10.3389/fneur.2022.960979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) and early-onset obsessive-compulsive disorder (OCD) are frequently associated and conceptualized as distinct phenotypes of a common disease spectrum. However, the nature of their relationship is still largely unknown on a pathophysiological level. In this study, early structural white matter (WM) changes investigated through diffusion tensor imaging (DTI) were compared across four groups of drug-naïve children: TS-pure (n = 16), TS+OCD (n = 14), OCD (n = 10), and 11 age-matched controls. We analyzed five WM tracts of interest, i.e., cortico-spinal tract (CST), anterior thalamic radiations (ATR), inferior longitudinal fasciculus (ILF), corpus callosum (CC), and cingulum and evaluated correlations of DTI changes to symptom severity. Compared to controls, TS-pure and TS+OCD showed a comparable pattern of increased fractional anisotropy (FA) in CST, ATR, ILF and CC, with FA changes displaying negative correlation to tic severity. Conversely, in OCD, FA decreased in all WM tracts (except for the cingulum) compared to controls and negatively correlated to symptoms. We demonstrate different early WM microstructural alterations in children with TS-pure/TS+OCD as opposed to OCD. Our findings support the conceptualization of TS+OCD as a subtype of TS while suggesting that OCD is characterized by independent pathophysiological mechanisms affecting WM development.
Collapse
Affiliation(s)
- Komal Bharti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Conte
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- *Correspondence: Giulia Conte
| | - Silvia Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Isernia, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Isernia, Italy
| | - Giovanni Mirabella
- Department of Clinical and Experimental Sciences Section, Brescia University, Brescia, Italy
| | - Francesco Cardona
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Isernia, Italy
| |
Collapse
|
12
|
Xin X, Feng Y, Zang Y, Lou Y, Yao K, Gao X. Multivariate Classification of Brain Blood-Oxygen Signal Complexity for the Diagnosis of Children with Tourette Syndrome. Mol Neurobiol 2022; 59:1249-1261. [PMID: 34981418 DOI: 10.1007/s12035-021-02707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. Because of its varied clinical expressions and lack of reliable diagnostic biomarker, present TS diagnosis still depends on qualitative descriptions of symptoms. Our study aimed to investigate whether the complexity of resting state brain activity can serve as a potential biomarker for TS diagnosis, since it has been used successfully in various neuropsychiatric disorders, including two common TS comorbidities: attention-deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). In the current study, we used both univariate analysis and multivariate searchlight analysis with both linear and non-linear classification methods to explore the group differences in the complexity of resting state brain blood oxygen level-dependent (BOLD) signals between 25 TS boys without comorbidity and 25 sex, age and educational years matched healthy controls (HCs). We also investigated the relation between symptom severity in TS patients (YGTSS scores) and complexity indices derived from different analysis methods. We found: i) univariate analysis revealed reduced complexity in TS patients in the left cerebellum, left superior frontal gyrus, and left medial frontal gyrus; ii) multivariate analysis with non-linear classification method achieved the highest performance (accuracy: 0.94, sensitivity: 0.96, specificity: 0.92, AUC: 0.95) in bilateral supplementary motor areas; iii) significant correlations were found between complexity index derived from multivariate analysis with non-linear classification method and Tic severity (YGTSS scores) in the left cerebellum (r = 0.523, with YGTSS phonic) and in the right supplementary motor area (r = 0.767, with YGTSS motor). Taken together, these results suggested that complexity of resting state BOLD activity is a highly effective index for differentiating TS patients from normal controls. It has a good potential to be a quantitative biomarker for TS diagnosis.
Collapse
Affiliation(s)
- Xiaoyang Xin
- Center for Psychological Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Yixuan Feng
- Eye Center of the 2Nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 210015, China
| | - Yuting Lou
- Department of Pediatrics, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Ke Yao
- Eye Center of the 2Nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China. .,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| | - Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
13
|
Weeland CJ, van den Heuvel OA, White T, Tiemeier H, Vriend C. Obsessive-compulsive symptoms and resting-state functional characteristics in pre-adolescent children from the general population. Brain Imaging Behav 2022; 16:2715-2724. [PMID: 36319909 PMCID: PMC9712396 DOI: 10.1007/s11682-022-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022]
Abstract
While functional brain characteristics of obsessive-compulsive disorder have been extensively studied, literature on network topology and subnetwork connectivity related to obsessive-compulsive symptoms (OCS) is sparse. Here we investigated the functional brain characteristics of OCS in children from the general population using a multiscale approach. Since we previously observed OCS-related differences in thalamus morphology, we also focused on the network participation of thalamic subregions. The study included 1701 participants (9-12 years) from the population-based Generation R study. OCS were measured using the Short Obsessive-Compulsive Disorder Screener. We studied the brain network at multiple scales: global network topology, subnetwork connectivity and network participation of thalamic nodes (pre-registration: https://osf.io/azr9c ). Modularity, small-worldness and average participation coefficient were calculated on the global scale. We used a data-driven consensus community approach to extract a partition of five subnetworks involving thalamic subregions and calculate the within- and between-subnetwork functional connectivity and topology. Multiple linear regression models were fitted to model the relationship between OCS and functional brain measures. No significant associations were found when using our preregistered definition of probable OCS. However, post-hoc analyses showed that children endorsing at least one OCS (compared with controls) had higher modularity, lower connectivity between frontoparietal, limbic and visual networks as well as altered participation of the lateral prefrontal thalamus node. Our results suggest that network characteristics of OCS in children from the general population are partly symptom-specific and severity-dependent. Thorough assessment of symptom dimensions can deepen our understanding of OCS-related brain networks.
Collapse
Affiliation(s)
- Cees J Weeland
- Department of Anatomy and Neurosciences, Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
- Dept. Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Wytemaweg 8, 3015 GD, Rotterdam, the Netherlands.
- The Generation R Study Group, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Odile A van den Heuvel
- Department of Anatomy and Neurosciences, Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - T White
- Dept. Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Wytemaweg 8, 3015 GD, Rotterdam, the Netherlands
| | - H Tiemeier
- Harvard TH Chan School of Public Health, 677 Huntington Ave, 02115, Boston, MA, USA
| | - C Vriend
- Department of Anatomy and Neurosciences, Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| |
Collapse
|
14
|
Tikoo S, Suppa A, Tommasin S, Giannì C, Conte G, Mirabella G, Cardona F, Pantano P. The Cerebellum in Drug-naive Children with Tourette Syndrome and Obsessive–Compulsive Disorder. THE CEREBELLUM 2021; 21:867-878. [PMID: 34595609 PMCID: PMC9596574 DOI: 10.1007/s12311-021-01327-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 11/24/2022]
Abstract
Tourette syndrome (TS) and obsessive–compulsive disorder (OCD) are two neurodevelopmental disorders characterized by repetitive behaviors. Our recent study in drug-naive children with TS and OCD provided evidence of cerebellar involvement in both disorders. In addition, cerebellar functional connectivity (FC) was similar in TS patients without comorbidities (TSpure) and TS patients with OCD comorbidity (TS + OCD), but differed in pure OCD patients. To investigate in detail the cerebellar involvement in the pathophysiology of TS and OCD, we explored cerebellar structural and functional abnormalities in drug-naive children with TSpure, TS + OCD, and OCD and assessed possible correlations with severity scores. We examined 53 drug-naive children, classified as TSpure (n = 16), TS + OCD (n = 14), OCD (n = 11), or controls (n = 12). All subjects underwent a multimodal 3T magnetic resonance imaging examination. Cerebellar lobular volumes and quantitative diffusion tensor imaging parameters of cerebellar peduncles were used as measures of structural integrity. The dentate nucleus was selected as a region of interest to examine cerebello-cerebral functional connectivity alterations. Structural analysis revealed that both TSpure and TS + OCD patients had higher fractional anisotropy in cerebellar peduncles than controls. Conversely, OCD patients were characterized by lower fractional anisotropy than both controls and TSpure and TS + OCD patients. Lastly, cerebellar functional connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical circuit in TSpure, TS + OCD, and OCD patients. Early cerebellar structural and functional changes in drug-naive pediatric TSpure, TS + OCD, and OCD patients support a primary role of the cerebellum in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Sankalp Tikoo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
- Department of Neuroimmunology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Giulia Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Giovanni Mirabella
- Department of Clinical and Experimental Sciences Section, Brescia University, Brescia, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Francesco Cardona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|