1
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Endometriosis: An Immunologist's Perspective. Int J Mol Sci 2025; 26:5193. [PMID: 40508002 PMCID: PMC12154487 DOI: 10.3390/ijms26115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/27/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10-15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and pain, are key features of endometriosis. Endometriotic lesions are associated with the overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals, and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell function and impaired immune vigilance contribute to endometrial growth. The strong inflammatory condition of the endometrium poses a barrier to the proper implantation of the zygote, contributing to the infertility of these patients. Cytokines from various cell types vary with the severity of the disease. The role of microbiota in endometriosis is still under study. Endometriosis is associated with autoimmunity and ovarian cancer. Hormonal treatments and surgery are commonly used; however, recent interest focuses on anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine antibodies. Modulating the immune response has proven critical; however, more research is needed to optimize treatment for these patients.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
| | - Marian Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Bavarsad SB, Shahryarhesami S, Karami N, Naseri N, Tajbakhsh A, Gheibihayat SM. Efferocytosis and infertility: Implications for diagnosis and therapy. J Reprod Immunol 2025; 167:104413. [PMID: 39631138 DOI: 10.1016/j.jri.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Recent research has shed light on the intricate connection between efferocytosis and infertility, revealing its dysregulation as a contributing factor in various reproductive diseases. Despite the multifaceted nature of infertility etiology, the impact of insufficient clearance of apoptotic cells on fertility has emerged as a focal point. Notably, the removal of apoptotic cells through phagocytosis in the female reproductive system has been a subject of extensive investigation in the field of infertility. Additionally, special functions performed by immune system cell types, such as macrophages and Sertoli cells, in the male reproductive system underscore their significance in spermatogenesis and the efferocytosis of apoptotic germ cells. Dysregulation of efferocytosis emerges as a critical factor contributing to reproductive challenges, such as low pregnancy rates, miscarriages, and implantation failures. Moreover, defective efferocytosis can lead to compromised implantation, recurrent miscarriages, and unsuccessful assisted reproductive procedures. This review article aims to provide a comprehensive overview of efferocytosis in the context of infertility. Molecular mechanisms underlying efferocytosis, its relevance in both female and male infertility, and its implications in various reproductive diseases are elucidated. The elucidation of the intricate relationship between efferocytosis and infertility not only facilitates diagnosis but also paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Soroosh Shahryarhesami
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.
| | - Noorodin Karami
- Genetics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
3
|
Suszczyk D, Skiba W, Pawłowska-Łachut A, Dymanowska-Dyjak I, Włodarczyk K, Paduch R, Wertel I. Immune Checkpoints in Endometriosis-A New Insight in the Pathogenesis. Int J Mol Sci 2024; 25:6266. [PMID: 38892453 PMCID: PMC11172867 DOI: 10.3390/ijms25116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Endometriosis (EMS) is an oestrogen-dependent, chronic disease affecting women of a reproductive age. One of the important factors involved in the development of this disease is the complex disorders associated with the functioning of the immune system. Recent evidence has shown that EMS development is associated with changes in systemic and local immunity, including functional disturbances of effector and antigen-presenting cells. One of the reasons for immune imbalance can be the improper expression of immune checkpoints (ICPs). ICPs and their ligands are responsible for maintaining self-tolerance and the modulation of the initiation, duration, and magnitude of the immune response of effector cells in normal tissues to avoid tissue damage. Considering the complex nature of co-stimulatory or co-inhibitory ICPs and the signalling between effector cells and APCs, we hypothesise that changes in cells' activity caused by ICPs may lead to serious immune system disturbances in patients with endometriosis. Moreover, both upregulation and downregulation in the expression of ICPs may be implicated in this process, including the reduced activity of effector cells against endometrial implants and disturbances in the antigen-presenting process. In this narrative review, we discuss, for the first time, key findings from the emerging literature, describing the associations between ICPs and their possible implication in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (D.S.); (W.S.); (A.P.-Ł.); (K.W.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (D.S.); (W.S.); (A.P.-Ł.); (K.W.)
| | - Anna Pawłowska-Łachut
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (D.S.); (W.S.); (A.P.-Ł.); (K.W.)
| | - Izabela Dymanowska-Dyjak
- Independent Laboratory of Minimally Invasive Gynecology and Gynecological Endocrinology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (D.S.); (W.S.); (A.P.-Ł.); (K.W.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (D.S.); (W.S.); (A.P.-Ł.); (K.W.)
| |
Collapse
|
4
|
Zhou L, Cai E, Liu H, Cheng H, Ye X, Zhu H, Chang X. Extracellular ATP (eATP) inhibits the progression of endometriosis and enhances the immune function of macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166895. [PMID: 37748566 DOI: 10.1016/j.bbadis.2023.166895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Extracellular adenosine triphosphate (eATP) is an important inflammatory mediator that can boost the antitumour immune response, but its role in endometriosis remains unknown. We hypothesized that eATP could inhibit endometriosis cell function both directly and indirectly through macrophages. METHODS Peritoneal and cyst fluid from endometriosis patients and non-endometriosis controls was collected to measure eATP levels. The addition of eATP was performed to explore its effects on endometriotic cell and macrophage functions, including cell proliferation, apoptosis, pyroptosis, mitochondrial membrane potential, phagocytosis, and the production of inflammatory cytokines and reactive oxygen species. A coculture of endometriotic epithelial cells and U937 macrophages was established, followed by P2X7 antagonist and eATP treatment. Endometriosis model eATP-treated rats were used to evaluate in situ cell death and macrophage marker expression. RESULTS The pelvic microenvironment of endometriosis patients shows high eATP levels, which could induce endometriotic epithelial cell apoptosis and pyroptosis and significantly inhibit cell growth via the MAPK/JNK/Akt pathway. eATP treatment ameliorated endometriosis-related macrophage dysfunction and promoted macrophage recruitment. eATP treatment in the presence of macrophages exerted a stronger cytotoxic effect on endometriotic epithelial cells by regulating P2X7. eATP treatment effectively induced cell death in an endometriosis rat model and prominently increased the macrophage number without affecting the eutopic endometrium. CONCLUSION eATP induces endometriotic epithelial cell death and enhances the immune function of macrophages to inhibit the progression of endometriosis, while eutopic endometrium is not affected. eATP treatment may serve as a nonhormonal therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - E Cai
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Huiping Liu
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Honglan Zhu
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China.
| | - Xiaohong Chang
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
5
|
Gao X, Gao H, Shao W, Wang J, Li M, Liu S. The Extracellular Vesicle-Macrophage Regulatory Axis: A Novel Pathogenesis for Endometriosis. Biomolecules 2023; 13:1376. [PMID: 37759776 PMCID: PMC10527545 DOI: 10.3390/biom13091376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endometriosis (EMs) is a common disease among women whose pathogenesis is still unclear, although there are various hypotheses. Recent studies have considered macrophages the key part of the immune system in developing EMs, inducing inflammation, the growth and invasion of the ectopic endometrium, and angiogenesis. Extracellular vesicles (EVs) as novel intercellular vesicle traffic, can be secreted by many kinds of cells, including macrophages. By carrying long non-coding RNA (lncRNA), microRNA (miRNA), or other molecules, EVs can regulate the biological functions of macrophages in an autocrine and paracrine manner, including ectopic lesion growth, immune dysfunction, angiogenesis, and can further accelerate the progression of EMs. In this review, the interactions between macrophages and EVs for the pathogenesis of EMs are summarized. Notably, the regulatory pathways and molecular mechanisms of EVs secreted by macrophages during EMs are reviewed.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Han Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Wei Shao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Jiaqi Wang
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Institute Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Songping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, China; (X.G.); (H.G.); (W.S.); (J.W.)
| |
Collapse
|
6
|
Chen S, Liu Y, Zhong Z, Wei C, Liu Y, Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol 2023; 14:1134663. [PMID: 36865552 PMCID: PMC9971222 DOI: 10.3389/fimmu.2023.1134663] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory disease characterized by the growth of endometrium-like tissues outside the uterine cavity, affects 10% of reproductive-age women. Although the pathogenesis of endometriosis is uncertain, it is widely accepted that retrograde menstruation results in ectopic endometrial tissue implantation. Given that not all women with retrograde menstruation develop endometriosis, immune factors have been hypothesized to affect the pathogenesis of endometriosis. In this review, we demonstrate that the peritoneal immune microenvironment, including innate immunity and adaptive immunity, plays a central role in the pathogenesis of endometriosis. Current evidence supports the fact that immune cells, such as macrophages, natural killer (NK) cells, dendritic cells (DCs), neutrophils, T cells, and B cells, as well as cytokines and inflammatory mediators, contribute to the vascularization and fibrogenesis of endometriotic lesions, accelerating the implantation and development of ectopic endometrial lesions. Endocrine system dysfunction influences the immune microenvironment through overexpressed estrogen and progesterone resistance. In light of the limitations of hormonal therapy, we describe the prospects for potential diagnostic biomarkers and nonhormonal therapy based on the regulation of the immune microenvironment. Further studies are warranted to explore the available diagnostic biomarkers and immunological therapeutic strategies for endometriosis.
Collapse
Affiliation(s)
- Siman Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yukai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhiqi Zhong
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yuyin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China,*Correspondence: Xiaoyong Zhu,
| |
Collapse
|
7
|
Arcos D, Portolés MT. Mesoporous Bioactive Nanoparticles for Bone Tissue Applications. Int J Mol Sci 2023; 24:3249. [PMID: 36834659 PMCID: PMC9964985 DOI: 10.3390/ijms24043249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Research in nanomaterials with applications in bone regeneration therapies has experienced a very significant advance with the development of bioactive mesoporous nanoparticles (MBNPs). These nanomaterials consist of small spherical particles that exhibit chemical properties and porous structures that stimulate bone tissue regeneration, since they have a composition similar to that of conventional sol-gel bioactive glasses and high specific surface area and porosity values. The rational design of mesoporosity and their ability to incorporate drugs make MBNPs an excellent tool for the treatment of bone defects, as well as the pathologies that cause them, such as osteoporosis, bone cancer, and infection, among others. Moreover, the small size of MBNPs allows them to penetrate inside the cells, provoking specific cellular responses that conventional bone grafts cannot perform. In this review, different aspects of MBNPs are comprehensively collected and discussed, including synthesis strategies, behavior as drug delivery systems, incorporation of therapeutic ions, formation of composites, specific cellular response and, finally, in vivo studies that have been performed to date.
Collapse
Affiliation(s)
- Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - María Teresa Portolés
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
8
|
Shao A, Owens DM. The immunoregulatory protein CD200 as a potentially lucrative yet elusive target for cancer therapy. Oncotarget 2023; 14:96-103. [PMID: 36738455 PMCID: PMC9899099 DOI: 10.18632/oncotarget.28354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD200 is an immunoregulatory cell surface ligand with proven pro-tumorigenic credentials via its ability to suppress CD200 receptor (CD200R)-expressing anti-tumor immune function. This definitive role for the CD200-CD200R axis in regulating an immunosuppressive tumor microenvironment has garnered increasing interest in CD200 as a candidate target for immune checkpoint inhibition therapy. However, while the CD200 blocking antibody samalizumab is still in the early stages of clinical testing, alternative mechanisms for the pro-tumorigenic role of CD200 have recently emerged that extend beyond direct suppression of anti-tumor T cell responses and, as such, may not be susceptible to CD200 antibody blockade. Herein, we will summarize the current understanding of CD200 expression and function in the tumor microenvironment as well as alternative strategies for potential neutralization of multiple CD200 mechanisms in human cancers.
Collapse
Affiliation(s)
- Anqi Shao
- 1Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David M. Owens
- 1Department of Dermatology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA,2Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA,Correspondence to:David M. Owens, email:
| |
Collapse
|
9
|
Hamilton M, Turpin V, Ayoub A, Reihani A, Arredondo J, Ask K, Clark DA, Foster WG. Circulating CD200 is increased in the secretory phase of women with endometriosis as is endometrial mRNA, and endometrial stromal cell CD200R1 is increased in spite of reduced mRNA. Am J Reprod Immunol 2023; 89:e13655. [PMID: 36379046 DOI: 10.1111/aji.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
PROBLEM Estrogen-dependent extrauterine implantation and growth of menstrual endometrial tissue affects roughly 10% of reproductive age women and depends on suppression of local innate immune defenses to prevent ectopic tissue rejection. Immunohistochemistry has shown the immune check-point inhibitor CD200 which can suppress rejection is expressed in eutopic endometrium and in ectopic deposits. Soluble CD200 accumulated in venules draining eutopic and ectopic endometrium of endometriosis cases in the secretory phase but not proliferative phase of the menstrual cycle, and should be increased in the circulation. METHOD OF STUDY Sera from endometriosis and non-endometriosis controls were tested by ELISA for CD200. Endometrial CD200, CD200R1 and CD200R2 mRNA in eutopic was quantified by RT-PCR and localized by in situ hybridization. CD200R1 protein was quantified by immunohistochemistry. RESULTS Secretory phase serum CD200 was elevated in women with endometriosis compared to controls. Serum CD200 correlated with matched endometrial CD200 mRNA levels. Expression of mRNA for CD200R1 which signals immune suppression was decreased whereas mRNA for the CD200R2 activating receptor was increased. In situ staining of CD200R1 and CD200R2 mRNA showed both receptors were expressed and the fraction of CD200R that is CD200R1 was reduced in secretory and menstrual phase endometriosis endometrium consistent with the RT-PCR result. By contrast, CD200R1 protein and CD200R1 fraction of total CD200R protein were increased in endometriosis. CONCLUSIONS Failure to suppress circulating CD200 levels in the secretory phase had an 87% specificity and 90% sensitivity for endometriosis. CD200 and increased CD200R1 expression may facilitate development of ectopic deposits by suppressing rejection mechanisms.
Collapse
Affiliation(s)
- Matthew Hamilton
- Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Victoria Turpin
- Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Anmar Ayoub
- Department of Medicine, McMaster University, Firestone Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Amir Reihani
- Department of Medicine, McMaster University, Firestone Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Jorge Arredondo
- Department of Pathology and Molecular Medicine, McMaster University, Heath Sciences Center, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Department of Medicine, McMaster University, Firestone Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - David A Clark
- Department of Pathology and Molecular Medicine, McMaster University, Heath Sciences Center, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Warren G Foster
- Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Baicalein Relieves Ferroptosis-Mediated Phagocytosis Inhibition of Macrophages in Ovarian Endometriosis. Curr Issues Mol Biol 2022; 44:6189-6204. [PMID: 36547083 PMCID: PMC9777460 DOI: 10.3390/cimb44120422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Iron overload and oxidative stress have been reported to contribute to ferroptosis in endometriotic lesions. However, the possible roles of iron overload on macrophages in endometriosis (EMs) remain unknown. Based on recent reports by single-cell sequencing data of endometriosis, here we found significant upregulations of ferroptosis-associated genes in the macrophage of the endometriotic lesion. Additionally, there was an elevated expression of HMOX1, FTH1, and FTL in macrophages of peritoneal fluid in EMs, as well as iron accumulation in the endometriotic lesions. Notably, cyst fluid significantly up-regulated levels of intracellular iron and ferroptosis in Phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. Additionally, high iron-induced ferroptosis obviously reduced PMA-stimulated THP-1 cells' phagocytosis and increased the expression of angiogenic cytokines, such as vascular endothelial growth factor A (VEGFA) and interleukin 8 (IL8). Baicalein, a potential anti-ferroptosis compound, increased GPX4 expression, significantly inhibited ferroptosis, and restored phagocytosis of THP-1 cells in vitro. Collectively, our study reveals that ferroptosis triggered by high iron in cyst fluid promotes the development of EMs by impairing macrophage phagocytosis and producing more angiogenic cytokines (e.g., IL8 and VEGFA). Baicalein displays the potential for the treatment of EMs, especially in patients with high ferroptosis and low phagocytosis of macrophages.
Collapse
|
11
|
Zhang D, Yu Y, Duan T, Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon 2022; 8:e11686. [DOI: 10.1016/j.heliyon.2022.e11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
12
|
Gołąbek-Grenda A, Olejnik A. In vitro modeling of endometriosis and endometriotic microenvironment - Challenges and recent advances. Cell Signal 2022; 97:110375. [PMID: 35690293 DOI: 10.1016/j.cellsig.2022.110375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
Endometriosis is a chronic condition with high prevalence in reproductive age women, defined as the growth of endometrial tissue outside the uterine cavity, most commonly on the pelvic peritoneum. The ectopic endometrial lesions exist in a unique microenvironment created by the interaction of epithelial, stromal, endothelial, glandular, and immune cell components, dominated by inflammatory, angiogenic, and endocrine signals. Current research is directed at understanding the complex microenvironment of the lesions and its relationship with different endometriosis stages, phenotypes, and disease symptoms and at the development of novel diagnostic and therapeutic concepts that minimalize the undesirable side effects of current medical management. Recreating pathophysiological cellular and molecular mechanisms and identifying clinically relevant metrics to assess drug efficacy is a great challenge for the experimental disease models. This review summarizes the complete range of available in vitro experimental systems used in endometriotic studies, which reflect the multifactorial nature of the endometriotic lesion. The article discusses the simplistic in vitro models such as primary endometrial cells and endometriotic cell lines to heterogeneous 2D co-cultures, and recently more common, 3D systems based on self-organization and controlled assembly, both in microfluidic or bioprinting methodologies. Basic research models allow studying fundamental pathological mechanisms by which menstrual endometrium adheres, invades, and establishes lesions in ectopic sites. The advanced endometriosis experimental models address the critical challenges and unsolved problems and provide an approach to drug screening and medicine discovery by mimicking the complicated behaviors of the endometriotic lesion.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland.
| |
Collapse
|
13
|
Ramírez-Pavez TN, Martínez-Esparza M, Ruiz-Alcaraz AJ, Marín-Sánchez P, Machado-Linde F, García-Peñarrubia P. The Role of Peritoneal Macrophages in Endometriosis. Int J Mol Sci 2021; 22:ijms221910792. [PMID: 34639133 PMCID: PMC8509388 DOI: 10.3390/ijms221910792] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disorder, defined as the growth of endometrial stromal cells and glands at extrauterine sites. Endometriotic lesions are more frequently located into the abdominal cavity, although they can also be implanted in distant places. Among its etiological factors, the presence of immune dysregulation occupies a prominent place, pointing out the beneficial and harmful outcomes of macrophages in the pathogenesis of this disease. Macrophages are tissue-resident cells that connect innate and adaptive immunity, playing a key role in maintaining local homeostasis in healthy conditions and being critical in the development and sustainment of many inflammatory diseases. Macrophages accumulate in the peritoneal cavity of women with endometriosis, but their ability to clear migrated endometrial fragments seems to be inefficient. Hence, the characteristics of the peritoneal immune system in endometriosis must be further studied to facilitate the search for new diagnostic and therapeutic tools. In this review, we summarize recent relevant advances obtained in both mouse, as the main animal model used to study endometriosis, and human, focusing on peritoneal macrophages obtained from endometriotic patients and healthy donors, under the perspective of its future clinical translation to the role that these cells play on this pathology.
Collapse
Affiliation(s)
- Tamara N. Ramírez-Pavez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - Antonio J. Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - Pilar Marín-Sánchez
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, 30120 Murcia, Spain;
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, 30002 Murcia, Spain;
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
- Correspondence: ; Tel.: +34-8-6888-4673
| |
Collapse
|
14
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Diez-Orejas R, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés MT. Effects of mesoporous SiO 2-CaO nanospheres on the murine peritoneal macrophages/Candidaalbicans interface. Int Immunopharmacol 2021; 94:107457. [PMID: 33752172 DOI: 10.1016/j.intimp.2021.107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
The use of nanoparticles for intracellular drug delivery could reduce the toxicity and side effects of the drug but, the uptake of these nanocarriers could induce adverse effects on cells and tissues after their incorporation. Macrophages play a central role in host defense and are responsible for in vivo nanoparticle trafficking. Assessment of their defense capacity against pathogenic micro-organisms after nanoparticle uptake, is necessary to prevent infections associated with nanoparticle therapies. In this study, the effects of hollow mesoporous SiO2-CaO nanospheres labeled with fluorescein isothiocyanate (FITC-NanoMBGs) on the function of peritoneal macrophages was assessed by measuring their ability to phagocytize Candidaalbicans expressing a red fluorescent protein. Two macrophage/fungus ratios (MOI1 and MOI5) were used and two experimental strategies were carried out: a) pretreatment of macrophages with FITC-NanoMBGs and subsequent fungal infection; b) competition assays after simultaneous addition of fungus and nanospheres. Macrophage pro-inflammatory phenotype markers (CD80 expression and interleukin 6 secretion) were also evaluated. Significant decreases of CD80+ macrophage percentage and interleukin 6 secretion were observed after 30 min, indicating that the simultaneous incorporation of NanoMBG and fungus favors the macrophage non-inflammatory phenotype. The present study evidences that the uptake of these nanospheres in all the studied conditions does not alter the macrophage function. Moreover, intracellular FITC-NanoMBGs induce a transitory increase of the fungal phagocytosis by macrophages at MOI 1 and after a short time of interaction. In the competition assays, as the intracellular fungus quantity increased, the intracellular FITC-NanoMBG content decreased in a MOI- and time-dependent manner. These results have confirmed that macrophages clearly distinguish between inert material and the live yeast in a dynamic intracellular incorporation. Furthermore, macrophage phagocytosis is a critical determinant to know their functional state and a valuable parameter to study the nanomaterial / macrophages / Candida albicans interface.
Collapse
Affiliation(s)
- R Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - L Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - M J Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - J M Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - D Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - M T Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
16
|
Abramiuk M, Grywalska E, Korona-Głowniak I, Niedźwiedzka-Rystwej P, Polak G, Kotarski J, Roliński J. CD200 and CD200R Expression on Peripheral Blood Lymphocytes and Serum CD200 Concentration as a New Marker of Endometriosis. J Clin Med 2020; 9:E3035. [PMID: 32967175 PMCID: PMC7564549 DOI: 10.3390/jcm9093035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The causes of endometriosis (EMS) remain unknown; however, a number of immunological abnormalities contribute to the pathogenesis of the disease. The cluster of differentiation-200 (CD200) and its receptor (CD200R) maintain peripheral self-tolerance by negatively regulating immune responses. In this comparative cross-sectional study, we investigated the expression of CD200 and CD200R on T and B lymphocytes and the serum level of soluble CD200 (sCD200) using flow cytometry and ELISA, respectively. Peripheral blood samples were collected from 54 female patients and 20 healthy, age-matched controls. Results were tested for correlation with disease severity and selected clinical parameters. We demonstrated that the differences in sCD200 levels (p = 0.001), the frequencies of CD200-positive T and B lymphocytes (p < 0.001 and p = 0.004, respectively), and the frequencies of CD200R-positive T and B lymphocytes (p < 0.001 for all comparisons) in the study group correlated positively with disease severity. Receiver operating characteristic (ROC) analysis indicated that aberrant expression of CD200/CD200R might serve as a marker to distinguish between EMS cases. Finally, negative co-stimulatory factors may contribute to the induction and persistence of inflammation associated with EMS. It seems that it is essential to determine whether alteration in the CD200/CD200R pathway can be therapeutically targeted in EMS.
Collapse
Affiliation(s)
- Monika Abramiuk
- 1st Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland; (G.P.); (J.K.)
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | | | - Grzegorz Polak
- 1st Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland; (G.P.); (J.K.)
| | - Jan Kotarski
- 1st Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland; (G.P.); (J.K.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|