1
|
Afrose D, Alfonso-Sánchez S, McClements L. Targeting oxidative stress in preeclampsia. Hypertens Pregnancy 2025; 44:2445556. [PMID: 39726411 DOI: 10.1080/10641955.2024.2445556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Preeclampsia is a complex condition characterized by elevated blood pressure and organ damage involving kidneys or liver, resulting in significant morbidity and mortality for both the mother and the fetus. Increasing evidence suggests that oxidative stress, often caused by mitochondrial dysfunction within fetal trophoblast cells may play a major role in the development and progression of preeclampsia. Oxidative stress occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defenses, which can lead to placental cellular damage and endothelial cell dysfunction. Targeting oxidative stress appears to be a promising therapeutic approach that has the potential to improve both short- and long-term maternal and fetal outcomes, thus reducing the global burden of preeclampsia. The purpose of this review is to provide a comprehensive account of the mechanisms of oxidative stress in preeclampsia. Furthermore, it also examines potential interventions for reducing oxidative stress in preeclampsia, including natural antioxidant supplements, lifestyle modifications, mitochondrial targeting antioxidants, and pharmacological agents.A better understanding of the mechanism of action of proposed therapeutic strategies targeting oxidative stress is essential for the identification of companion biomarkers and personalized medicine approaches for the development of effective treatments of preeclampsia.
Collapse
Affiliation(s)
- Dinara Afrose
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sofía Alfonso-Sánchez
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Zhang C, Xiao L, Fang Z, Li S, Fan C, You R, Wang C, Li A, Wang X, Zhang M. Gestational Exposure to Black Phosphorus Nanoparticles Induces Placental Trophoblast Dysfunction by Triggering Reactive Oxygen Species-Regulated Mitophagy. ACS NANO 2025; 19:16517-16533. [PMID: 40264356 PMCID: PMC12060646 DOI: 10.1021/acsnano.4c18731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
As a type of two-dimensional nanomaterial, black phosphorus (BP) has attracted considerable interest for applications in various fields. Despite its advantages, including biodegradability and biocompatibility, recent studies have shown that BP exhibits cytotoxicity in different types of cells. However, no studies have investigated the effects of BP exposure during pregnancy. Herein, we first investigated the effect of gestational exposure to BP nanoparticles (BPNPs) in a mouse model. Our findings indicated that BPNPs exposure restricted fetal growth and hindered placental development. In HTR8/SVneo trophoblast cells, BPNPs inhibited cell proliferation, migration, and invasion and caused apoptosis in a dose-dependent manner. Furthermore, BPNPs induced intracellular reactive oxygen species (ROS) overproduction and extensive mitochondrial damage. We further demonstrated that BPNPs promoted mitophagy via the PINK1/Parkin signaling pathway. Parkin siRNA knockdown rescued BPNPs-induced trophoblast dysfunction, while ROS inhibition attenuated BPNPs-induced cytotoxicity by reducing mitochondrial damage. Finally, treatment with mdivi-1, a mitophagy inhibitor, mitigated mitochondrial membrane potential reduction, excessive mtROS production, and the resulting trophoblast dysfunction. In vivo model investigation indicated that the application of mdivi-1 ameliorated embryonic resorption and fetal growth by alleviating placental damage. In summary, gestational exposure to BPNPs impairs fetal growth by inducing placental trophoblast dysfunction through ROS-regulated, PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Changqing Zhang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Li Xiao
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Zhenya Fang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Shuxian Li
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Chao Fan
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Ruolan You
- School
of Public Health, Shandong Second Medical
University, Weifang 261053, China
| | - Chunying Wang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Anna Li
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Xietong Wang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Meihua Zhang
- Key
Laboratory of Maternal & Fetal Medicine of National Health Commission
of China, Shandong Provincial Maternal and
Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| |
Collapse
|
3
|
Gan J, Zhou W, Zhao H, Shao J, Cui Y, Wu S, Xu H, Wang Y, Zhou Q, Li X. ULK2 deficiency stratifies autophagy-driven molecular subtypes and exacerbates trophoblasts apoptosis in preeclampsia. Placenta 2025; 167:42-54. [PMID: 40319799 DOI: 10.1016/j.placenta.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Preeclampsia (PE), a placenta-originated hypertensive disorder of pregnancy, lacks targeted therapies despite its significant contribution to maternal and fetal morbidity. Emerging evidence implicates autophagy dysregulation in PE pathogenesis, though its molecular heterogeneity remains unexplored. This study aims to investigate autophagy-related molecular subtypes in PE and identify ULK2 key regulators linking autophagic imbalance to placental dysfunction. METHODS Placental transcriptomic datasets were analyzed to identify autophagy-related differentially expressed genes (ARGs). Unsupervised consensus clustering stratified 80 PE patients into molecular subtypes. Protein-protein interaction (PPI) networks, machine learning algorithms, and functional enrichment analyses were employed to delineate hub genes and pathways. ULK2's role was validated via qRT-PCR, shRNA knockdown in HTR8/SVneo trophoblasts, and immunofluorescence. A murine PE model was established using the ULK1/2 inhibitor MRT68921 to assess systolic blood pressure, fetal growth, and placental autophagy-apoptosis dynamics. RESULTS Unsupervised clustering of 45 ARGs classified PE patients into ULK2low and ULK2high subtypes. The ULK2low subtype exhibited severe clinical features: elevated preterm delivery, systolic hypertension, HELLP syndrome incidence and increased proteinuria. ULK2-kncokdown trophoblasts showed impaired autophagy and upregulated apoptosis. Six hub genes correlated with disease severity and inversely with ULK2 expression. In mice, ULK2 inhibition induced PE-like phenotypes: sustained hypertension, fetal growth restriction and severe proteinuria. DISCUSSION ULK2 deficiency disrupts trophoblast homeostasis, driving placental dysfunction and severe clinical outcomes. The ULK2low subtype highlights autophagy heterogeneity in PE. While pharmacological ULK2 inhibition recapitulates PE in mice, limitations include sample size and MRT68921's dual ULK1/2 activity. Our findings propose ULK2 agonism as novel therapeutic strategies.
Collapse
Affiliation(s)
- Jianfeng Gan
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Wenhan Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jiejie Shao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yutong Cui
- Shanghai Funiirst Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Suwen Wu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huangfang Xu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Wang
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China; Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
4
|
Tian Y, Peng X, Yang X. Decreased PD-L1 contributes to preeclampsia by suppressing GM-CSF via the JAK2/STAT5 signal pathway. Sci Rep 2025; 15:3124. [PMID: 39856320 PMCID: PMC11759946 DOI: 10.1038/s41598-025-87349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligand PD-L1 have been detected at the materno-embryonic interface in both human and murine pregnancy models. However, research regarding the PD-1/PD-L1 signal in preeclampsia (PE) is limited. In the present investigation, 30 normal pregnant females and 30 PE patients were enrolled. Cellular functional experiments were performed in two trophoblast cell lines by transfection with lentiviral vectors for overexpression and down-regulation of PD-L1. The placental expressions of PD-1, PD-L1, and granulocyte macrophage colony-stimulating factor (GM-CSF) exhibited a notable reduction in PE cases compared with healthy pregnancies. Cellular functional experiments indicated that excessive PD-L1 expression significantly enhanced trophoblast migratory, invasive, and proliferative capabilities while inhibiting cell apoptosis. Additionally, the administration of lentivirus-mediated PD-L1 overexpression could alleviate clinical symptoms (hypertension, proteinuria) of PE-like rats. Therefore, decreased PD-L1 may contribute to PE by inhibiting GM-CSF via activating the JAK2/STAT5 pathway. Our study provides a novel pathway that can be targeted for the therapy of this disease.
Collapse
Affiliation(s)
- Yingying Tian
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xu Peng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
5
|
Saxena S, John BA, Verma N, Mishra M. The Dysregulation of microRNA-30b Directly Regulates Cystathionine Gamma-Lyase and Exhibits Poor Invasion Activity in Preeclampsia. Cureus 2025; 17:e78036. [PMID: 40013213 PMCID: PMC11862282 DOI: 10.7759/cureus.78036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Background and objective Preeclampsia (PE) is a severe pregnancy complication characterized by high blood pressure and proteinuria after 23 weeks of gestation. Insufficient trophoblast invasion has been linked to its development. Hydrogen sulfide (H₂S), with its genes cystathionine gamma-lyase (CTH) playing the role of an important vasodilator, may be associated with various diseases including PE. This study investigated the role of microRNA-30b (miR-30b) in trophoblast invasion using HTR-8/SVneo cells, blood, and placental samples Methods The study involved samples from 40 preeclamptic subjects and 40 healthy controls. Gene expression was analyzed via quantitive real-time PCR and enzyme-linked immunosorbent assay (ELISA). The effects of H₂S were simulated using a sodium hydrogen sulfide (NaHS) inhibitor (AOAA), and miR-30b inhibitors were used to assess changes in invasion capacity. Results NaHS treatment enhanced trophoblast invasion, and hypoxia/reoxygenation (H/R) + NaHS-treated cells showed increased invasion compared to H/R-treated cells alone. miR-30b inhibition led to higher expression of CTH, matrix metalloproteinase-9 (MMP-9), and reduced tissue inhibitor of metalloproteinases 1 (TIMP-1) and TIMP-2 expression, improving cell invasion. Patient samples showed lower CTH, MMP-2, and MMP-9 levels in PE, with elevated TIMP-1 and TIMP-2. Protein expression also revealed reduced CTH and MMP-9 in preeclamptic patients. Conclusions Based on our findings, miR-30b influences trophoblast invasion by modulating CTH expression and the MMP/TIMP balance. Enhanced H₂S production improves invasion, suggesting that miR-30b and related pathways can be potential therapeutic targets for PE management.
Collapse
Affiliation(s)
- Shobhit Saxena
- Anatomy, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Bincy A John
- Imaging Scientist, Charles River Laboratories, Durham, USA
| | - Neelam Verma
- Anatomy, Maulana Azad Medical College, New Delhi, IND
| | | |
Collapse
|
6
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
7
|
Zhao X, Xu A, Lu X, Chen B, Hua Y, Ma Y. Association of phthalates exposure and sex steroid hormones with late-onset preeclampsia: a case-control study. BMC Pregnancy Childbirth 2024; 24:577. [PMID: 39227873 PMCID: PMC11369995 DOI: 10.1186/s12884-024-06793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between phthalates exposure and estrogen and progesterone levels, as well as their role in late-onset preeclampsia. METHODS A total of 60 pregnant women who met the inclusion and exclusion criteria were recruited. Based on the diagnosis of preeclampsia, participants were divided into two groups: normotensive pregnant women (n = 30) and pregnant women with late-onset preeclampsia (n = 30). The major metabolites of phthalates (MMP, MEP, MiBP, MBP, MEHP, MEOHP, MEHHP) and sex steroid hormones (estrogen and progesterone) were quantified in urine samples of the participants. RESULTS No significant differences were observed in the levels of MMP, MEP, MiBP, MBP, MEHP, MEOHP, and MEHHP between women with preeclampsia and normotensive pregnant women (P > 0.05). The urinary estrogen showed a negative correlation with systolic blood pressure (rs= -0.46, P < 0.001) and diastolic blood pressure (rs= -0.47, P < 0.001). Additionally, the urinary estrogen and progesterone levels were lower in women with preeclampsia compared to those in normotensive pregnant women (P < 0.05). After adjusting for confounding factors, we observed a significant association between reduced urinary estrogen levels and an increased risk of preeclampsia (aOR = 0.09, 95%CI = 0.02-0.46). Notably, in our decision tree model, urinary estrogen emerged as the most crucial variable for identifying pregnant women at a high risk of developing preeclampsia. A positive correlation was observed between urinary progesterone and MEHP (rs = 0.36, P < 0.05) in normotensive pregnant women. A negative correlation was observed between urinary estrogen and MEP in pregnant women with preeclampsia (rs= -0.42, P < 0.05). CONCLUSIONS Phthalates exposure was similar in normotensive pregnant women and those with late-onset preeclampsia within the same region. Pregnant women with preeclampsia had lower levels of estrogen and progesterone in their urine, while maternal urinary estrogen was negatively correlated with the risk of preeclampsia and phthalate metabolites (MEP). TRIAL REGISTRATION Registration ID in Clinical Trials: NCT04369313; registration date: 30/04/2020.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Obstetrics and Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Anjian Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyue Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yanyan Ma
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
9
|
Alexandrova-Watanabe A, Abadjieva E, Giosheva I, Langari A, Tiankov T, Gartchev E, Komsa-Penkova R, Todinova S. Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis-Impact of Oxidative Stress on Disease Severity. Int J Mol Sci 2024; 25:3732. [PMID: 38612543 PMCID: PMC11011533 DOI: 10.3390/ijms25073732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disease characterized by proteinuria, endothelial dysfunction, and placental hypoxia. Reduced placental blood flow causes changes in red blood cell (RBC) rheological characteristics. Herein, we used microfluidics techniques and new image flow analysis to evaluate RBC aggregation in preeclamptic and normotensive pregnant women. The results demonstrate that RBC aggregation depends on the disease severity and was higher in patients with preterm birth and low birth weight. The RBC aggregation indices (EAI) at low shear rates were higher for non-severe (0.107 ± 0.01) and severe PE (0.149 ± 0.05) versus controls (0.085 ± 0.01; p < 0.05). The significantly more undispersed RBC aggregates were found at high shear rates for non-severe (18.1 ± 5.5) and severe PE (25.7 ± 5.8) versus controls (14.4 ± 4.1; p < 0.05). The model experiment with in-vitro-induced oxidative stress in RBCs demonstrated that the elevated aggregation in PE RBCs can be partially due to the effect of oxidation. The results revealed that RBCs from PE patients become significantly more adhesive, forming large, branched aggregates at a low shear rate. Significantly more undispersed RBC aggregates at high shear rates indicate the formation of stable RBC clusters, drastically more pronounced in patients with severe PE. Our findings demonstrate that altered RBC aggregation contributes to preeclampsia severity.
Collapse
Affiliation(s)
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Ina Giosheva
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Emil Gartchev
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
| | | | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
10
|
Shen Y, Cui Q, Xiao L, Wang L, Li Q, Zhang R, Chen Z, Niu J. Down-regulated Wnt7a and GPR124 in early-onset preeclampsia placentas reduce invasion and migration of trophoblast cells. J Perinat Med 2024; 52:41-49. [PMID: 37694534 DOI: 10.1515/jpm-2022-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Preeclampsia (PE) is a disease specific to pregnancy that causes 9-10 % of maternal deaths. Early-onset PE (<34 weeks' gestation) is the most dangerous category of PE. Wnt7a and GPR124 (G protein-coupled receptor 124) are widely expressed in the human reproductive process. Especially during embryogenesis and tumorigenesis, Wnt7a plays a crucial role. However, few studies have examined the association between Wnt7a-GPR124 and early-onset PE. The aim of this study was to examine the significance of Wnt7a and GPR124 in early-onset PE as well as Wnt7a's role in trophoblast cells. METHODS Immunohistochemistry (IHC), real-time PCR, and western blotting (WB) were used to investigate Wnt7a and GPR124 expression in normal and early-onset PE placentas. Additionally, FACS, Transwell, and CCK-8 assays were used to diagnose Wnt7a involvement in migration, invasion, and proliferation. RESULTS In the early-onset PE group, Wnt7a and GPR124 expression was significantly lower than in the normal group, especially in the area of syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). A negative correlation was found between Wnt7a RNA and GPR124 expression (r=-0.42, p<0.01). However, the Wnt7a RNA expression level was positive correlated with PE severity. In further cellular functional experiments, knockdown of Wnt7a inhibits HTR8/SVeno cells invasion and migration but has little effect on proliferation and apoptosis. CONCLUSIONS Through the Wnt pathway, Wnt7a regulates trophoblast cell invasion and migration, and may contribute to early-onset preeclampsia pathogenesis. A molecular level study of Wnt7a will be needed to find downstream proteins and mechanisms of interaction.
Collapse
Affiliation(s)
- Yan Shen
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Cheeloo College of Medicine, Shandong University, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, P.R. China
| | - Qingyu Cui
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, P.R. China
| | - Li Xiao
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Lifeng Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Qianqian Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ruihong Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zhaowen Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Jianmin Niu
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Cheeloo College of Medicine, Shandong University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
11
|
Luo QQ, Tian Y, Qu GJ, Huang K, Hu PP, Xue Y, Hu BF, Luo SS. The targeting of DAPK1 with miR-190a-3p promotes autophagy in trophoblast cells. Mol Reprod Dev 2024; 91:e23724. [PMID: 38282318 DOI: 10.1002/mrd.23724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Pre-eclampsia (PE) is a dangerous pathological status that occurs during pregnancy and is a leading reason for both maternal and fetal death. Autophagy is necessary for cellular survival in the face of environmental stress as well as cellular homeostasis and energy management. Aberrant microRNA (miRNA) expression is crucial in the pathophysiology of PE. Although studies have shown that miRNA (miR)-190a-3p function is tissue-specific, the precise involvement of miR-190a-3p in PE has yet to be determined. We discovered that miR-190a-3p was significantly lower and death-associated protein kinase 1 (DAPK1) was significantly higher in PE placental tissues compared to normal tissues, which is consistent with the results in cells. The luciferase analyses demonstrated the target-regulatory relationship between miR-190a-3p and DAPK1. The inhibitory effect of miR-190a-3p on autophagy was reversed by co-transfection of si-DAPK1 and miR-190a-3p inhibitors. Thus, our data indicate that the hypoxia-dependent miR-190a-3p/DAPK1 regulatory pathway is implicated in the development and progression of PE by promoting autophagy in trophoblast cells.
Collapse
Affiliation(s)
- Qi-Qi Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Department of Cardiovascular Medicine, Army Characteristic Medical Center of PLA, Da ping Hospital, Chongqing, People's Republic of China
| | - Yu Tian
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Guang-Jin Qu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Kun Huang
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Department of Gerontology, The First Hospital of Jiaxing, Jiaxing, People's Republic of China
| | - Pan-Pan Hu
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Ying Xue
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Bi-Feng Hu
- Department of Neurology, Army Characteristic Medical Center of PLA, Da ping Hospital, Chongqing, People's Republic of China
| | - Shan-Shun Luo
- Department of Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
12
|
Ning J, Yan J, Yang H. Exploring the role of m6A modification in the great obstetrical syndromes. J Matern Fetal Neonatal Med 2023; 36:2234541. [PMID: 37474299 DOI: 10.1080/14767058.2023.2234541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the predominant RNA epigenetic modifications that modify RNAs reversibly and dynamically by "writers" (methyltransferase), "erasers" (demethylase), and "readers." OBJECTIVE This review aimed to provide a comprehensive understanding of the complexity of m6A regulation in the great obstetrical syndromes to understand its pathogenesis and potential therapeutic targets. METHODS The terms "placenta or trophoblast" and "m6A or N6-methyladenosine" were searched in PubMed databases (June 2023). RESULTS In this review, we discuss the regulatory role of m6A in the great obstetrical syndromes such as preeclampsia (PE), spontaneous abortion (SA), hyperglycemia in pregnancy (HIP) and fetal growth to emphasize the clinical relevance of m6A dysregulation in pregnancy. We also describe mechanisms that potentially involve the participation of m6A methylation, such as proliferation, invasion, migration, apoptosis, autophagy, endoplasmic reticulum stress, macrophage polarization, and inflammation. CONCLUSION We summarize the recent research progress on the role of m6A modification in the great obstetrical syndromes and placental function and provide a brief perspective on its prospective applications.
Collapse
Affiliation(s)
- Jie Ning
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| | - Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Peking University, Beijing, China
| |
Collapse
|
13
|
Ren H, Dai R, Nik Nabil WN, Xi Z, Wang F, Xu H. Unveiling the dual role of autophagy in vascular remodelling and its related diseases. Biomed Pharmacother 2023; 168:115643. [PMID: 37839111 DOI: 10.1016/j.biopha.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.
Collapse
Affiliation(s)
- Hangui Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China; Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
14
|
Lwamulungi E, Qureshi Z, Obimbo M, Ogutu O, Cheserem E, Kosgei RJ, Walong E, Inyangala D, Nyakundi GG, Ndavi PM, Osoti AO, Ondieki DK, Pulei AN, Njoroge A, Masyuko S, Wachira CM. Placental characteristics and neonatal weights among women with malaria-preeclampsia comorbidity and healthy pregnancies. PLoS One 2023; 18:e0291172. [PMID: 37856468 PMCID: PMC10586625 DOI: 10.1371/journal.pone.0291172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Malaria and preeclampsia are leading causes of maternal morbidity and mortality in sub-Saharan Africa. They contribute significantly to poor perinatal outcomes like low neonatal weight by causing considerable placental morphological changes that impair placental function. Previous studies have described the effects of either condition on the placental structure but the structure of the placenta in malaria-preeclampsia comorbidity is largely understudied despite its high burden. This study aimed to compare the placental characteristics and neonatal weights among women with malaria-preeclampsia comorbidity versus those with healthy pregnancies. METHODOLOGY We conducted a retrospective cohort study among 24 women with malaria-preeclampsia comorbidity and 24 women with healthy pregnancies at a County Hospital in Western Kenya. Neonatal weights, gross and histo-morphometric placental characteristics were compared among the two groups. RESULTS There was a significant reduction in neonatal weights (P<0.001), placental weights (P = 0.028), cord length (P<0.001), and cord diameter (P<0.001) among women with malaria-preeclampsia comorbidity compared to those with healthy pregnancies. There was also a significant reduction in villous maturity (P = 0.016) and villous volume density (P = 0.012) with increased villous vascularity (P<0.007) among women with malaria-preeclampsia comorbidity compared to those with healthy pregnancies. CONCLUSION Placental villous maturity and villous volume density are significantly reduced in patients with malaria-preeclampsia comorbidity with a compensatory increase in villous vascularity. This leads to impaired placental function that contributes to lower neonatal weights.
Collapse
Affiliation(s)
- Everett Lwamulungi
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Zahida Qureshi
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Moses Obimbo
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
- Department of Human Anatomy, University of Nairobi, Nairobi, Kenya
| | - Omondi Ogutu
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Eunice Cheserem
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Rose J. Kosgei
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Edwin Walong
- Kenyatta National Hospital, Nairobi, Kenya
- Department of Pathology, University of Nairobi, Nairobi, Kenya
| | - Dennis Inyangala
- Kenyatta National Hospital, Nairobi, Kenya
- Department of Pathology, University of Nairobi, Nairobi, Kenya
| | - George G. Nyakundi
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Patrick M. Ndavi
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Alfred O. Osoti
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Diana K. Ondieki
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
| | - Anne N. Pulei
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Kenyatta National Hospital, Nairobi, Kenya
- Department of Human Anatomy, University of Nairobi, Nairobi, Kenya
| | - Anne Njoroge
- Kenyatta National Hospital, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, United states of America
| | - Sarah Masyuko
- Kenyatta National Hospital, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, United states of America
| | | |
Collapse
|
15
|
Chen Y, Liu M, Wang Y. Bioinformatic analysis reveals lysosome-related biomarkers and molecular subtypes in preeclampsia: novel insights into the pathogenesis of preeclampsia. Front Genet 2023; 14:1228110. [PMID: 37576559 PMCID: PMC10416227 DOI: 10.3389/fgene.2023.1228110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background: The process of lysosomal biogenesis and exocytosis in preeclamptic placentae plays a role in causing maternal endothelial dysfunction. However, the specific lysosome-associated markers relevant to preeclampsia (PE) are not well-defined. Our objective is to discover new biomarkers and molecular subtypes associated with lysosomes that could improve the diagnosis and treatment of PE. Methods: We obtained four microarray datasets related to PE from the Gene Expression Omnibus (GEO) database. The limma package was utilized to identify genes that were differentially expressed between individuals with the disease and healthy controls. The logistic regression analysis was used to identify core diagnostic biomarkers, which were subsequently validated by independent datasets and clinical samples. Additionally, a consensus clustering method was utilized to distinguish between different subtypes of PE. Following this, functional enrichment analysis, GSEA, GSVA, and immune cell infiltration were conducted to compare the two subtypes and identify any differences in their functional characteristics and immune cell composition. Results: We identified 16 PE-specific lysosome-related genes. Through regression analysis, two genes, GNPTG and CTSC, were identified and subsequently validated in the external validation cohort GSE60438 and through qRT-PCR experiment. A nomogram model for the diagnosis of PE was developed and evaluated using these two genes. The model had a remarkably high predictive power (AUC values of the training set, validation set, and clinical samples were 0.897, 0.788, and 0.979, respectively). Additionally, two different molecular subtypes (C1 and C2) were identified, and we found notable variations in the levels of immune cells present in the two subtypes. Conclusion: Our results not only offered a classification system but also identified novel diagnostic biomarkers for PE patients. Our findings offered an additional understanding of how to categorize PE patients and also highlighted potential avenues for creating treatments for individuals with PE.
Collapse
Affiliation(s)
- Yao Chen
- Department of Obstetrics, The First People’s Hospital of Chenzhou, Chenzhou, China
| | | | | |
Collapse
|
16
|
Ma S, Liu JY, Zhang JT. eIF3d: A driver of noncanonical cap-dependent translation of specific mRNAs and a trigger of biological/pathological processes. J Biol Chem 2023; 299:104658. [PMID: 36997088 PMCID: PMC10165153 DOI: 10.1016/j.jbc.2023.104658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Eukaryotic initiation factor 3d (eIF3d), a known RNA-binding subunit of the eIF3 complex, is a 66 to 68-kDa protein with an RNA-binding motif and a cap-binding domain. Compared with other eIF3 subunits, eIF3d is relatively understudied. However, recent progress in studying eIF3d has revealed a number of intriguing findings on its role in maintaining eIF3 complex integrity, global protein synthesis, and in biological and pathological processes. It has also been reported that eIF3d has noncanonical functions in regulating translation of a subset of mRNAs by binding to 5'-UTRs or interacting with other proteins independent of the eIF3 complex and additional functions in regulating protein stability. The noncanonical regulation of mRNA translation or protein stability may contribute to the role of eIF3d in biological processes such as metabolic stress adaptation and in disease onset and progression including severe acute respiratory syndrome coronavirus 2 infection, tumorigenesis, and acquired immune deficiency syndrome. In this review, we critically evaluate the recent studies on these aspects of eIF3d and assess prospects in understanding the function of eIF3d in regulating protein synthesis and in biological and pathological processes.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jing-Yuan Liu
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| |
Collapse
|
17
|
Wang M, Zhang L, Huang X, Sun Q. Ligustrazine promotes hypoxia/reoxygenation-treated trophoblast cell proliferation and migration by regulating the microRNA-27a-3p/ATF3 axis. Arch Biochem Biophys 2023; 737:109522. [PMID: 36657605 DOI: 10.1016/j.abb.2023.109522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Preeclampsia (PE) is a pregnancy-specific syndrome. Ligustrazine (LSZ) is involved in hypoxia/reoxygenation (H/R)-treated trophoblast cell regulation, but its mechanism remains elusive. This study explored the mechanism of LSZ in H/R-treated trophoblast cells to provide a theoretical basis for the new treatment method development for PE. METHODS H/R HTR8/SVneo cell model was established for PE simulation to some extent. Trophoblast cell proliferation, apoptosis rate, migration, and invasion were detected by MTT assay, flow cytometry, scratch test, and Transwell assay. miR-27a-3p expression in trophoblast cells was detected by RT-qPCR. Binding sites between miR-27a-3p and ATF3 were predicted using Starbase and verified by dual-luciferase reporter assay. Activating transcription factor 3 (ATF3), β-catenin, Cyclin D1, and c-Myc protein levels were examined using Western blot. After LSZ treatment, H/R-induced HTR8/SVneo cells were delivered with miR-27a-3p mimic or ATF3 siRNA to verify their roles in HTR8/SVneo cells. RESULTS LSZ facilitated the proliferation, migration, and invasion of trophoblast cells and inhibited apoptosis. miR-27a-3p was elevated in H/R-induced HTR8/SVneo cells and miR-27a-3p overexpression annulled the effect of LSZ on trophoblast cells. miR-27a-3p targeted ATF3. ATF3 silencing averted the property of LSZ on trophoblast cells. Wnt/β-catenin pathway-related proteins were repressed in H/R-induced HTR8/SVneo cells, and LSZ activated the Wnt/β-catenin pathway by promoting ATF3 expression. CONCLUSION LSZ mediated the Wnt pathway by regulating the miR-27a-3p/ATF3 axis, thus promoting the proliferation and migration of trophoblast cells. The protective mechanism of LSZ showed the potential application value in the treatment of PE.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Li Zhang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Xiuyan Huang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Qian Sun
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China.
| |
Collapse
|
18
|
Wang J, Zhang P, Liu M, Huang Z, Yang X, Ding Y, Liu J, Cheng X, Xu S, He M, Zhang F, Wang G, Li R, Yang X. Alpha-2-macroglobulin is involved in the occurrence of early-onset pre-eclampsia via its negative impact on uterine spiral artery remodeling and placental angiogenesis. BMC Med 2023; 21:90. [PMID: 36894970 PMCID: PMC9999529 DOI: 10.1186/s12916-023-02807-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Pre-eclampsia (PE) is one of the leading causes of maternal and fetal morbidity/mortality during pregnancy, and alpha-2-macroglobulin (A2M) is associated with inflammatory signaling; however, the pathophysiological mechanism by which A2M is involved in PE development is not yet understood. METHODS Human placenta samples, serum, and corresponding clinical data of the participants were collected to study the pathophysiologic mechanism underlying PE. Pregnant Sprague-Dawley rats were intravenously injected with an adenovirus vector carrying A2M via the tail vein on gestational day (GD) 8.5. Human umbilical artery smooth muscle cells (HUASMCs), human umbilical vein endothelial cells (HUVECs), and HTR-8/SVneo cells were transfected with A2M-expressing adenovirus vectors. RESULTS In this study, we demonstrated that A2M levels were significantly increased in PE patient serum, uterine spiral arteries, and feto-placental vasculature. The A2M-overexpression rat model closely mimicked the characteristics of PE (i.e., hypertension in mid-to-late gestation, histological and ultrastructural signs of renal damage, proteinuria, and fetal growth restriction). Compared to the normal group, A2M overexpression significantly enhanced uterine artery vascular resistance and impaired uterine spiral artery remodeling in both pregnant women with early-onset PE and in pregnant rats. We found that A2M overexpression was positively associated with HUASMC proliferation and negatively correlated with cell apoptosis. In addition, the results demonstrated that transforming growth factor beta 1 (TGFβ1) signaling regulated the effects of A2M on vascular muscle cell proliferation described above. Meanwhile, A2M overexpression regressed rat placental vascularization and reduced the expression of angiogenesis-related genes. In addition, A2M overexpression reduced HUVEC migration, filopodia number/length, and tube formation. Furthermore, HIF-1α expression was positively related to A2M, and the secretion of sFLT-1 and PIGF of placental origin was closely related to PE during pregnancy or A2M overexpression in rats. CONCLUSIONS Our data showed that gestational A2M overexpression can be considered a contributing factor leading to PE, causing detective uterine spiral artery remodeling and aberrant placental vascularization.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ping Zhang
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Mengyuan Liu
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
| | - Zhengrui Huang
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xiaofeng Yang
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Yuzhen Ding
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jia Liu
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China
| | - Shujie Xu
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China
| | - Meiyao He
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Fengxiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China.
| | - Ruiman Li
- Department of Gynaecology and Obstetrics, The First Affiliate Hospital of Jinan University, Jinan University, No.613 Huangpu Road West, Guangzhou, 510632, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Zhang K, Zhang H, Gao S, Sun C, Wang B. Effect and mechanism of microRNA-515-5p in proliferation and apoptosis of trophoblast cells in preeclampsia via manipulating histone deacetylase 2. Mol Reprod Dev 2023; 90:59-66. [PMID: 36580437 DOI: 10.1002/mrd.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022]
Abstract
Preeclampsia (PE) refers to a pregnancy-specific disease that begins with the placenta. Differentially expressed microRNAs (miRs) are a feature of PE. This study tried to elicit the functional mechanism of miR-515-5p in trophoblast cell behaviors in PE. First, HTR-8/SVneo cells were transfected with miR-515-5p mimic or miR-515-5p inhibitor. Then, relative expression levels of miR-515-5p and histone deacetylase 2 (HDAC2) in HTR-8/SVneo cells were determined by reverse transcription-quantitative polymerase chain reaction. The potential binding site of miR-515-5p and HDAC2 was predicted on Targetscan and their binding relationship was verified via dual-luciferase assay. Proliferation, apoptosis, invasion, and migration of HTR-8/SVneo cells were assessed via cell counting kit-8, flow cytometry, Transwell, and wound healing assays, respectively. Protein levels of Cleaved caspase-3, Bcl-2, and Bax were determined via Western blot. Overexpressed miR-515-5p impeded proliferation and stimulated apoptosis of HTR-8/SVneo cells, and decreased levels of Cleaved caspase-3 and Bax and elevated Bcl-2, whilst opposite results were observed after miR-515-5p inhibition. miR-515-5p targeted HDAC2. Knockdown of HDAC2 annulled the promotional action of miR-515-5p inhibition on proliferative, invasive, and migratory abilities and its antiapoptotic action on HTR-8/SVneo cells. In brief, miR-515-5p affected the proliferation, apoptosis, invasion, and migration of HTR-8/SVneo cells by targeting HDAC2.
Collapse
Affiliation(s)
- Ke Zhang
- The Department of Obstetric, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Zhang
- The Department of Obstetric, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanshan Gao
- The Department of Obstetric, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caiping Sun
- The Department of Obstetric, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Wang
- The Department of Obstetric, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Qiu Q, Tan J. Long noncoding RNA WT1-AS regulates trophoblast proliferation, migration, and invasion via the microRNA-186-5p/CADM2 axis. Open Med (Wars) 2022; 17:1903-1914. [PMID: 36561840 PMCID: PMC9730544 DOI: 10.1515/med-2022-0595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to determine the role of long noncoding RNA (lncRNA) WT1 antisense RNA (WT1-AS) in the occurrence and progression of preeclampsia (PE) and to determine the underlying molecular mechanisms. The associations between WT1-AS and microRNA (miR)-186-5p, and miR-186-5p and cell adhesion molecule 2 (CADM2) were predicted using StarBase software and verified via dual-luciferase assays. To explore the role of the human chorionic trophoblast line HTR-8/SVneo, gene (WT1-AS/miR-186-5p) gain/loss of function experiments were performed. Qualitative reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to evaluate transfection efficiency. Cell proliferation, apoptosis, cell migration, and invasion were assessed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and transwell analysis, respectively. Moreover, CADM2 protein expression was measured by western blotting. The results indicated that overexpression of WT1-AS inhibited cell viability, migration, and invasion, and induced apoptosis in HTR-8/SVneo cells. We observed that miR-186a-5p directly targeted WT1-AS, and miR-186a-5p knockdown reversed the effects of WT1-AS knockdown in HTR-8/SVneo cells. Binding sites were found between miR-186-5p and CADM2, and CADM2-overexpression reversed the influence of miR-186-5p mimic on HTR-8/SVneo cells. In summary, our findings demonstrated that lncRNA WT1-AS participates in PE by regulating the proliferation and invasion of placental trophoblasts, through the miR-186-5p/CADM2 axis.
Collapse
Affiliation(s)
- Qun Qiu
- Maternal and Child Health Teaching and Research Section, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang 222000, China
| | - Juan Tan
- Department of Medical Genetics and Prenatal Diagnosis, Lianyungang Maternity and Child Health Hospital, Lianyungang 222000, China
- Lianyungang Maternity and Child Health Hospital, No. 669 Qindongmen Street, Haizhou District, Lianyungang 222000, China
| |
Collapse
|
21
|
Mitochondrial Dysfunction, Mitophagy and Their Correlation with Perinatal Complications: Preeclampsia and Low Birth Weight. Biomedicines 2022; 10:biomedicines10102539. [PMID: 36289801 PMCID: PMC9599185 DOI: 10.3390/biomedicines10102539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are essential organelles and crucial for cellular survival. Mitochondrial biogenesis and mitophagy are dynamic features that are essential for both maintaining the health of the mitochondrial network and cellular demands. The accumulation of damaged mitochondria has been shown to be related to a wide range of pathologies ranging from neurological to musculoskeletal. Mitophagy is the selective autophagy of mitochondria, eliminating dysfunctional mitochondria in cells by engulfment within double-membraned vesicles. Preeclampsia and low birth weight constitute prenatal complications during pregnancy and are leading causes of maternal and fetal mortality and morbidity. Both placental implantation and fetal growth require a large amount of energy, and a defect in the mitochondrial quality control mechanism may be responsible for the pathophysiology of these diseases. In this review, we compiled current studies investigating the role of BNIP3, DRAM1, and FUNDC1, mediators of receptor-mediated mitophagy, in the progression of preeclampsia and the role of mitophagy pathways in the pathophysiology of low birth weight. Recent studies have indicated that mitochondrial dysfunction and accumulation of reactive oxygen species are related to preeclampsia and low birth weight. However, due to the lack of studies in this field, the results are controversial. Therefore, mitophagy-related pathways associated with these pathologies still need to be elucidated. Mitophagy-related pathways are among the promising study targets that can reveal the pathophysiology behind preeclampsia and low birth weight.
Collapse
|
22
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
23
|
O'Callaghan JL, Clifton VL, Prentis P, Ewing A, Saif Z, Pelzer ES. Sex-dependent differential transcript expression in the placenta of growth restricted infants. Placenta 2022; 128:1-8. [PMID: 36031700 DOI: 10.1016/j.placenta.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/03/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION The pathological decrease of fetal growth during gestation can lead to subsequent poor health outcomes for the fetus. This process is commonly controlled by the placenta, the interface between mother and baby during gestation. Sex-specific gene expression has been implicated in placental function, therefore, there is a need to determine if it is important during reduced fetal growth. We therefore aimed to characterise placental gene expression at term to evaluate sex-specific genetic changes that occur in small for gestational age (SGA) infants. METHODS RNA-sequencing of twelve human placental tissue samples collected from pregnancies yielding either term appropriate for gestational age (AGA) or SGA infants identified at delivery. Candidate genes associated with fetal size and fetal sex were identified using differential gene expression and weighted gene co-expression network analyses. Single-cell sequencing data was used for candidate validation and to estimate candidate transcript expression in specific placental cell populations. RESULTS Differential gene expression and weighted gene co-expression network analyses identified 403 candidate transcripts associated with SGA infants. One hundred and three of these transcripts showed sex-specific expression. . Published placental sequencing datasets were used to validate the key expression results from the twelve placental samples initially studied; the sex-independent transcript expression for genes involved in cell cycle processes in males (7 transcripts) and endoplasmic reticulum stress in females (17 transcripts). DISCUSSION This study identified the activation of multiple molecular mechanisms involved in the placental response to an adverse environmental stressor. Mechanisms such as disrupted protein synthesis were shared between infant biological sex when comparing AGA to SGA, whilst other pathways such as cell cycle and endoplasmic reticulum stress appear as independent/specific to either males or females when investigating reduced fetal growth. This data suggests that sexual dimorphism is an important consideration when examining placental dysfunction and poor fetal growth.
Collapse
Affiliation(s)
- Jessica L O'Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Vicki L Clifton
- Pregnancy and Development Group, Mater Research, Translational Research Institute and the University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Peter Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Adam Ewing
- Pregnancy and Development Group, Mater Research, Translational Research Institute and the University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Zarqa Saif
- Pregnancy and Development Group, Mater Research, Translational Research Institute and the University of Queensland, Brisbane, Queensland, 4101, Australia
| | - Elise S Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
24
|
Kojima J, Ono M, Kuji N, Nishi H. Human Chorionic Villous Differentiation and Placental Development. Int J Mol Sci 2022; 23:8003. [PMID: 35887349 PMCID: PMC9325306 DOI: 10.3390/ijms23148003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
In humans, the placenta provides the only fetomaternal connection and is essential for establishing a pregnancy as well as fetal well-being. Additionally, it allows maternal physiological adaptation and embryonic immunological acceptance, support, and nutrition. The placenta is derived from extra-embryonic tissues that develop rapidly and dynamically in the first weeks of pregnancy. It is primarily composed of trophoblasts that differentiate into villi, stromal cells, macrophages, and fetal endothelial cells (FEC). Placental differentiation may be closely related to perinatal diseases, including fetal growth retardation (FGR) and hypertensive disorders of pregnancy (HDP), and miscarriage. There are limited findings regarding human chorionic villous differentiation and placental development because conducting in vivo studies is extremely difficult. Placental tissue varies widely among species. Thus, experimental animal findings are difficult to apply to humans. Early villous differentiation is difficult to study due to the small tissue size; however, a detailed analysis can potentially elucidate perinatal disease causes or help develop novel therapies. Artificial induction of early villous differentiation using human embryonic stem (ES) cells/induced pluripotent stem (iPS) cells was attempted, producing normally differentiated villi that can be used for interventional/invasive research. Here, we summarized and correlated early villous differentiation findings and discussed clinical diseases.
Collapse
Affiliation(s)
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan; (J.K.); (N.K.); (H.N.)
| | | | | |
Collapse
|
25
|
Balahmar RM, Ranganathan B, Ebegboni V, Alamir J, Rajakumar A, Deepak V, Sivasubramaniam S. Analyses of selected tumour-associated factors expression in normotensive and preeclamptic placenta. Pregnancy Hypertens 2022; 29:36-45. [PMID: 35717832 DOI: 10.1016/j.preghy.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Human placenta is often considered a controlled-tumour because of shared properties such as invasion and angiogenesis. We assessed the status of a few selected tumour-associated factors (TAFs) in late onset pre-eclamptic (PE) and normotensive (NT) placentae, to understand their involvement in trophoblast invasion. These molecules include aldehyde dehydrogenase (ALDH3A1), aurora kinases (AURK-A/C), platelet derived growth factor receptor-α (PDGFRα), jagged-1 (JAG1) and twist related protein-1 (TWIST1). METHODS The expression of TAF was compared in 13 NT and 11 PE (late onset) placentae using immunoblotting/immunohistochemistry. We then used a novel spheroidal cell model developed from transformed human first trimester trophoblast cell lines HTR8/SVneo and TEV-1 to determine the expression and localization of these six factors during invasion. We also compared the expression of these TAFs during migration and invasion. RESULTS Our results suggest that expressions of ALDH3A1, AURK-A, PDGFRα, and TWIST1 are significantly upregulated in PE placentae (p < 0.05) when compared to NT placentae, whereas AURK-C and JAG1 are down-regulated (p < 0.05). The protein expression pattern of all the six factors were found to be similar in spheroids in comparison to their parental counterparts. The invasive potential of the spheroids was also enhanced when compared with the parental cells. DISCUSSION Collectively, data from our present study suggests that these TAFs are involved in placental invasion and their altered expressions may be regarded as a compensatory mechanism against reduced invasion.
Collapse
Affiliation(s)
- Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Bhuvaneshwari Ranganathan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Vernon Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jumanah Alamir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Augustine Rajakumar
- Department of Gynecology & Obstetrics(3), Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Venkataraman Deepak
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| | - Shiva Sivasubramaniam
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| |
Collapse
|
26
|
Cheng S, Huang Z, Jash S, Wu K, Saito S, Nakashima A, Sharma S. Hypoxia-Reoxygenation Impairs Autophagy-Lysosomal Machinery in Primary Human Trophoblasts Mimicking Placental Pathology of Early-Onset Preeclampsia. Int J Mol Sci 2022; 23:5644. [PMID: 35628454 PMCID: PMC9147570 DOI: 10.3390/ijms23105644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
We have previously described that placental activation of autophagy is a central feature of normal pregnancy, whereas autophagy is impaired in preeclampsia (PE). Here, we show that hypoxia-reoxygenation (H/R) treatment dysregulates key molecules that maintain autophagy-lysosomal flux in primary human trophoblasts (PHTs). Ultrastructural analysis using transmission electron microscopy reveals a significant reduction in autophagosomes and autolysosomes in H/R-exposed PHTs. H/R-induced accumulation of protein aggregates follows a similar pattern that occurs in PHTs treated with a lysosomal disruptor, chloroquine. Importantly, the placenta from early-onset PE deliveries exhibits the same features as seen in H/R-treated PHTs. Taken together, our results indicate that H/R disrupts autophagic machinery in PHTs and that impaired autophagy in the placenta from early-onset PE deliveries mimics the events in H/R-treated PHTs. Notably, assessment of key regulators at each stage of autophagic processes, especially lysosomal integrity, and verification of autophagic ultrastructure are essential for an accurate evaluation of autophagy activity in human trophoblasts and placental tissue from PE deliveries.
Collapse
Affiliation(s)
- Shibin Cheng
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Zheping Huang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Sukanta Jash
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Kathleen Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 30-0194, Japan; (S.S.); (A.N.)
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 30-0194, Japan; (S.S.); (A.N.)
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA; (Z.H.); (S.J.); (K.W.); (S.S.)
| |
Collapse
|
27
|
Chen Z, Geng Y, Gao R, Zhong H, Chen J, Mu X, Chen X, Zhang Y, Li F, He J. Maternal exposure to CeO 2NPs derails placental development through trophoblast dysfunction mediated by excessive autophagy activation. J Nanobiotechnology 2022; 20:131. [PMID: 35292031 PMCID: PMC8922923 DOI: 10.1186/s12951-022-01334-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing use of cerium dioxide nanoparticles (CeO2NPs) in biomedical field has attracted substantial attention about their potential risks to human health. Recent studies have shown that nanoparticles can induce placental dysfunction and even fetal abortion, but a more detailed mechanism of nanoparticles affecting placental development remains elusive. RESULTS Here, we constructed a mouse exposure model with different doses of CeO2NPs (2.5, 4, 5, 7.5, and 10 mg kg-1 day-1, average particle size 3-5 nm), finding that intravenous exposure to pregnant mice with CeO2NPs could cause abnormal placental development. Deposited nanoparticles were able to be observed in the placental trophoblast at doses of 5 and 7.5 mg kg-1 day-1. Diving into molecular mechanisms indicated that CeO2NPs exposure could lead to autophagy activation in placental trophoblast. At the cellular level, exposure to CeO2NPs inhibited the migration and invasion of HTR-8/SVneo and activated the autophagy through mammalian target of rapamycin complex1 (mTORC1) signaling pathway. Furthermore, inhibition of autophagy initiation by 3-Methyladenine (3-MA) partially restored the function of HTR-8/SVneo, while blocking autophagic flow by Chloroquine (CQ) aggravated the functional damage. CONCLUSIONS Maternal exposure to CeO2NPs impairs placental development through trophoblast dysfunction mediated by excessive autophagy activation. These results suggested that autophagy dysfunction may be a potential mechanism for the impairment of trophoblast by CeO2NPs exposure. As above, our findings provide insights into the toxicity mechanism to the reproductive system induced by rare-earth nanoparticles exposure.
Collapse
Affiliation(s)
- Zhuxiu Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Hangtian Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Fangfang Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China. .,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
Wang H, Zhang X, Liu C, Chen S, Liu X, Fan S. TAGLN2-Regulated Trophoblast Migration, Invasion and Fusion are Impaired in Preeclampsia. Front Cell Dev Biol 2022; 10:810633. [PMID: 35281112 PMCID: PMC8904561 DOI: 10.3389/fcell.2022.810633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 12/01/2022] Open
Abstract
Preeclampsia (PE) is a serious disease during pregnancy that affects approximately eight million mothers and infants worldwide each year and is closely related to abnormal trophoblast function. However, research on placental trophoblast functional abnormalities is insufficient, and the etiology of PE is unclear. Here, we report that the expression of transgelin-2 (TAGLN2) was downregulated in the placenta of patients with PE. In addition, a lack of TAGLN2 significantly reduced the ability of trophoblasts to migrate, invade and fuse. A co-immunoprecipitation (Co-IP) and microscale thermophoresis analysis showed that TAGLN2 bound directly to E-cadherin. A decrease in TAGLN2 expression led to a reduction in cleavage of the E-cadherin extracellular domain, thereby regulating the function of trophoblasts. In addition, we found that a reduction in soluble E-cadherin may also have an effect on blood vessel formation in the placenta, which is necessary for normal placental development. What’s more, the in vivo mouse model provided additional evidence of TAGLN2 involvement in the development of PE. By injecting pregnant mice with Ad-TAGLN2, we successfully generated a human PE-like syndrome that resulted in high blood pressure and some adverse pregnancy outcomes. Overall, the association between TAGLN2 and PE gives a new insight into PE diagnosis and treatment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynecology, Sun Yat‐Sen Memorial Hospital, Guangzhou, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shengfu Chen
- Department of Obstetrics and Gynecology, Sun Yat‐Sen Memorial Hospital, Guangzhou, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
- *Correspondence: Shangrong Fan,
| |
Collapse
|
29
|
Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol 2022; 226:S895-S906. [PMID: 32971013 DOI: 10.1016/j.ajog.2020.09.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 09/19/2020] [Indexed: 01/03/2023]
Abstract
Physiological transformation with remodeling of the uteroplacental spiral arteries is key to a successful placentation and normal placental function. It is an intricate process that involves, but is not restricted to, complex interactions between maternal decidual immune cells and invasive trophoblasts in the uterine wall. In normal pregnancy, the smooth muscle cells of the arterial tunica media of uteroplacental spiral arteries are replaced by invading trophoblasts and fibrinoid, and the arterial diameter increases 5- to 10-fold. Poor remodeling of the uteroplacental spiral arteries is linked to early-onset preeclampsia and several other major obstetrical syndromes, including fetal growth restriction, placental abruption, and spontaneous preterm premature rupture of membranes. Extravillous endoglandular and endovenous trophoblast invasions have recently been put forth as potential contributors to these syndromes as well. The well-acknowledged disturbed extravillous invasion of maternal spiral arteries in preeclampsia is summarized, as are briefly novel concepts of disturbed extravillous endoglandular and endovenous trophoblast invasions. Acute atherosis is a foam cell lesion of the uteroplacental spiral arteries associated with poor remodeling. It shares some morphologic features with early stages of atherosclerosis, but several molecular differences between these lesions have also recently been revealed. Acute atherosis is most prevalent at the maternal-fetal interface, at the tip of the spiral arteries. The localization of acute atherosis downstream of poorly remodeled arteries suggests that alterations in blood flow may trigger inflammation and foam cell development. Acute atherosis within the decidua basalis is not, however, confined to unremodeled areas of spiral arteries or to hypertensive disorders of pregnancy and may even be present in some clinically uneventful pregnancies. Given that foam cells of atherosclerotic lesions are known to arise from smooth muscle cells or macrophages activated by multiple types of inflammatory stimulation, we have proposed that multiple forms of decidual vascular inflammation may cause acute atherosis, with or without poor remodeling and/or preeclampsia. Furthermore, we propose that acute atherosis may develop at different gestational ages, depending on the type and degree of the inflammatory insult. This review summarizes the current knowledge of spiral artery remodeling defects and acute atherosis in preeclampsia. Some controversies will be presented, including endovascular and interstitial trophoblast invasion depths, the concept of 2-stage trophoblast invasion, and whether the replacement of maternal spiral artery endothelium by fetal endovascular trophoblasts is permanent. We will discuss the role of acute atherosis in the pathophysiology of preeclampsia and short- and long-term health correlates. Finally, we suggest future opportunities for research on this intriguing uteroplacental interface between the mother and fetus.
Collapse
|
30
|
Gibbone E, Huluta I, Wright A, Nicolaides KH, Charakida M. Maternal Cardiac Function at Midgestation and Development of Preeclampsia. J Am Coll Cardiol 2022; 79:52-62. [PMID: 34991789 DOI: 10.1016/j.jacc.2021.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Preeclampsia (PE) is an independent risk factor for adverse maternal cardiovascular outcomes. The role of maternal cardiac function in the pathophysiology of PE remains unclear. OBJECTIVES This study sought to describe differences in cardiac function at midgestation between women who develop PE and those with uncomplicated pregnancy and to establish whether routine cardiac assessment at midgestation can improve performance of screening for PE achieved by established biomarkers. METHODS Mean arterial pressure was measured, medical history was obtained, and left ventricular (LV) systolic and diastolic functions were assessed using standard echocardiography and speckle tracking imaging. Uterine artery pulsatility index and serum placental growth factor and soluble fms-like tyrosine kinase-1 were measured. RESULTS In 4,795 pregnancies, 126 (2.6%) developed PE. Following multivariable analysis, peripheral vascular resistance was significantly higher and LV global longitudinal systolic strain, ejection fraction, cardiac output, and left atrial area were mildly lower in women who developed PE compared to those who did not. There was a weak association between maternal cardiovascular indices and biomarkers of placental perfusion and function. Cardiac indices did not improve the performance of screening for PE on top of maternal risk factors, mean arterial pressure, and biomarkers of placental perfusion and function. CONCLUSION Women who develop PE have an increase in peripheral vascular resistance and a mild reduction in LV functional cardiac indices long before PE development. However, cardiac indices do not improve the performance of screening for PE; thus, their routine clinical use is not advocated.
Collapse
Affiliation(s)
- Elena Gibbone
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, United Kingdom
| | - Iulia Huluta
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, United Kingdom
| | - Alan Wright
- Institute of Health Research, University of Exeter, Exeter, United Kingdom
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, United Kingdom.
| | - Marietta Charakida
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Lokeswara AW, Hiksas R, Irwinda R, Wibowo N. Preeclampsia: From Cellular Wellness to Inappropriate Cell Death, and the Roles of Nutrition. Front Cell Dev Biol 2021; 9:726513. [PMID: 34805141 PMCID: PMC8602860 DOI: 10.3389/fcell.2021.726513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia is one of the most common obstetrical complications worldwide. The pathomechanism of this disease begins with abnormal placentation in early pregnancy, which is associated with inappropriate decidualization, vasculogenesis, angiogenesis, and spiral artery remodeling, leading to endothelial dysfunction. In these processes, appropriate cellular deaths have been proposed to play a pivotal role, including apoptosis and autophagy. The proper functioning of these physiological cell deaths for placentation depends on the wellbeing of the trophoblasts, affected by the structural and functional integrity of each cellular component including the cell membrane, mitochondria, endoplasmic reticulum, genetics, and epigenetics. This cellular wellness, which includes optimal cellular integrity and function, is heavily influenced by nutritional adequacy. In contrast, nutritional deficiencies may result in the alteration of plasma membrane, mitochondrial dysfunction, endoplasmic reticulum stress, and changes in gene expression, DNA methylation, and miRNA expression, as well as weakened defense against environmental contaminants, hence inducing a series of inappropriate cellular deaths such as abnormal apoptosis and necrosis, and autophagy dysfunction and resulting in abnormal trophoblast invasion. Despite their inherent connection, the currently available studies examined the functions of each organelle, the cellular death mechanisms and the nutrition involved, both physiologically in the placenta and in preeclampsia, separately. Therefore, this review aims to comprehensively discuss the relationship between each organelle in maintaining the physiological cell death mechanisms and the nutrition involved, and the interconnection between the disruptions in the cellular organelles and inappropriate cell death mechanisms, resulting in poor trophoblast invasion and differentiation, as seen in preeclampsia.
Collapse
Affiliation(s)
- Angga Wiratama Lokeswara
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rabbania Hiksas
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rima Irwinda
- Maternal Fetal Division, Department of Obstetrics and Gynaecology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Noroyono Wibowo
- Maternal Fetal Division, Department of Obstetrics and Gynaecology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
32
|
Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia. Sci Rep 2021; 11:20469. [PMID: 34650122 PMCID: PMC8516954 DOI: 10.1038/s41598-021-99837-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia (PE) is a severe multisystem pregnancy complication characterized by gestational hypertension and proteinuria. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is a mediator of mitophagy and has been proven to be associated with PE, but the mechanism is not well understood. This study aimed to investigate the role of BNIP3 in PE. Placentae from preeclamptic and normal pregnancies were analyzed by western-blot and transmission electron microscopy to quantify the level of BNIP3 expression and observe the organelle morphologies. Trophoblast cells with knockdown BNIP3 were analyzed by western-blot, immunofluorescence, flow cytometry, migration and invasion assays. BNIP3 expression was suppressed in PE patients. Impaired autophagy and increased mitochondrial damage were observed in PE placentae when compared with normal placentae. Suppression of BNIP3 inhibited Beclin-1 expression and reduced the transformation of LC3-I to LC3-II. In the knockdown BNIP3 group, p62 was overexpressed, ROS accumulated and the apoptotic process was elevated under oxidative stress condition. The knockdown of BNIP3 reduced the colocalization of GFP-LC3 and mitochondria. The findings of this study suggest that dysregulated BNIP3 is associated with impaired mitophagy, oxidative stress, and apoptosis in PE. The study provides new insights into the role of BNIP3 in the pathophysiology of PE.
Collapse
|
33
|
Li Y, Zhao X, He B, Wu W, Zhang H, Yang X, Cheng W. Autophagy Activation by Hypoxia Regulates Angiogenesis and Apoptosis in Oxidized Low-Density Lipoprotein-Induced Preeclampsia. Front Mol Biosci 2021; 8:709751. [PMID: 34568425 PMCID: PMC8458810 DOI: 10.3389/fmolb.2021.709751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 01/07/2023] Open
Abstract
Objective: Autophagy influences a wide range of physiological and pathological processes in the human body. In this study, we aimed to investigate the role of autophagy in early-onset preeclampsia (EOPE); autophagy activation by hypoxia could rescue impaired angiogenesis and apoptosis in preeclampsia, leading by ox-LDL. Methods: Transmission electron microscopy was applied to identify autolysosomes in trophoblast cells of the placenta apical region. Quantitative real-time polymerase chain reaction, Western blot, flow cytometry, and wound-healing assays were adopted to determine autophagy activity, angiogenesis, and apoptosis in placenta tissues or HTR8/SVneo cells. Results: Autophagy activity was inhibited in the placenta of women who experienced EOPE; autophagy activation by hypoxia enhanced the migration ability, rescued ox-LDL–mediated impaired angiogenesis in HTR8/SVneo cells [vascular endothelial growth factor A (VEGFA) downregulation and FMS-like tyrosine kinase-1 (FLT1) upregulation], and protected against cell apoptosis (BAX downregulation). Conclusion: Autophagy could maintain the function of trophoblast cells by differentially regulating the expression of VEGFA and FLT1 and protecting against cell apoptosis at the maternal–fetal interface, potentially related to prevention of preeclampsia.
Collapse
Affiliation(s)
- Yamei Li
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Xueya Zhao
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Biwei He
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Weibin Wu
- International Peace Maternity and Child Health Hospital, Shanghai, China.,Shagnhai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Huijuan Zhang
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Xingyu Yang
- International Peace Maternity and Child Health Hospital, Shanghai, China.,Shagnhai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai, China.,Shagnhai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
34
|
Banerjee S, Huang Z, Wang Z, Nakashima A, Saito S, Sharma S, Cheng S. Etiological Value of Sterile Inflammation in Preeclampsia: Is It a Non-Infectious Pregnancy Complication? Front Cell Infect Microbiol 2021; 11:694298. [PMID: 34485175 PMCID: PMC8415471 DOI: 10.3389/fcimb.2021.694298] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding of sterile inflammation and its associated biological triggers and diseases is still at the elementary stage. This becomes more warranted in cases where infections are not associated with the pathology. Detrimental effects of bacterial and viral infections on the immune responses at the maternal-fetal interface as well as pregnancy outcomes have been well documented. However, an infection-induced etiology is not thought to be a major contributing component to severe pregnancy complications such as preeclampsia (PE) and gestational diabetes. How is then an inflammatory signal thought to be associated with these pregnancy complications? It is not clear what type of inflammation is involved in the onset of PE-like features. We opine that sterile inflammation regulated by the inflammasome-gasdermins-caspase-1 axis is a contributory factor to the onset of PE. We hypothesize that increased production and release of damage-associated molecular patterns (DAMPs) or Alarmins such as high-mobility group box1 (HMGB1), cell-free fetal DNA, uric acid, the NOD-like receptor pyrin-containing receptor 3 (NLRP3) inflammasome, IL-1β and IL-18 occur in the PE placenta. Some of these molecules have already been observed in the placenta from women with PE. Mechanistically, emerging evidence has demonstrated that excessive placental endoplasmic reticulum (ER) stress, impaired autophagy and gasdermine D (GSDMD)-mediated intrinsic pyroptosis are key events that contribute to systemic sterile inflammation in patients with PE, especially early-onset PE (e-PE). In this review, we highlight the advances on the roles of sterile inflammation and inflammatory signaling cascades involving ER stress, autophagy deficiency and pyroptosis in PE pathophysiology. Deciphering the mechanisms underlying these inflammatory pathways may provide potential diagnostic biomarkers and facilitate the development of therapeutic strategies to treat this devastating disease.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Zheping Huang
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Zhengke Wang
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Shibin Cheng
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
35
|
Zhang J, Hua W, Zhao X, Yang F, Guo T, Zhang J, Zheng X, Liang W. Paeoniflorin alleviates endothelial dysfunction caused by overexpression of soluble fms-like tyrosine kinase 1 and soluble endoglin in preeclampsia via VEGFA upregulation. Biosci Biotechnol Biochem 2021; 85:814-823. [PMID: 33590855 DOI: 10.1093/bbb/zbaa106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/03/2020] [Indexed: 11/14/2022]
Abstract
This study assessed the protective effects of paeoniflorin against preeclampsia-related endothelial damage (ED). Human umbilical vein endothelial cells (HUVECs) isolated from healthy puerperae were identified by immunofluorescence assay. After paeoniflorin treatment, HUVECs were induced by soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng) to establish ED. Cell viability, migration, invasion, tube formation, and apoptosis were assessed by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium MTT assay, Scratch assay, Transwell assay, tube formation assay, and flow cytometry. VEGFA expression in HUVECs was analyzed by Western blot. HUVECs were successfully isolated and identified as Von Willebrand factor (vWF) positive. Individual treatment or cotreatment of sFlt-1 and sEng inhibited migration, invasion and tube formation, enhanced apoptosis, and decreased VEGFA expression in HUVECs. Paeoniflorin pretreatment partially reversed the effects delivered by cotreatment of sFlt-1 and sEng in HUVECs. Paeoniflorin alleviated preeclampsia-related ED caused by overexpression of sFlt-1 and sEng by upregulating VEGFA.
Collapse
Affiliation(s)
- Jin Zhang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wei Hua
- Reproductive Center, Xijing Hospital of Air Force Medical University, Xi'an City, Shan xi Province, China
| | - Xinyuan Zhao
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Fan Yang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ting Guo
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jianhua Zhang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xuerong Zheng
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Wanqi Liang
- The Second Department of Obstetrics, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
36
|
Feng X, Wei Z, Tao X, Du Y, Wu J, Yu Y, Yu H, Zhao H. PLAC8 promotes the autophagic activity and improves the growth priority of human trophoblast cells. FASEB J 2021; 35:e21351. [PMID: 33570788 DOI: 10.1096/fj.202002075rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Autophagy plays an important role in the normal development and function of trophoblast cells and is precisely regulated during pregnancy. Dysregulated autophagy contributes to the abnormal proliferation of trophoblasts, which is closely related to the occurrence of pregnancy-related diseases. Placenta specific 8 (PLAC8, Onzin) is a multifaceted protein proven to promote autophagy and potentiate various tumor progression. Its role in trophoblasts remains elusive. In our present study, PLAC8 expression was detected in tissues of first-trimester placentas (n = 5), term placentas (n = 5), choriocarcinoma (n = 5), and placental site trophoblastic tumor (n = 5). PLAC8 expression was increased in gestational neoplasms compared with normal pregnancies. mCherry-EGFP-LC3B reporter and transmission electron microscopy confirmed PLAC8 promoted the autophagic flux of human trophoblast cells. Both gain-of-function and loss-of-function experiments demonstrated PLAC8-regulated autophagy-related genes, including ATG5, ATG12, and Beclin-1. In addition, our data showed that PLAC8 co-localized with p53 and promoted its degradation, and p53 re-expression partially abrogated the PLAC8-induced autophagy activity. Furthermore, the overexpression of PLAC8 promoted cell viability and proliferation, acting as a protective mechanism of trophoblasts against the cytotoxicity of etoposide (VP-16). Such a phenomenon was effectively abrogated by autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ). In conclusion, PLAC8-induced autophagy to promote the proliferation of trophoblasts. This study provided insights into the mechanism of PLAC8-induced autophagy in trophoblasts, which is significant for a wide range of gestational diseases and may contribute to developing novel treatment strategies for trophoblastic diseases.
Collapse
Affiliation(s)
- Xuan Feng
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Xiang Tao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Jing Wu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Yinhua Yu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Huandi Yu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Cannabidiol disrupts apoptosis, autophagy and invasion processes of placental trophoblasts. Arch Toxicol 2021; 95:3393-3406. [PMID: 34302491 DOI: 10.1007/s00204-021-03122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023]
Abstract
Cannabidiol (CBD) is a constituent of Cannabis sativa without psychotropic activity, whose medical benefits have been recognised. However, little is known about the potential toxic effects of CBD on reproductive health. Placental development involves tightly controlled processes of cell proliferation, differentiation, apoptosis, autophagy and migration/invasion of trophoblast cells. Cannabis use by pregnant women has been increasing, mainly for the relief of nausea associated with the first trimester, which raises great concern. Regarding the crucial role of cytotrophoblast cells (CTs) and extravillous trophoblasts (EVTs) in placentation, the effects of CBD (1-10 µM) were studied, using in vitro model systems BeWo and HTR-8/SVneo cell lines, respectively. CBD causes cell viability loss in a dose-dependent manner, disrupts cell cycle progression and induces apoptosis through the mitochondrial pathway, on both cell models. Moreover, CBD induces autophagy only in HTR-8/SVneo cells, being this process a promoter of apoptosis. Hypoxia-responsive genes HIF1A and SPP1 were also increased in CBD-treated HTR-8/SVneo cells suggesting a role for HIF-1α in the apoptotic and autophagic processes. In addition, CBD was able to decrease HTR-8/SVneo cell migration. Therefore, CBD interferes with trophoblast turnover and placental remodelling, which can have a considerable impact on pregnancy outcome. Thus, from an in vitro perspective our study adds new evidence for the potential negative impact of cannabis use by pregnant women.
Collapse
|
38
|
Chen H, Williams KE, Kwan EY, Kapidzic M, Puckett KA, Aburajab RK, Robinson JF, Fisher SJ. Global proteomic analyses of human cytotrophoblast differentiation/invasion. Development 2021; 148:dev199561. [PMID: 34121116 PMCID: PMC8276980 DOI: 10.1242/dev.199561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
During human pregnancy, cytotrophoblasts (CTBs) from the placenta differentiate into specialized subpopulations that play crucial roles in proper fetal growth and development. A subset of these CTBs differentiate along an invasive pathway, penetrating the decidua and anchoring the placenta to the uterus. A crucial hurdle in pregnancy is the ability of these cells to migrate, invade and remodel spiral arteries, ensuring adequate blood flow to nourish the developing fetus. Although advances continue in describing the molecular features regulating the differentiation of these cells, assessment of their global proteomic changes at mid-gestation remain undefined. Here, using sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which is a data-independent acquisition strategy, we characterized the protein repertoire of second trimester human CTBs during their differentiation towards an invasive phenotype. This mass spectrometry-based approach allowed identification of 3026 proteins across four culture time points corresponding to sequential stages of differentiation, confirming the expression dynamics of established molecules and offering new information into other pathways involved. The availability of a SWATH CTB global spectral library serves as a beneficial resource for hypothesis generation and as a foundation for further understanding CTB differentiation dynamics.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Katherine E. Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Elaine Y. Kwan
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Kenisha A. Puckett
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Rayyan K. Aburajab
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Susan J. Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
- Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Pi Y, Tian X, Ma J, Zhang H, Huang X. Vitamin D alleviates hypoxia/reoxygenation-induced injury of human trophoblast HTR-8 cells by activating autophagy. Placenta 2021; 111:10-18. [PMID: 34126416 DOI: 10.1016/j.placenta.2021.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Attenuation of trophoblast cell dysfunction would be beneficial for retarding pre-eclampsia (PE). Vitamin D has been reported to improve trophoblast cell function in early PE, but the mechanism involved is not fully elucidated. This study is aimed to investigate whether vitamin D alleviates trophoblast cell dysfunction via regulating autophagy. METHODS Human trophoblast HTR-8 cells were cultured in hypoxia/reoxygenation (H/R) condition to simulate the oxidative stress state of early PE in vitro. MTT, Transwell and tube formation assays were respectively applied to assess cell proliferation, invasion, and angiogenesis abilities. DCFH-DA staining was performed to detect cellular reactive oxygen species levels. GFP-RFP-LC3 plasmid transfection and transmission electron microscopy were subjected to monitor autophagy. Enzyme-linked immunosorbent assay and Western blot analysis were used to detect autophagy-related and pyroptosis-associated molecules. RESULTS H/R led to severe impairments on the bio-function of HTR-8 cells, as evidenced by the deficiency of cell proliferation, invasion, and angiogenesis abilities, and the increase of cellular ROS production. Simultaneously, H/R inhibited autophagy and triggered pyroptosis. 1,25(OH)2D3, the hormonally active form of vitamin D, dramatically attenuated H/R-induced trophoblast dysfunction. Also, 1,25(OH)2D3 activated autophagy and inhibited pyroptosis. Additionally, autophagy-enhancer rapamycin exerted similar protective effect to that of 1,25(OH)2D3, whereas autophagy-inhibitor 3-methyladenine blocked the protective effect of 1,25(OH)2D3. DISCUSSION The mechanism that vitamin D alleviates trophoblast cell dysfunction is associated with autophagy induction and pyroptosis inhibition.
Collapse
Affiliation(s)
- Yalei Pi
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiaoyu Tian
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Jing Ma
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Huifeng Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
40
|
Downregulation of HIF-2α Enhances Apoptosis and Limits Invasion in Human Placental JEG-3 Trophoblast Cells. Reprod Sci 2021; 28:2710-2717. [PMID: 34031851 DOI: 10.1007/s43032-021-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/11/2021] [Indexed: 09/29/2022]
Abstract
Pre-eclampsia, one of the major disorders of pregnancy, is characterized by inadequate trophoblast invasion and defective trophoblast-mediated remodeling of placental vasculature. Hypoxia-inducible transcription factor (HIF)-2α plays a critical role in regulating cellular function of trophoblasts; however, its role in placental development and in the pathogenesis of pre-eclampsia remains elusive. CCK-8 assay was used to detect cell viability. Invasion assay was performed to determine the effect of HIF-2α on trophoblast function. Flow cytometry was used for detecting apoptosis and cell cycle. The mRNA and protein expressions of HIF-2α, VEGF, iNOS, and ET-1 were determined by quantitative real-time PCR and western blot techniques. The roles of HIF-2α in JEG-3 trophoblast cells were examined using siRNA technology. The presence of HIF-2α siRNA reduced the levels of cell viability after 48 h incubation, and the cell viability further reduced at 72 h. Besides, HIF-2α siRNA enhanced trophoblast apoptosis, as determined by flow cytometric measurement. Increased G1-phase and decreased S-phase cell population were induced by HIF-2α siRNA based on the determination of cell cycle distribution using propidium iodide staining. Furthermore, the invasive ability of JEG-3 trophoblasts was significantly reduced by HIF-2α siRNA. In addition, knockdown of the HIF-2α gene significantly decreased VEGF, iNOS, and ET-1 levels in JEG-3 human trophoblasts. Our findings provide preliminary evidence of the functions of HIF-2α in trophoblast biology and suggest that the downregulation of HIF-2α enhances cell apoptosis and limits trophoblast invasion.
Collapse
|
41
|
Circulating Vascular Endothelial Growth Factor and Soluble fms-Like Tyrosine Kinase-1 as Biomarkers for Endometrial Remodeling Across the Menstrual Cycle. Obstet Gynecol 2021; 137:82-90. [PMID: 33278289 DOI: 10.1097/aog.0000000000004171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize variation in circulating vascular endothelial growth factor (VEGF) and its receptor, soluble fms-like tyrosine kinase-1 (sFLT-1), across the menstrual cycle in normal ovulating women in relation to reproductive hormones to identify the utility of VEGF and sFLT-1 as peripheral biomarkers of endometrial remodeling. METHODS Ninety-six healthy, regularly menstruating ovulatory women, aged 18-44 years, enrolled in the BioCycle Study, a prospective cohort study at a U.S. academic research center. Vascular endothelial growth factor and sFLT-1 were measured in concurrently collected plasma, serum, and urine up to eight times across a single cycle. Reproductive hormones were measured in serum. Mean concentrations of VEGF and sFLT-1 were compared across phases of the cycle, and correlations between specimen types were calculated. Harmonic models estimated associations between VEGF and sFLT-1 and characteristics of hormonal patterns. RESULTS No variation in VEGF or sFLT-1 levels were detected over the menstrual cycle. Median (25th percentile, 75th percentile) concentrations of VEGF during the menstrual cycle were 31.2 pg/mL (24.1, 56.9) in plasma, 194.1 pg/mL (125.4, 350.2) in serum, and 101.7 pg/mL (64.2, 165.8) in urine. Plasma and serum measures were consistently correlated, whereas urinary measures were not. Vascular endothelial growth factor was not consistently associated with reproductive hormone concentrations, although sFLT-1 was associated with higher mean and amplitude of estradiol. CONCLUSION Circulating VEGF and sFLT-1 did not vary across the menstrual cycle and therefore are unlikely to be useful peripheral biomarkers of endometrial changes across the menstrual cycle. For studies measuring circulating VEGF for other reasons, plasma may be the preferred medium and timing to menstrual cycle phase need not be considered for reproductive-age women.
Collapse
|
42
|
Deshpande JS, Sundrani DP, Sahay AS, Gupte SA, Joshi SR. Unravelling the potential of angiogenic factors for the early prediction of preeclampsia. Hypertens Res 2021; 44:756-769. [PMID: 33795844 DOI: 10.1038/s41440-021-00647-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a multisystem, multiorgan hypertensive disorder of pregnancy responsible for maternal and perinatal morbidity and mortality in low- and middle-income countries. The classic diagnostic features hold less specificity for preeclampsia and its associated adverse outcomes, suggesting a need for specific and reliable biomarkers for the early prediction of preeclampsia. The imbalance of pro- and antiangiogenic circulatory factors contributes to the pathophysiology of preeclampsia. Several studies have examined the profile of angiogenic factors in preeclampsia to search for a biomarker that will improve the diagnostic ability of preeclampsia and associated adverse outcomes. This may help in more efficient patient management and the reduction of associated health care costs. This article reviews the findings from previous studies published to date on angiogenic factors and suggests a need to apply a multivariable model from the beginning of pregnancy and continuing throughout gestation for the early and specific prediction of preeclampsia.
Collapse
Affiliation(s)
- Juilee S Deshpande
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Akriti S Sahay
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | | | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India.
| |
Collapse
|
43
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
44
|
Ren Z, Gao Y, Gao Y, Liang G, Chen Q, Jiang S, Yang X, Fan C, Wang H, Wang J, Shi YW, Xiao C, Zhong M, Yang X. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. Am J Cancer Res 2021; 11:5028-5044. [PMID: 33754042 PMCID: PMC7978310 DOI: 10.7150/thno.56141] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Patients with preeclampsia display a spectrum of onset time and severity of clinical presentation, yet the underlying molecular bases for the early-onset and late-onset clinical subtypes are not known. Although several transcriptome studies have been done on placentae from PE patients, only a small number of differentially expressed genes have been identified due to very small sample sizes and no distinguishing of clinical subtypes. Methods: We carried out RNA-seq on 65 high-quality placenta samples, including 33 from 30 patients and 32 from 30 control subjects, to search for dysregulated genes and the molecular network and pathways they are involved in. Results: We identified two functionally distinct sets of dysregulated genes in the two major subtypes: 2,977 differentially expressed genes in early-onset severe preeclampsia, which are enriched with metabolism-related pathways, notably transporter functions; and 375 differentially expressed genes in late-onset severe preeclampsia, which are enriched with immune-related pathways. We also identified some key transcription factors, which may drive the widespread gene dysregulation in both early-onset and late-onset patients. Conclusion: These results suggest that early-onset and late-onset severe preeclampsia have different molecular mechanisms, whereas the late-onset mild preeclampsia may have no placenta-specific causal factors. A few regulators may be the key drivers of the dysregulated molecular pathways.
Collapse
|
45
|
Aggrephagy Deficiency in the Placenta: A New Pathogenesis of Preeclampsia. Int J Mol Sci 2021; 22:ijms22052432. [PMID: 33670947 PMCID: PMC7957664 DOI: 10.3390/ijms22052432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Aggrephagy is defined as the selective degradation of aggregated proteins by autophagosomes. Protein aggregation in organs and cells has been highlighted as a cause of multiple diseases, including neurodegenerative diseases, cardiac failure, and renal failure. Aggregates could pose a hazard for cell survival. Cells exhibit three main mechanisms against the accumulation of aggregates: protein refolding by upregulation of chaperones, reduction of protein overload by translational inhibition, and protein degradation by the ubiquitin-proteasome and autophagy-lysosome systems. Deletion of autophagy-related genes reportedly contributes to intracellular protein aggregation in vivo. Some proteins recognized in aggregates in preeclamptic placentas include those involved in neurodegenerative diseases. As aggregates are derived both intracellularly and extracellularly, special endocytosis for extracellular aggregates also employs the autophagy machinery. In this review, we discuss how the deficiency of aggrephagy and/or macroautophagy leads to poor placentation, resulting in preeclampsia or fetal growth restriction.
Collapse
|
46
|
Ling Z, Chen M, Li T, Qian Y, Li C. MiR-141-3p downregulation promotes tube formation, migration, invasion and inhibits apoptosis in hypoxia-induced human umbilical vein endothelial cells by targeting Notch2. Reprod Biol 2021; 21:100483. [PMID: 33631423 DOI: 10.1016/j.repbio.2021.100483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cell damage is regarded as the carrier in the progression of the pathological changes of preeclampsia (PE) from the placenta to maternal organs. MicroRNA (miR)-141-3p was aberrantly expressed during PE pathogenesis. We investigated the role of miR-141-3p in regulating the biological behaviors of endothelial cells in PE. Human umbilical vein endothelial cells (HUVECs) were isolated from the human umbilical cords and cultured under hypoxia condition to establish PE models. The binding of miR-141-3p and Notch2 was confirmed by dual-luciferase reporter assay. HUVECs were transfected with miR-141-3p inhibitor and siRNA-Notch2. The viability, vascularization capability, migration, and invasion of HUVECs were evaluated by MTT, tube formation, and Transwell assays. Cell apoptosis was measured via flow cytometry. The expressions of miR-141-3p, Notch2, Bcl-2, Bax and cleaved caspase-3 were assessed by qRT-PCR or Western blot. MiR-141-3p expression was upregulated in the HUVECs isolated from PE tissues and hypoxia-induced HUVECs. Hypoxia treatment inhibited viability, tube formation, migration, and invasion, and promoted apoptosis in HUVECS, as well as increased Bax and cleaved caspase-3 expressions and decreased Bcl-2 expression. Downregulating miR-141-3p expression promoted viability, tube formation, migration and invasion, and inhibited apoptosis in HUVECs, counteracting the effect of hypoxia on HUVECs. MiR-141-3p directly targeted Notch2. Silencing Notch2 reversed the promoting effect of downregulated miR-141-3p expression on HUVECs. In conclusion, downregulating miR-141-3p expression during hypoxia promotes tube formation, migration, and invasion and inhibits apoptosis in HUVECs by targeting Notch2.
Collapse
Affiliation(s)
- Zhonghui Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Min Chen
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, No.123, Tianfei Alley, Qinhuai District, Nanjing, Jiangsu 210000, China
| | - Ting Li
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, No.123, Tianfei Alley, Qinhuai District, Nanjing, Jiangsu 210000, China
| | - Yating Qian
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, No.123, Tianfei Alley, Qinhuai District, Nanjing, Jiangsu 210000, China
| | - Chanjuan Li
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, No.123, Tianfei Alley, Qinhuai District, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
47
|
Molecular and immunological developments in placentas. Hum Immunol 2021; 82:317-324. [PMID: 33581928 DOI: 10.1016/j.humimm.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface. Despite fetuses and fetus-derived trophoblast cells being of the semi-allogeneic conceptus, fetuses and placentas are not rejected by the maternal immune system because of maternal-fetal tolerance. The acquired tolerance develops during normal placentation, resulting in normal fetal development in humans. In this review, we introduce placental development from the viewpoint of molecular biology. In addition, we discuss how the disruption of placental development could lead to complications in pregnancy, such as hypertensive disorder of pregnancy, fetal growth restriction, or miscarriage.
Collapse
|
48
|
Lei D, Fang C, Deng N, Yao B, Fan C. Long noncoding RNA expression profiling identifies MIR210HG as a novel molecule in severe preeclampsia. Life Sci 2021; 270:119121. [PMID: 33516697 DOI: 10.1016/j.lfs.2021.119121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a potentially fatal pregnancy-specific complication. Nevertheless, the pathogenesis of PE remains indistinct. Recently, increasing studies emphasized that long noncoding RNAs (lncRNAs) functions as imperative regulators in PE. The aim of this study was to compare the lncRNAs transcript profile of placentae in early onset severe preeclampsia (EOSP) with lncRNAs in normal pregnancy (NP) and to evaluate the role of lncRNA MIR210HG (microRNA 210 host gene) in the PE pathogenesis. METHODS Using RNA sequencing, we compared transcriptome profiles of placentae in EOSP (n = 3) and NP (n = 3). Bioinformatic tools were used to predict the function of differentially expressed genes while qRT-PCR was used to verify RNA sequencing data. The role of MIR210HG in HTR8/SVneo migration and invasion were analyzed by in vitro MIR210HG gene overexpression. RESULTS Our results showed that 527 lncRNAs and 600 mRNAs were differentially expressed in placental samples of EOSP, and the analysis identified 63 key EOSP related genes. As indicated by bioinformatics analyses, lncRNA MIR210HG was a potential pathogenic marker of PE. LncRNA-MIR210HG expression was upregulated in placental samples of PE and enriched in the canonical Wnt signalling pathway. MiR210HG overexpression inhibited HTR8/SVneo cell migration and invasion in vitro. Additionally, miR210HG upregulated dickkopf-1 expression via the sponging of microRNA-520a-3p (miR-520a-3p), thus repressing trophoblast migration and invasion. CONCLUSION Our study showed that MiR210HG is a novel upregulated lncRNA in the placentas of PE and MiR210HG regulates the migration and invasive potential of HTR-8/SVneo cell by targeting the miR-520a-3p/Dickkopf-1 axis.
Collapse
Affiliation(s)
- Di Lei
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Congcong Fang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Na Deng
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
49
|
Ou M, Zhang Q, Zhao H, Shu C. Polyunsaturated Fatty Acid Diet and Upregulation of Lipoxin A4 Reduce the Inflammatory Response of Preeclampsia. J Proteome Res 2020; 20:357-368. [PMID: 33131275 DOI: 10.1021/acs.jproteome.0c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effects and mechanisms of polyunsaturated fatty acids (PUFAs) and lipoxin A4 (LXA4) on preeclampsia (PE). The LXA4 level was significantly reduced in PE rats. The PUFA diet upregulated the expressions of lipoxygenase 12 (LOX12) and lipoxygenase 15 (LOX15) and downregulated those of cyclooxygenase-2, tumor necrosis factor-α (TNF-α), and endoglin. Lipopolysaccharides could inhibit cell growth and cause inflammatory response, while the presence of PUFAs inhibited the inflammatory response and promoted the expressions of LOX12, LOX15, and LXA4. Nordihydroguaiaretic acid (NDGA) regulated LXA4 expression and inflammation levels by affecting LOX. Inhibition of lipoxygenase 5 activity by NDGA upregulated the expressions of LOX12 and LOX15, while LXA4 reversed LXA4, nitric oxide downregulation, and TNF-α upregulation by NDGA. A decrease in LXA4 levels played an important role in the development and progression of PE.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Huidong Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, No.71 Xinmin Street, Changchun, Jilin Province 130021, China
| |
Collapse
|
50
|
Ye Y, Li M, Chen L, Li S, Quan Z. Circ-AK2 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-454-3p/THBS2. Placenta 2020; 103:156-163. [PMID: 33129036 DOI: 10.1016/j.placenta.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Circ-AK2 has been found to be differentially expressed in PE placenta tissues, however, the role and the underlying molecular mechanisms of circ-AK2 in PE remain poorly known. METHODS The expression of circ-AK2, miR-454-3p, and THBS2 mRNA was detected using quantitative real-time polymerase chain reaction. Protein levels of CyclinD1, MMP-9 and THBS2 were measured using Western blot. Cell proliferation, migration, and invasion were analyzed by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay and transwell assay. The interaction between miR-454-3p and circ-AK2 or THBS2 was analyzed by the dual-luciferase reporter assay. RESULTS Circ-AK2 was highly expressed in placental tissues of PE, and overexpression of circ-AK2 inhibited trophoblast cell proliferation, migration and invasion. Circ-AK2 directly bound to miR-454-3p, and miR-454-3p overexpression reversed the inhibitory action of circ-AK2 in biological functions of trophoblast cells. MiR-454-3p was lowly expressed in placental tissues of PE, and directly regulated THBS2 expression in a targeted manner. Silencing miR-454-3p suppressed the proliferating, migratory, and invasive abilities of trophoblast cells, while this condition was abolished by THBS2 knockdown. Besides, we also proved circ-AK2 could regulate THBS2 expression via miR-454-3p. DISCUSSION Circ-AK2 inhibited the proliferation, migration and invasion of trophoblast cells via targeting miR-454-3p/THBS2 axis, suggesting a novel insight into the etiology of PE and a potential therapeutic target for PE treatment.
Collapse
Affiliation(s)
- Yingqin Ye
- Reproductive Medicine Center, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Mei Li
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Lu Chen
- School of Clinical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Shuxian Li
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhengzhao Quan
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China.
| |
Collapse
|