1
|
Nasereddin L, Alnajjar O, Bashar H, Abuarab SF, Al-Adwan R, Chellappan DK, Barakat M. Corticosteroid-Induced Psychiatric Disorders: Mechanisms, Outcomes, and Clinical Implications. Diseases 2024; 12:300. [PMID: 39727630 DOI: 10.3390/diseases12120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Corticosteroids are extensively used in medicine for their powerful anti-inflammatory and immunosuppressive effects. However, their psychiatric side effects-such as mood disturbances, anxiety, and psychosis-are significant yet often underappreciated. This review provides a comprehensive exploration of corticosteroid-induced psychiatric disorders, with a focus on their underlying mechanisms and clinical implications. We examine how corticosteroids influence the hypothalamic-pituitary-adrenal (HPA) axis, leading to the dysregulation of stress responses and alterations in neurotransmitter levels, particularly dopamine, serotonin, and glutamate. These changes are linked to structural abnormalities in key brain areas such as the hippocampus and amygdala, which are implicated in mood and anxiety disorders, psychosis, and conditions like post-traumatic stress disorder (PTSD) and eating disorders. This review highlights the need for healthcare providers to be vigilant in recognizing and managing corticosteroid-induced psychiatric symptoms, especially in vulnerable populations with pre-existing mental health conditions. The complex relationship between corticosteroid type, dose, duration, and mental health outcomes is explored, emphasizing the importance of personalized treatment approaches to mitigate psychiatric risks. Given the widespread use of corticosteroids, there is an urgent need for more focused research on their psychiatric side effects. This review underscores the importance of patient education and careful monitoring to ensure optimal therapeutic outcomes while minimizing mental health risks associated with corticosteroid therapy.
Collapse
Affiliation(s)
- Lara Nasereddin
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Omar Alnajjar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Homam Bashar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | | | - Rahma Al-Adwan
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman 11937, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| |
Collapse
|
2
|
Cory-Slechta DA, Marvin E, Welle K, Goeke C, Chalupa D, Oberdörster G, Sobolewski M. Male-biased vulnerability of mouse brain tryptophan/kynurenine and glutamate systems to adolescent exposures to concentrated ambient ultrafine particle air pollution. Neurotoxicology 2024; 104:20-35. [PMID: 39002649 PMCID: PMC11377152 DOI: 10.1016/j.neuro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4-7 and PND10-13, and again at PND39-42 and 45-49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m3 and the adolescent exposure averaged 49.18 μg/m3. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulation of the UFP component of air pollution.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - C Goeke
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - D Chalupa
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| |
Collapse
|
3
|
Weller AE, Ferraro TN, Doyle GA, Reiner BC, Berrettini WH, Crist RC. Analysis of single-cell transcriptome data from a mouse model implicates protein synthesis dysfunction in schizophrenia. Genes Genomics 2024; 46:1071-1084. [PMID: 39083157 DOI: 10.1007/s13258-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Schizophrenia is a mental disorder that causes considerable morbidity, whose risk largely results from genetic factors. Setd1a is a gene implicated in schizophrenia. OBJECTIVE To study the gene expression changes found in heterozygous Setd1a± knockout mice in order to gain useful insight into schizophrenia pathogenesis. METHODS We mined a single-cell RNA sequencing (scRNAseq) dataset from the prefrontal cortex (PFC) and striatum of Setd1a± mice and identified cell type-specific differentially expressed genes (DEGs) and differential transcript usage (DTU). DEGs and genes containing DTU found in each cell type were used to identify affected biological pathways using Ingenuity Pathway Analysis (IPA). RESULTS We identified 273 unique DEGs across all cell types in PFC and 675 unique gene peaks containing DTU. In striatum, we identified 327 unique DEGs across all cell types and 8 unique gene peaks containing DTU. Key IPA findings from the analysis of DEGs found in PFC and striatum implicate processes involved in protein synthesis, mitochondrial function, cell metabolism, and inflammation. IPA analysis of genes containing DTU in PFC points to protein synthesis, as well as cellular activities involving intracellular signaling and neurotransmission. One canonical pathway, 'EIF2 Signaling', which is involved in the regulation of protein synthesis, was detected in PFC DEGs, striatum DEGs, and PFC genes containing DTU, drawing attention to its importance in schizophrenia pathophysiology. CONCLUSION Processes involving protein synthesis in general and the 'EIF2 Signaling' pathway in particular could be targets for the development of new research strategies and biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Andrew E Weller
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US.
| | - Thomas N Ferraro
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, US
| | - Glenn A Doyle
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, US
| | - Benjamin C Reiner
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Wade H Berrettini
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Richard C Crist
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| |
Collapse
|
4
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Pan Y, Wang Q, Chen M, Takao T. Profiling of urinary steroids aided by lithium ion adduction-based ultrahigh-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9719. [PMID: 38500352 DOI: 10.1002/rcm.9719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
RATIONALE As 3-OH-containing steroids are prone to dehydration by conventional electrospray ionization, reducing detection sensitivity, Li ion adduction-based ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS), developed to prevent dehydration and effectively detect 3-OH steroids, was applied for profiling total and free steroids in urine. METHODS Free urinary steroids were isolated directly from urine by solid-phase extraction (SPE) with 80% acetonitrile. The total steroids were prepared by enzymatic treatment of urine with a cocktail of sulfatase and glucronidase, protein precipitation, and separation with the above SPE. In order to detect as many steroid types as possible, UHPLC/MS/MS (Li method) with Li+ solution added after the column was used for analysis in addition to the conventional method of detecting protonated ions (H method). The 13 3-OH steroids and the remaining 16 steroids were quantified by standard curves prepared using product ion transitions derived from [M + Li]+ and MH+ , respectively. RESULTS Two groups of human urine, male and female urine, were analyzed. 3-OH steroids could be detected with greater sensitivity using the Li method than the conventional method. The absolute amounts of each steroid were normalized based on creatinine levels. The difference between the male and female groups are clearly attributable to sex steroids. CONCLUSIONS Twenty-nine total steroids and 19 free steroids were identified in a limited volume (240 mL) of urine. Of these, 13 3-OH steroids were better detected by Li+ adduction-based UHPLC/MS/MS.
Collapse
Affiliation(s)
- Yue Pan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Qiuyi Wang
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mengyao Chen
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One. Mar Drugs 2023; 21:md21030191. [PMID: 36976240 PMCID: PMC10053440 DOI: 10.3390/md21030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Previously, we identified a series of steroids (1–6) that showed potent anti-virus activities against respiratory syncytial virus (RSV), with IC50 values ranging from 3.23 to 0.19 µM. In this work, we first semi-synthesized and characterized the single isomer of 5, 25(R)-26-acetoxy-3β,5α-dihydroxycholest-6-one, named as (25R)-5, in seven steps from a commercially available compound diosgenin (7), with a total yield of 2.8%. Unfortunately, compound (25R)-5 and the intermediates only showed slight inhibitions against RSV replication at the concentration of 10 µM, but they possessed potent cytotoxicity activities against human bladder cancer 5637 (HTB-9) and hepatic cancer HepG2, with IC50 values ranging from 3.0 to 15.5 µM without any impression of normal liver cell proliferation at 20 µM. Among them, the target compound (25R)-5 possessed cytotoxicity activities against 5637 (HTB-9) and HepG2 with IC50 values of 4.8 µM and 15.5 µM, respectively. Further studies indicated that compound (25R)-5 inhibited cancer cell proliferation through inducing early and late-stage apoptosis. Collectively, we have semi-synthesized, characterized and biologically evaluated the 25R-isomer of compound 5; the biological results suggested that compound (25R)-5 could be a good lead for further anti-cancer studies, especially for anti-human liver cancer.
Collapse
|
7
|
Usui N, Kobayashi H, Shimada S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24065487. [PMID: 36982559 PMCID: PMC10049423 DOI: 10.3390/ijms24065487] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by impairments in social communication, repetitive behaviors, restricted interests, and hyperesthesia/hypesthesia caused by genetic and/or environmental factors. In recent years, inflammation and oxidative stress have been implicated in the pathogenesis of ASD. In this review, we discuss the inflammation and oxidative stress in the pathophysiology of ASD, particularly focusing on maternal immune activation (MIA). MIA is a one of the common environmental risk factors for the onset of ASD during pregnancy. It induces an immune reaction in the pregnant mother’s body, resulting in further inflammation and oxidative stress in the placenta and fetal brain. These negative factors cause neurodevelopmental impairments in the developing fetal brain and subsequently cause behavioral symptoms in the offspring. In addition, we also discuss the effects of anti-inflammatory drugs and antioxidants in basic studies on animals and clinical studies of ASD. Our review provides the latest findings and new insights into the involvements of inflammation and oxidative stress in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
- Correspondence: ; Tel.: +81-668-79-3124
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Suita 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|