1
|
Guan D, Chen Z, Zhang Y, Sun W, Li L, Huang X. Dual Role of Natural Killer Cells in Early Pregnancy: Immunopathological Implications and Therapeutic Potential in Recurrent Spontaneous Abortion and Recurrent Implantation Failure. Cell Prolif 2025:e70037. [PMID: 40325291 DOI: 10.1111/cpr.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
Natural killer (NK) cells are critical regulators of immune processes during early pregnancy, playing a key role in maintaining maternal-foetal immune tolerance and supporting successful implantation. In particular, uterine NK cells, a specialised subset of NK cells, facilitate trophoblast invasion, spiral artery remodelling and placental establishment. Dysregulation of NK cell activity, however, has been implicated in pregnancy complications, notably recurrent spontaneous abortion (RSA) and recurrent implantation failure (RIF). Aberrant NK cell functions, such as heightened cytotoxicity or defective immune signalling, can disrupt the balance between immune tolerance and response, leading to impaired placental development, reduced trophoblast activity and compromised uteroplacental blood flow. This review examines the role of NK cells in early pregnancy, emphasising their contributions to immune modulation and placentation. It also investigates the mechanisms by which NK cell dysfunction contributes to RSA and RIF, and explores therapeutic strategies aimed at restoring NK cell balance to improve pregnancy outcomes. A deeper understanding of NK cell interactions during early pregnancy may provide critical insights into the pathogenesis of pregnancy failure and facilitate targeted immunotherapeutic approaches.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhou Chen
- Gansu Provincial Hospital, Lanzhou, Gansu, China
- The Third Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuhua Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjie Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lifei Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xia Huang
- Gansu Provincial Hospital, Lanzhou, Gansu, China
- The Third Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Aghaee F, Abedinpour M, Anvari S, Saberi A, Fallah A, Bakhshi A. Natural killer cells in multiple sclerosis: foe or friends? Front Cell Neurosci 2025; 19:1500770. [PMID: 40255388 PMCID: PMC12006147 DOI: 10.3389/fncel.2025.1500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder involving the central nervous system (CNS), in which demyelination is caused. The initiation and progression of MS is thought to depend largely on CD4+ T lymphocytes, yet new data has emphasized the involvement of the innate immune system in the MS disease responses. Generally, several types of immune cells play a part, with natural killer (NK) cells being essential. Different subsets of natural killer cells function differently within the course of an autoimmune disease, such as MS. There are mainly two types of natural killers in humans: immature CD56 bright CD16- and mature CD56 dim CD16+ natural killers, together with their respective subtypes. Factors from natural killers expand the T cell population and control the process by which native CD4+ T cells differentiate into Th1 or Th2 lymphocytes, which affect autoimmune responses. Natural killer subsets CD56 bright and CD56 dim may have differing roles in MS development. The impact of these NK cell subsets is influenced by factors such as Granzymes, genetics, infections, TLR, and HSP. We reviewed and evaluated the relationship between natural killer cells and MS.
Collapse
Affiliation(s)
- Fatemeh Aghaee
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Abedinpour
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Anvari
- Department of Neurology, Neurosciences Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alia Saberi
- Department of Internal Medicine, Regenerative Medicine Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Fallah
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Shi J, Xu Q, Yu S, Zhang T. Perturbations of the endometrial immune microenvironment in endometriosis and adenomyosis: their impact on reproduction and pregnancy. Semin Immunopathol 2025; 47:16. [PMID: 39966111 PMCID: PMC11835911 DOI: 10.1007/s00281-025-01040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025]
Abstract
The impact of endometriosis and adenomyosis on reproduction and pregnancy is significant, with both conditions linked to increased rates of infertility, poor ovarian function in women with endometriosis, and elevated pregnancy complications in those with adenomyosis. However, the underlying mechanisms remain largely unclear. Both conditions share a similar pathophysiological process characterized by the growth of ectopic endometrium, which may originate from the eutopic endometrium. Notably, surgical removal of ectopic lesions does not appear to significantly improve reproductive and pregnancy outcomes, further underscoring the importance of eutopic endometrium in these adverse effects. Emerging evidence indicates substantial differences in endometrial NK cells, macrophages, and T cells, leading to inflammatory responses in women with endometriosis and adenomyosis. These alterations may contribute not only to disease progression but also to defective endometrial receptivity, insufficient angiogenesis remodeling, impaired maternal-fetal immune tolerance, and poor placentation, thereby influencing embryo implantation and pregnancy maintenance. This provides an immunological perspective to explain the higher rates of infertility and pregnancy complications observed in affected women. Therefore, we systematically review the alterations in endometrial immune cells in women with endometriosis and adenomyosis compared to healthy controls, exploring the potential impacts of these changes on reproduction and pregnancy. This review aims to lay the groundwork for future studies on the immunopathogenesis associated with endometriosis and adenomyosis-related reproductive failure and pregnancy complications, shedding lights on the development of immunotherapeutic strategies to mitigate these adverse impacts in affected women.
Collapse
Affiliation(s)
- Jialu Shi
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianhan Xu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuyi Yu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory in Reproductive Medicine, Chinese University of Hong Kong, Sichuan University, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Mai C, Fukui A, Saeki S, Takeyama R, Yamaya A, Shibahara H. Expression of NKp46 and other activating inhibitory receptors on uterine endometrial NK cells in females with various reproductive failures: A review. Reprod Med Biol 2025; 24:e12610. [PMID: 39807425 PMCID: PMC11725765 DOI: 10.1002/rmb2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition. Methods This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures. Main Findings Numerous studies have indicated that the natural cytotoxic receptors, killer cell immunoglobulin-like receptors, and C-type lectin receptors, particularly those expressed on uNK cells, play crucial roles in successful pregnancy. Conclusion As studies on human uNK cells are limited owing to the low availability of fertile samples, and the extrapolation of animal models has certain limitations, the in vivo role of uNK cells has not yet been fully elucidated. However, immunotherapies focusing on modulating uNK cell function have been controversial in terms of pregnancy outcomes. Further research is required to elucidate the role of uNK cells in reproduction.
Collapse
Affiliation(s)
- Chuxian Mai
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesFirst Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Shinichiro Saeki
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ryu Takeyama
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ayano Yamaya
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| |
Collapse
|
5
|
Qian S, Zhou Y, Jin Z, Li X, Tian Y, Chen F, Zhang B, Yan Z. Advancements in the Study of the Immune Molecule NKp46 in Immune System-related Diseases. Clin Rev Allergy Immunol 2024; 67:96-110. [PMID: 39612130 PMCID: PMC11638288 DOI: 10.1007/s12016-024-09010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/30/2024]
Abstract
NKp46 is a natural killer cell activating receptor primarily expressed on NK cells and non-NK innate lymphoid cells. In the context of anti-infection, NKp46 activates NK cells by binding to ligands on pathogens or infected cells, enabling NK cells to kill the infected cells. In antitumor activities, NKp46 plays a pivotal role in combating tumor growth through mechanisms such as directly killing tumor cells, inhibiting tumor immune escape, and reducing tumor growth rate through immune editing. The expression levels of NKp46 are closely associated with the progression of immune-related diseases, viral infections, leukemia, tumors, and reproductive failure, affecting diagnosis and prognosis. However, the functionality and mechanistic actions of NKp46, as well as the identification of additional NKp46 ligands, require further investigation. This review provides a comprehensive understanding of NKp46, offering a theoretical foundation for the research and development of diagnostic and therapeutic approaches for related diseases.
Collapse
Affiliation(s)
- Siyi Qian
- The 2nd Department of Gynecology Oncology of Hunan Cancer Hospital the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Zhongyuan Jin
- Department of Pathology, Xiangya Medical School, Central South University, Changsha, People's Republic of China
| | - Xiang Li
- Department of Pathology, Xiangya Medical School, Central South University, Changsha, People's Republic of China
| | - Yuxuan Tian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Bin Zhang
- The 2nd Department of Gynecology Oncology of Hunan Cancer Hospital the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Zhipeng Yan
- The 2nd Department of Gynecology Oncology of Hunan Cancer Hospital the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
6
|
Fang Z, Mao J, Huang J, Sun H, Lu X, Lei H, Dong J, Chen S, Wang X. Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice. Cell Commun Signal 2024; 22:230. [PMID: 38627796 PMCID: PMC11022359 DOI: 10.1186/s12964-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.
Collapse
Affiliation(s)
- Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiaqin Mao
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Huijun Sun
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xueyan Lu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Xiaohong Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
7
|
de Moura GA, Rocha YM, Moura FLD, Freitas JDO, Rodrigues JPV, Gonçalves VP, Nicolete R. Immune system cells modulation in patients with reproductive issues: A systematic review approach. JBRA Assist Reprod 2024; 28:78-89. [PMID: 37962966 PMCID: PMC10936913 DOI: 10.5935/1518-0557.20230044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/21/2023] [Indexed: 11/16/2023] Open
Abstract
The aim of this study was to carry out a systematic literature review to investigate the main immune cells responsible for implantation failures. We selected papers from PubMed, Embase and Virtual Health Library databases. Eligible articles included publications between January 1, 2010 and April 24, 2022. Inclusion criteria were: observational and case-control studies; and the exclusion criteria were: review papers, letters to the editor, abstracts, animal studies and case reports. We extracted the following information: day of collection, number of patients, control group, age of patients, type of sample used, immune cells and cytokines. As main findings in our mapping, we found that in peripheral blood, CD3+, CD4+, CD8+, CD16+, CD56+, CD57+, CD69+, CD154+, CD158a+, NKp46 cells were increased and the CD4+, CD45+, Foxp3 and NKp46 markers were reduced. From the endometrial biopsies, there was an increase in CD3+, CD4+, CD5+, CD8+, CD16+, CD25+, CD45+, CD56+, CD57+, CD68+, CD127+ and a reduction in CD45+, CD56+, NKp46 and FoxP3 cells. Cytokines found increased in peripheral blood included IL-6, IL-10, IL-17, INF-γ, TGF-ß, TNF-α; while IL-4, IL-6, IL-10, IL-35, FoxP3, TGF-ß, SOCS3 were reduced. As for the biopsies, there was an increase in IL-2, IL-6, IL-17, IL-22, IL-23, INF-A1, INF-B1, INF-γ, TNF-R and a reduction in IL-6, IL-10, INF-γ, TGFß, TNF-α. We concluded that immune cells can be modulated during pregnancy failure, but further studies are needed to elucidate the modulating effect of the immune system on the endometrium of these patients.
Collapse
Affiliation(s)
- Gabriel Acácio de Moura
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
| | - Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
| | | | | | - João Pedro Viana Rodrigues
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
| | - Vanessa Pinheiro Gonçalves
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
- North Northeast Biotechnology Network (RENORBIO), State University
of Ceará (UECE), Fortaleza, CE, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
- North Northeast Biotechnology Network (RENORBIO), State University
of Ceará (UECE), Fortaleza, CE, Brazil
| |
Collapse
|
8
|
Mu F, Huo H, Wang M, Wang F. Omega-3 fatty acid supplements and recurrent miscarriage: A perspective on potential mechanisms and clinical evidence. Food Sci Nutr 2023; 11:4460-4471. [PMID: 37576058 PMCID: PMC10420786 DOI: 10.1002/fsn3.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023] Open
Abstract
Recurrent miscarriage (RM) affects approximately 1%-5% of couples worldwide. Due to its complicated etiologies, the treatments for RM also vary greatly, including surgery for anatomic factors such as septate uterus and uterine adhesions, thyroid modulation drugs for hyperthyroidism and hypothyroidism, and aspirin and low molecular weight heparin for antiphospholipid syndrome. However, these treatment modalities are still insufficient to solve RM. Omega-3 fatty acids are reported to modulate the dysregulation of immune cells, oxidative stress, endocrine disorders, inflammation, etc., which are closely associated with the pathogenesis of RM. However, there is a lack of a systematic description of the involvement of omega-3 fatty acids in treating RM, and the underlying mechanisms are also not clear. In this review, we sought to determine the potential mechanisms that are highly associated with the pathogenesis of RM and the regulation of omega-3 fatty acids on these mechanisms. In addition, we also highlighted the direct and indirect clinical evidence of omega-3 fatty acid supplements to treat RM, which might encourage the application of omega-3 fatty acids to treat RM, thus improving pregnancy outcomes.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Huyan Huo
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Mei Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Fang Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
9
|
Dons'koi BV, Baksheev SM, Sudoma IO, Palyha IE, Khazhylenko KG, Zabara DV, Anoshko YI, Dosenko VE, Dubrovsky EI. A Blinded Investigation: Accentuated NK Lymphocyte CD335 (NKp46) Expression Predicts Pregnancy Failures. Diagnostics (Basel) 2023; 13:diagnostics13111845. [PMID: 37296696 DOI: 10.3390/diagnostics13111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
AIM NKp46 is an NK cell receptor uniquely expressed by NK cells and a small subset of innate lymphoid cells. In our previous studies, we suggested a tight connection between the activity of NK cells and the expression of NKp46 and supported the clinical significance of NKp46 expression in NK cells in women with reproductive failures. In this study, we investigated the expression of NKp46 in NK cells in the peripheral blood of women in early pregnancy and analyzed its association with pregnancy loss. METHODS In a blinded study, we examined blood samples and analyzed the subsequent pregnancy outcomes from 98 early pregnant women (5th-7th week of gestation-w.g.) and 66 women in the 11th-13th week of pregnancy who served as controls. We studied the expression of NKp46 and the levels of anti-cardiolipin antibodies (aCL). The results of aCL were shared with the clinic, while the expression of NKp46 was blinded and not analyzed until the end of the study. RESULTS A misbalance in the NKp46+NK cells subpopulations was associated with an unfavorable ongoing pregnancy. A decreased level of NKp46high cells (<14%) was strongly associated with miscarriage. A decreased level of the double-bright subpopulation (NKp46hightCD56++) also was a negative prognostic factor for the pregnancy course, but its increased level (>4%) was strongly associated with a successful pregnancy course. CONCLUSIONS Our results showed that accentuated levels of NKp46+NK cells lead to a negative prognosis for early pregnancy courses in women.
Collapse
Affiliation(s)
- Boris V Dons'koi
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology Named after Academician O. Lukyanova of the National Academy of Medical Sciences of Ukraine, Mayborody Str. 8, 04050 Kyiv, Ukraine
- Private Enterprise "First Social Medical Laboratory "ESCULAB"", 79010 Lviv, Ukraine
| | | | - Irina O Sudoma
- NADIYA Clinic, 03037 Kyiv, Ukraine
- LELEKA Maternity Hospital, 04075 Kyiv, Ukraine
| | - Ihor E Palyha
- Klinika Reproduktsiyi Lyudyny "Al'ternatyva", 79041 Lviv, Ukraine
| | | | - Dariia V Zabara
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology Named after Academician O. Lukyanova of the National Academy of Medical Sciences of Ukraine, Mayborody Str. 8, 04050 Kyiv, Ukraine
| | - Yaroslava I Anoshko
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology Named after Academician O. Lukyanova of the National Academy of Medical Sciences of Ukraine, Mayborody Str. 8, 04050 Kyiv, Ukraine
| | - Viktor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
| | - Evgen I Dubrovsky
- Laboratory of Immunology, Institute of Pediatrics, Obstetrics and Gynecology Named after Academician O. Lukyanova of the National Academy of Medical Sciences of Ukraine, Mayborody Str. 8, 04050 Kyiv, Ukraine
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
| |
Collapse
|
10
|
Zhang D, Yu Y, Ding C, Zhang R, Duan T, Zhou Q. Decreased B7-H3 promotes unexplained recurrent miscarriage via RhoA/ROCK2 signaling pathway and regulates the secretion of decidual NK cells†. Biol Reprod 2023; 108:504-518. [PMID: 36504380 DOI: 10.1093/biolre/ioac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The cause for at least 50% of recurrent miscarriages is unclear, which is defined as unexplained recurrent miscarriages. The B7-H1 (PD-L1), a molecule of the B7 family, promotes tumor development by modulating immune evasion, and recent researchers have also attached importance to the role of B7-H3, another molecule of B7 family, in tumor. Based on the similarity between growth and immune response in tumors and pregnancy, we first explored the role of B7-H3 in unexplained recurrent miscarriages. We found reduced levels of B7-H3 in the villus tissue of unexplained recurrent miscarriage patients, and it was mainly expressed on the cell membrane of extravillous trophoblasts. Further, the HTR-8/SVneo and JEG-3 cells were selected to explore the role of B7-H3 in proliferation, apoptosis, tube formation, migration, and invasion. We found that B7-H3 regulated trophoblast migration and invasion via RhoA/ROCK2 signaling pathway. Inflammatory cytokines were detected through enzyme-linked immunosorbent assay after co-culturing with decidual natural killer cells and B7-H3-knockout JEG-3. Results showed that B7-H3 inhibited IL-8 and IP-10 secretion from the decidual natural killer cells. In a CBA/J × DBA/2 abortion-prone mice model, treatment with B7-H3-Fc protein successfully reduced the rate of embryo resorption. In conclusion, our results revealed a possible mechanism by which decreased B7-H3 on trophoblasts of unexplained recurrent miscarriages inhibited trophoblast migration and invasion and increased IL-8 and IP-10 secretion from the decidual natural killer cells. Furthermore, B7-H3 may be a promising new therapeutic target in unexplained recurrent miscarriage patients.
Collapse
Affiliation(s)
- Donghai Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences; Chongqing school, University of Chinese Academy of Sciences, Chongqing, China
| | - Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Ruonan Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Tao Duan
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First and Translational Maternity and Infant Hospital, Tongji University, Shanghai, China
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Co-expression of activating and inhibitory receptors on peritoneal fluid NK cells in women with endometriosis. J Reprod Immunol 2023; 155:103765. [PMID: 36442371 DOI: 10.1016/j.jri.2022.103765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The detailed mechanism underlying endometriosis development remains unclear; few reports have suggested the involvement of immune and genetic factors. This study aims to investigate the role of NK cells in endometriosis by analyzing the co-expression of activating (NKp46, NKG2C, and NKG2D) and inhibitory receptors (NKG2A and CD158a) on NK cells and their subsequent cytokine production in the peritoneal fluid (PF). Sixty-two patients were enrolled for this study from Hyogo Medical University between February 2018 and April 2022. Results showed that the proportions of CD56+/NKp46+, CD56dim/NKp46+, NKG2C+/NKp46+, and NKG2D+/NKp46+ NK cells were significantly lower in the endometriosis group than those in the control group. Meanwhile, within the peritoneal endometriosis (n = 21) and deep infiltrating endometriosis (n = 11) groups, the co-expression of NKG2D+/NKp46+ and CD16+/NKp46+. Additionally, the abundance of IFN-γ-producing NK cells was significantly increased in the endometriosis group compared to controls, and a significant negative correlation was noted between NKp46 expression on NK cells and type 1 cytokine (IFN-γ and TNF-α) production. Taken together, the findings of this study indicate that NK cell cytotoxicity in endometriosis is reduced due to changes in NKp46 expression, as well as activating receptors co-expressed with NKp46. Consequently, NK cells do not eliminate endometrial cells in the abdominal cavity, resulting in the production of TNF-α and IFN-γ.
Collapse
|
12
|
Woon EV, Nikolaou D, MacLaran K, Norman-Taylor J, Bhagwat P, Cuff AO, Johnson MR, Male V. Uterine NK cells underexpress KIR2DL1/S1 and LILRB1 in reproductive failure. Front Immunol 2023; 13:1108163. [PMID: 36713400 PMCID: PMC9880428 DOI: 10.3389/fimmu.2022.1108163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
A significant proportion of recurrent miscarriage, recurrent implantation failure and infertility are unexplained, and these conditions have been proposed to have an etiology of immunological dysfunction at the maternal-fetal interface. Uterine Natural Killer cells (uNK) comprise three subsets and are the most numerous immune cells found in the uterine mucosa at the time of implantation. They are thought to play an important role in successful pregnancy by regulation of extravillous trophoblast (EVT) invasion and spiral artery remodelling. Here, we examine the frequency, phenotype and function of uNK1-3 from the uterine mucosa of 16 women with unexplained reproductive failure compared to 11 controls with no reproductive problems, during the window of implantation. We report that KIR2DL1/S1 and LILRB1 expression is lower in the reproductive failure group for both uNK (total uNK, uNK 2 and 3) and pNK. We also show that degranulation activity is significantly reduced in total uNK, and that TNF-α production is lower in all uNK subsets in the reproductive failure group. Taken together, our findings suggest that reproductive failure is associated with global reduction in expression of uNK receptors important for interaction with HLA-C and HLA-G on EVT during early pregnancy, leading to reduced uNK activation. This is the first study to examine uNK subsets during the window of implantation in women with reproductive failure and will serve as a platform to focus on particular aspects of phenotype and function of uNK subsets in future studies. Further understanding of uNK dysregulation is important to establish potential diagnostic and therapeutic targets in the population of women with unexplained reproductive failure.
Collapse
Affiliation(s)
- Ee Von Woon
- Department of Metabolism, Digestion and Reproduction, Institute of Developmental Reproductive and Developmental Biology, Imperial College London, London, United Kingdom,The Fertility Centre, Chelsea and Westminster Hospital, London, United Kingdom,*Correspondence: Ee Von Woon,
| | - Dimitrios Nikolaou
- The Fertility Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kate MacLaran
- The Fertility Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Priya Bhagwat
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, United Kingdom
| | - Antonia O. Cuff
- Department of Metabolism, Digestion and Reproduction, Institute of Developmental Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Metabolism, Digestion and Reproduction, Institute of Developmental Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Institute of Developmental Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Yamamoto M, Fukui A, Mai C, Saeki S, Takayama R, Wakimoto Y, Yamaya A, Kwak‐Kim J, Shibahara H. Evaluation of NKp46 expression and cytokine production of decidual NK cells in women with recurrent pregnancy loss. Reprod Med Biol 2022; 21:e12478. [PMID: 35847412 PMCID: PMC9275167 DOI: 10.1002/rmb2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose NKp46, a receptor on NK cells, is involved in cytotoxicity and cytokine production. The authors aimed to evaluate the effect of NKp46 on decidual NK (dNK) cells during pregnancy and whether it can be a marker for immunological abnormalities in women with recurrent pregnancy loss (RPL). Methods Flow-cytometric analysis was made to assess NKp46 expression and intracellular cytokine production of dNK cells. The proportion of NKp46+ dNK cells was analyzed among RPL patients who aborted karyotypically normal pregnancies and those who either aborted karyotypically abnormal pregnancies or without genetic studies, and controls who were going through the induced abortion. Results The %NKp46+ and %NKp46bright dNK cells were significantly lower in the RPL women who aborted karyotypically normal pregnancies than in the control group. The %NKp46bright dNK cells were significantly correlated with the NK1/NK2 ratio of dNK cells. The %NKp46+ dNK cell cutoff for RPL with immunological abnormalities was determined by the ROC curve analysis. In women with the low %NKp46+ dNK, NK1/NK2 ratios were significantly higher than those with the high. Conclusion RPL patients with an immunological abnormality have decreased NKp46 expression and NK1 shift in dNK cells. NKp46 expression could be a marker for RPL of immunological abnormalities.
Collapse
Affiliation(s)
- Mayu Yamamoto
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Atsushi Fukui
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Chuxian Mai
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Shinichiro Saeki
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Ryu Takayama
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Yu Wakimoto
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Ayano Yamaya
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
- Clinical Sciences Department, Reproductive Medicine and Immunology, Obstetrics and Gynecology, Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceVernon HillsILUSA
| | - Joanne Kwak‐Kim
- Clinical Sciences Department, Reproductive Medicine and Immunology, Obstetrics and Gynecology, Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceVernon HillsILUSA
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, School of MedicineHyogo Medical UniversityNishinomiyaJapan
| |
Collapse
|